
2.6-6

OpenQM

Reference
Manual

OpenQM
Reference Manual

Ladybridge Systems Limited

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

OpenQM

Copyright Ladybridge Systems, 2007

Publisher
Special thanks to:

Users of the OpenQM product who have contributed topics and
suggestions for this manual.

Such information is always very much appreciated so please
continue to send comments to support@openqm.com.

Technical Editor

Cover Graphic

Ladybridge Systems Limited
17b Coldstream Lane
Hardingstone
Northampton
NN4 6DB
England

Martin Phillips

Ishimsi

5Contents

2.6-6

Table of Contents

Part 1 Introduction to the QM Database 8

Part 2 The Command Environment 34

Part 3 The QM File System 82

Part 4 QM Commands 154

Part 5 Query Processing 438

Part 6 QMBasic 568

Part 7 QMClient API 1050

Part 8 System Administration 1102

Part 9 System Limits 1132

Part 10 Glossary of Terms 1134

Index 1139

Part

1
Introduction to the QM Database

OpenQM8

2.6-6

1 Introduction to the QM Database

OpenQM is a database management system that allows you to develop and run applications for
your business or personal use. It includes a wide range of advanced tools and features for complex
applications whilst still allowing relatively painless construction of simpler applications.

OpenQM is a member of a family of database products known as multivalue databases, a term
that relates to how the system stores your data. If you have experience of products such as Access
or Oracle, you may find the architecture of OpenQM to be alien to what you have learnt in the past.
It's not wrong; it's just a different way to work. Experience over many years shows that application
development for a multivalue database is often many times quicker than for other methodologies,
resulting in lower development costs and simpler maintenance.

OpenQM is the only multivalue database product that is available both as a fully supported closed
source commercial product and in open source form for developers who wish to modify the product
under the terms of the General Public Licence. In common with all GPL software, the open source
version comes with no warranty and no support. This documentation describes the commercial
product though most of what is here should apply equally to the open source.

The name OpenQM is often abbreviated to QM and it is this shorter name (which is the operating
system command used to enter the product) that is used in most places within this documentation.

QM has a high degree of compatibility with other multivalue databases systems such as UniVerse,
PI/open, Prime Information, Unidata, D3, Reality and many more.

Facilities are provided to create data files, enter, modify and retrieve data, produce reports and,
where the data processing operation required cannot be achieved using the supplied tools, to
construct powerful programs with the minimum of effort.

The major components of QM are:

The command processor This includes a comprehensive command set to create, modify,
copy and delete files and data stored in them as well as many
commands to control processing.

The query processor This provides facilities to produce reports from stored data using
an English-like command syntax. The query processor also
provides tools to select data which meets particular criteria and to
perform operations on this data.

QMBasic For those occasions where QM does not provide the desired
functions, QMBasic is a very easy to use programming language
with powerful screen manipulation and data handling functions.

QMClient API The QMClient API is a set of functions that can be used from
Visual Basic applications to access the QM database. This allows
development of applications with a Windows "look and feel".
There are variants of this API library for use with other languages,
including access from inside QMBasic to allow programs to call
subroutines or execute commands on other servers.

Introduction to the QM Database 9

2.6-6

Specific topics:

User management User management and system security issues.

Printing A summary of QM's printing system.

Document Conventions

The QM documentation uses a simple set of conventions in descriptions of command lines or
language elements. For example

DELETE.FILE {DATA | DICT} file.name {FORCE}

Items in bold type (DELETE.FILE for example) are keywords that must be entered as they appear
in the description except that in most instances they may be in either upper or lower case.

Items in italics (file.name) represent places in commands or language statements where some
variable data is required. In this case it is the name of a file.

Items enclosed in curly brackets (e.g. {FORCE}) are optional parts of a command or statement.
The curly brackets are not part of the data and should not be typed. The descriptions will explain
when the item should be used and what effect it has.

Lists of alternative keywords are shown separated by vertical bars (e.g. {DATA | DICT}).

Items that may be repeated are followed by ellipsis (...). The text explains the rules governing
related items.

The mark characters are represented by IM, FM, VM, SM, TM and VM.

OpenQM10

2.6-6

1.1 What is a Multivalue Database?

There are many different databases available but they all fall into a small number of basic types.
One of these is the relational database such as Oracle or Access. A relational database holds data
in the form of tables in just the same way that we could store information as tables written on
paper.

Consider an order processing system. We need to hold information about the orders that each
customer has placed. Keeping things very simple, at a minimum we might need a table such as that
shown below.

Order no Date Customer Product Quantity

1001 12 Jan 05 1728 107 4

1002 12 Jan 05 3194 318 2

1003 13 Jan 05 7532 220 1

1004 13 Jan 05 1263 318 2

In this simple table, each row represents an order and each column holds data associated with that
order.

Relational databases are built following a set of rules known as the Laws of Normalisation [E.
Codd : "A Relational Model of Data for Large Shared Data Banks", Communications of the ACM,
June 1970]. The process of transforming data to fit the rules of a relational database is called
normalisation and the steps in this process are referred to as first normal form, second normal
form, and so on.

The First Law of Normalisation states that we may not have repeating data. In practical terms this
means that we cannot add extra columns to the right of the table to allow a customer to order more
than one item at the same time.

Order no Date Customer Product Quantity Product Quantity

1001 12 Jan 05 1728 107 4

1002 12 Jan 05 3194 318 2 452 3

1003 13 Jan 05 7532 220 1

1004 13 Jan 05 1263 318 2

Clearly this restriction is not acceptable in the real world.

There are many reasons why the Laws of Normalisation do not allow this, mostly based on the way
in which the data might be stored by the computer system. If we are to observe the First Law of
Normalisation, we must reconstruct our data in some way that removes the additional columns. One
way would be to split an order that has multiple item across several rows of our table.

Introduction to the QM Database 11

2.6-6

Order no Date Customer Product Quantity Lines

1001-1 12 Jan 05 1728 107 4 1

1002-1 12 Jan 05 3194 318 2 2

1002-2 12 Jan 05 3194 452 3 2

1003-1 13 Jan 05 7532 220 1 1

1004-1 13 Jan 05 1263 318 2 1

Although we can now store as many items in an order as we wish, things have become more
complicated. Firstly, the details of a single order are now split across multiple rows of our table.
Secondly, we have been forced to add an extra column so that we can know how many lines there
are in the order. Also, we have duplicated some information, a step which actually breaks another
of the Laws of Normalisation. To avoid this last complication, a typical implementation of this sort
of data in a fully normalised system (e.g. Oracle or Access) would break the order into two separate
tables, one containing the basic information about the order and the other containing the details of
the items ordered.

Order no Date Customer Lines

1001 12 Jan 05 1728 1

1002 12 Jan 05 3194 2

1003 13 Jan 05 7532 1

1004 13 Jan 05 1263 1

Detail Ref Product Quantity

1001-1 107 4

1002-1 318 2

1002-2 452 3

1003-1 220 1

1004-1 318 2

Things are becoming complex and this is supposed to be a trivial application!

Multivalue database products avoid this complication by removing the need to adhere to the First
Law of Normalisation. We allow a single cell of our table to hold more than one value (hence
"multivalue").

Order no Date Customer Product Quantity

1001 12 Jan 05 1728 107 4

1002 12 Jan 05 3194 318
452

2
3

1003 13 Jan 05 7532 220 1

1004 13 Jan 05 1263 318 2

If you have spent many years working with fully normalised databases, you are probably shaking
your head and saying that we cannot do this. Yes, we can do it; it's just a different way to hold our
data.

Think about the advantages: The entire order is all held as a single record; there is no redundant
duplication of data; we do not need an item counter.

The end result of this is that our multivalue view of the world is typically much faster than its fully
normalised counterpart though there will always be situations where this model is not ideal. In such
cases, you can freely revert to using the fully normalised approach. Notice that fully normalised

OpenQM12

2.6-6

data can be stored in a multivalue database. The opposite tends not to be true.

The time has come to introduce some terminology. A typical application will have many tables,
perhaps hundreds or even thousands though the multivalue model usually results in far fewer tables
than in other data models. Each table is stored as a file. The rows of our table are known as
records and the columns as fields (some users refer to these as attributes). The data stored in a
field may be made up of multiple values.

Note how in our multivalued implementation of the above example, the values in the product and
quantity columns are related together. For any particular order, the first product number belongs
with the first quantity, the second product number belongs with the second quantity and so on. A
typical realistic table may have several separate sets of fields that are linked in this way. The
relationship between the values in different fields (e.g. product and quantity above) is referred to as
an association.

By adopting this data model instead of using additional columns, the data model imposes no limit to
the number of items that may be included in an order.

This extended form of the relational database model is at the heart of the QM database. You may
also see it referenced as post-relational, nested table or NF2 (non-first normal form). They all mean
the same thing.

In a multivalue database, the tables can gain a fourth dimension (subvalues). Continuing with the
above example, perhaps we need to record the serial number of each item that we sell. Thus each
value line in the table depicted above would have subvalues containing the serial numbers for each
item supplied.

The History of Multivalue Databases

The original multivalue database is usually attributed to Dick Pick (hence the frequently used term
"Pick databases") back in 1968 though their origins can be tracked back further. The current D3
database from Raining Data is a direct descendant of the original Pick product but there have been
many other players along the way, some large, some small. Some of these are significant to the way
in which QM works.

The Reality database, originally implemented on McDonnell Douglas systems but now owned by
Northgate Information Solutions, closely follows the Pick style of operation. The long defunct
Prime Information database from Prime Computer retained the same data model and general
principles but made some fairly significant changes to the command and programming languages.

In the mid-1980's the various companies with multivalue products hit a problem. The world was
standardising on the Unix operating system but these products did not run on Unix. As a result of
this, McDonnell Douglas developed an "open systems" version of Reality (Reality X) and Prime
Computer developed the PI/open database. At the same time, two start up companies appeared each
with their own Unix based multivalue implementation, VMark (UniVerse) and Unidata (Unidata).
These companies set out to capture users from the existing products as well as taking on new users.
The history is long and complex but to bring it up to date in one step, UniVerse and Unidata are
now both owned by IBM. Technically, IBM also own Prime Information and PI/open but both
products have been retired.

The UniVerse and Unidata products (usually referred to collectively as U2) follow the Information
style of implementation by default but have features that allow them to look more like the Pick style
if required.

Introduction to the QM Database 13

2.6-6

QM was originally developed in 1993 for use as an embedded database but not released as a
product in its own right until 2001. Like the U2 products, it is an Information style database but has
options to make it more like Pick for those who need it.

OpenQM14

2.6-6

1.2 Installation

If you are going to try things out as you read this manual, the first thing we need to discuss is how
to install your own version of QM. This section relates only to the commercial QM product. If you
are planning to use the open source version of QM and build your own system, none of what
follows in this section applies to you. Instead, you must download and build the system from its
source code.

In this section, you will find details on how to install QM on
· Windows
· A USB memory stick under Windows
· Linux and FreeBSD
· Mac OS X
· A PDA

Although QM can be supplied on CD, users normally download the software from the OpenQM
website, www.openqm.com which ensures that you have the latest version of this rapidly developing
product.

If you purchase a commercial QM licence, you are free to download and install new versions as
often as you wish during the free upgrade period (at least one year but this period can be extended).
After this period expires, there will be a charge for upgrades. The software comes with free support
for the first 60 days beyond which time further support is available on a chargeable basis.

On most platforms, you can also use QM in its single user "Personal Version" mode. This is exactly
the same as the commercial product but is restricted for use in non-commercial activities, typically
as a learning environment, and has a low limit on the size of database file that it will support. The
personal version comes with no support beyond any help necessary to get it installed.

You will probably not want to install every revision that is released. The web site includes a "
What's new in recent releases" page that can be used to help decide when an upgrade is desirable.

To download the software, follow the link to the download page and select the appropriate version
for your platform. Right click on the Download link and select Save as to copy the install file to
your system. If you need to move the file from the system on which it is downloaded to a different
system for installation, be sure to use a binary mode copy tool.

The installation process is exactly the same for a new installation and for an upgrade. The following
sections describe the process for each platform.

Installation on Windows

The self-extracting install file has a name of the form qm_2-6-6.exe, where the numeric components
identify the release. Execute this file. The first screen confirms that you are about to install QM.
Click on the Next button to continue.

The install process now displays the software licence. Tick the box to say that you accept the terms
of this licence and click on the Next button.

QM can be installed in any convenient location. The default is C:\QMSYS but this can be changed.
An upgrade installation will offer the directory used for the previous installation as the default.

http://www.openqm.com

Introduction to the QM Database 15

2.6-6

Having selected the installation directory, you will be asked to specify the program group folder
name in the Start menu. This defaults to QM and is probably best left unchanged.

The final step before installation commences is to select the components to be installed. The
components offered are:

QM Database The QM database itself.

QM Help This document as a Windows help file.

QMTerm A simple terminal emulator.

QM Online Documentation Adobe Acrobat style pdf documentation.

QMAdmin A Windows based system administration tool.

QMClient The Visual Basic API for Windows developers.

After the main installation has been performed, the install process displays a screen in which the
authorisation data can be entered as discussed below.

If this is an upgrade installation, you will be asked if the VOC file should be updated in all
accounts. Although this is probably a good idea, users will be asked about upgrading when they
enter QM if it is left until later.

The installation process then runs the QM Configuration Editor to allow changes to be made to
configuration parameters.

Finally, the installer offers to show the readme file.

The installation process does not add QM to the Windows PATH environment variable. Depending
on how you plan to operate your system it may be worth adding the bin subdirectory of the QMSYS
account to the PATH variable.

The self-extracting archive file of the standard install includes the user documentation as a set of
pdf files and a compiled HTML help file for use on the QM server or on other Windows clients.
Individual pdf manuals and a zip file containing a browser based help package are also available on
the download page.

Installation on a USB memory stick under Windows

This mode of installation allows you to carry a complete Windows based QM system on a USB
memory stick and use it on any compatible PC without installing any software on the PC itself.

The first step is to prepare the memory stick for use with QM. The stick must comply with the USB
2 standards - older USB 1 sticks cannot be used. Download the USBCONFIG tool from the
OpenQM website onto the PC that you will use to perform the installation. Run this program,
following the on screen instructions. This tool creates a file named memstick on the USB memory
stick containing the unique id codes for that stick. The content of this file is only used during licence
application, however, you should not amend this file as this may cause QM to fail at a later
upgrade.

To install QM, run the standard Windows installation program as described above, ensuring that
the "USB memory device" check box is ticked and the pathname of the target device is correctly
entered on the destination directory screen. The QMSYS directory must be E:\QMSYS where E is
the appropriate drive letter for your USB stick. The remainder of the installation process is as

OpenQM16

2.6-6

above.

To use QM from a USB memory device:
1. Open a Command Prompt window
2. Make the account directory on the USB device the current directory
3. Type "\qmsys\bin\qm" to enter QM

Because the USB installation is all about not needing to install anything on the host PC, it is not
possible to run the QMSvc network service. A USB installation of QM includes the QMSrvr
network management program (as used on Windows 98) to allow telnet and QMClient connections.
To start this, open a Command Prompt window and execute the \qmsys\bin\qmsrvr program from
the USB device. Network connections run as the user currently logged in on the Windows system.

Installation on Linux or FreeBSD

The self-extracting install file has a name of the form qm_2-6-6 for Linux or qmf_2-6-6 for
FreeBSD, where the numeric components identify the release. Execute this file.

The installer confirms that you are about to install QM. Note that any existing installation of QM
must have been shut down before installation of a new version.

The compressed install file is unpacked and the software licence is displayed. You must confirm
that you agree with this licence to continue.

QM can be installed in any convenient location. The default is /usr/qmsys but this can be changed.
An upgrade installation will offer the directory used for the previous installation as the default.

After the main installation has been performed, the install process displays a screen in which the
authorisation data can be entered as discussed below.

If this is an upgrade installation, you will be asked if the VOC file should be updated in all
accounts. Although this is probably a good idea, users will be asked about upgrading when they
enter QM if it is left until later.

Finally, you will be asked whether the operating system network service should be restarted. This is
necessary after a new installation before QM can be accessed from network connections. It should
not normally be needed after an upgrade installation.

The installation process does not add QM to the operating system PATH environment variable.
Depending on how you plan to operate your system it may be worth adding the bin subdirectory of
the QMSYS account to the PATH variable.

The self-extracting archive file of the standard install does not include the user documentation. This
must be downloaded separately from the web site as individual pdf manuals, a zip file of all the
manuals, a compiled HTML help file for use on Windows clients or a zip file containing a browser
based help package for use on all platforms.

Installation on a Mac

At this release, the Mac install is performed using a variant of the Linux install process. A
graphical installer similar to those used by other Mac software will be introduced in a future

Introduction to the QM Database 17

2.6-6

release.

The self-extracting install file has a name of the form qmm_2-6-6, where the numeric components
identify the release.

Open a terminal window and gain administrative rights (consult your operating system
documentation if this concept is new to you). Execute the downloaded file.

The installer confirms that you are about to install QM. Note that any existing installation of QM
must have been shut down before installation of a new version.

The compressed install file is unpacked and the software licence is displayed. You must confirm
that you agree with this licence to continue.

QM can be installed in any convenient location. The default is /usr/qmsys but Mac users may prefer
to use /var/qmsys. An upgrade installation will offer the directory used for the previous installation
as the default.

After the main installation has been performed, the install process displays a screen in which the
authorisation data can be entered as discussed below.

If this is an upgrade installation, you will be asked if the VOC file should be updated in all
accounts. Although this is probably a good idea, users will be asked about upgrading when they
enter QM if it is left until later.

The installation process does not add QM to the operating system PATH environment variable.
Depending on how you plan to operate your system it may be worth adding the bin subdirectory of
the QMSYS account to the PATH variable.

The self-extracting archive file of the standard install does not include the user documentation. This
must be downloaded separately from the web site as individual pdf manuals, a zip file of all the
manuals, a compiled HTML help file for use on Windows clients or a zip file containing a browser
based help package for use on all platforms.

Installation on a PDA

There are two alternative install files available; qmpda_2-6-6.exe for Windows Mobile 5.0 and
qmpce_2-6-6.exe for the older Windows CE. The 2-6-6 component of the name identifies the
release.

The install file should be executed on a Windows PC to which the PDA is connected via
ActiveSync. QM must be installed under the Program Files directory which is the default offered by
the installer. If this is an upgrade, you will be asked whether to overwrite or remove existing files.
Choose the overwrite option. After the installer has copied the new version to the PDA, complete
installation by clicking on the Launch button. This will display a modified version of the licence
screen shown below.

The Personal Version of QM is not available on a PDA.

OpenQM18

2.6-6

Licence Authorisation

QM will request licence authorisation data entry as part of the installation process described above.
A new licence can also be applied at any time by use of the UPDATE.LICENCE command in the
QMSYS account or from the command prompt by executing QM with the -L option (case
insensitive).

You need to enter the details in the boxes surrounded by square brackets as given on your licence
paperwork.

Licence number The unique 10 digit number identifying this licence. If you are using
the Personal Version, enter the word Personal and leave all further
boxes empty.

Max users The maximum number of concurrent processes including Windows
GUI processes such as QMAdmin and QMClient.

Expiry date The last date on which this licence is valid.

Authorisation code A case insensitive sequence required to validate your licence details.

Security number A number required to further validate your licence details.

Site text This must be entered exactly as on your licence form.

The system id is used to tie a licence to a specific machine. The normal licensing procedure starts
with a short term licence that will install on any system. During the life of this licence, you should
supply the system id to your dealer who will then send you the final permanent licence.

If you subsequently move the QM software to a new system, you will need to arrange with your
dealer to receive a new licence. There will normally be no charge for this so long as you undertake
to remove the old installation.

When installing a new release of QM over an existing version, the previous licence details are
displayed as the defaults. To preserve these either press the return key in each field in turn or use
ctrl-X to exit from the screen.

When updating the licence on a system that uses data encryption, the install process will ask for
entry of the master key if the licence number or system id code has changed.

Introduction to the QM Database 19

2.6-6

Setting Configuration Parameters

After a new installation, you may need to set the value of some configuration parameters. In
particular, the values of NUMFILES (the maximum number of files that can be open at one time)
and NUMLOCKS (the maximum number of concurrent record locks) need to be appropriate to
your use of the system.

Compatibility with Other Environments

The various multivalue database products implement some features differently. This results in
syntactic or semantic differences in some commands or programming statements. If you are
migrating an application to QM from another multivalue product, there are facilities to give closer
compatibility without needing to make extensive modifications to the application.

The OPTION command can be used to enable features that are mostly concerned with the
command environment. This command is typically embedded in the LOGIN paragraph that runs
automatically when a user enters the system.

The QMBasic $MODE directive enables features that affect programming language syntax or
semantics. Although developers could put this directive into every program, it is usually simpler to
create a record named $BASIC.OPTIONS in the program file to apply mode settings (and other
features) to every program in that file. Alternatively, this record can be put in the VOC file from
where it will affect all programs in files that do not have their own $BASIC.OPTIONS record. For
more details of this record, see the BASIC command.

It is recommended that after migration to QM, developers should spend some time reading the
documentation to discover features of QM that were not in the previous environment so that they
can take advantage of these.

OpenQM20

2.6-6

1.3 Startup and Shutdown of QM

QM maintains some persistent data in shared memory that is accessed by all QM users. This
includes the locking tables, user tables, configuration data and other information that must be
visible to all QM user processes.

This section does not apply to the PDA version of QM.

Windows Systems

On a Windows system, the shared memory is created when the first user enters QM and is discarded
when the last QM user logs out. It will be reloaded automatically when the next user enters QM.

The QMSvc OPTIONS configuration parameter can be used to specify that the shared memory is
to be loaded when QMSvc starts and is to remain in place until it shuts down. Use of this mode will
result in a small performance improvement on entry to QM. Also, user numbers will not reset when
the last user logs out. The STARTUP configuration parameter described below is only available on
Windows platforms when persistent memory mode is selected.

QMSvc can be started and stopped from the QM Network Control program group item or by use of
qmsvc -start and qmsvc -stop (assuming that the bin subdirectory of the QMSYS account is in the
program search path). Shutting down the QMSvc service will automatically logout all QM users
that have come in via a network connection.

Other Platforms

On other platforms, the QM shared memory must be explicitly loaded before users can enter QM. It
may be manually discarded if required.

The installation process will add system startup and shutdown scripts to start QM when the system
is booted and to take it down gracefully when the system is shutdown. QM may be started, stopped
or restarted at any time by typing:

 qm -start

 qm -stop

 qm -restart

Executing a Coldstart Script

Sometimes it is useful to execute a paragraph or other command script when QM starts. This can
be achieved using the STARTUP configuration parameter to specify the command to be executed.
This command will be run in the QMSYS account and would typically be the name of a VOC
paragraph. The command is limited to 80 characters and may not include double quotes.

On Windows, the command is run when QMSvc starts and is only available if QMSvc is running
with the persistent memory option selected. The command runs as the SYSTEM user.

On other platforms, the command is run when the qm -start command is used. The command runs
as the user starting QM, normally root.

Introduction to the QM Database 21

2.6-6

1.4 Deinstallation

Should it be necessary to uninstall the QM database, the following steps are required:

Windows

Execute the QM Uninstaller from the QM program group.

PDA

Use the File Manager to delete QMSYS from the Program Files directory.

Other Platforms

1. Login with superuser rights and type "qm -stop".
2. Run the uninstall program in the qmsys/bin directory.

OpenQM22

2.6-6

1.5 Accounts

An account is a place to work, typically corresponding to an application. Physically, an account is
represented by an operating system directory in which files private to that application are stored. As
well as one or more user accounts representing different applications or versions of a single
application, there is always a system account named QMSYS which contains all of the components
of the QM database product itself. You should not use this account for your own applications as
parts of it are overwritten when a new version is installed. You may also want to restrict access to
some files in this account for improved system security.

A new account may be created from any other account by use of the CREATE.ACCOUNT
command. Alternatively, use the relevant operating system command to make a new directory in a
suitable position and invoke QM in that directory. You will be prompted to confirm that you wish
to make this directory into a new account.

Whichever method you use, QM will create a VOC file in this directory and it is then ready for use.
Other system files may be created subsequently by some commands.

QM maintains a register of account names and their corresponding operating system pathnames in a
file named ACCOUNTS in the QMSYS account. This file is visible from all accounts on the
system but, because ACCOUNTS is the sort of name that might well be used as an application file,
the alternative name QM.ACCOUNTS is used. Account names are mapped to uppercase in QM.
They must start with a letter, may not contain spaces and are limited to 32 characters.

The standard files present in an account are shown below.

VOC The vocabulary, a file that controls all aspects of command processing
within QM.

BP Application programs are written using the QMBasic programming
language. The BP file (Basic Programs) is the default place to keep
application programs. This file must be created when first needed and is
usually a directory file. The compiler output is placed in a file of the same
name as the source file but with a suffix of .OUT added (e.g. BP.OUT).
The output file is created automatically when first required and must be a
directory file.

$ACC This is the account directory viewed as a QM directory file.

$COMO QM provides a facility to record output that is displayed at the user's
screen in a file. This file is known as a como (command output) file for
compatibility with other systems. The $COMO file is automatically
created as a directory file when the COMO ON command is first used.
The command also specifies the record name to be used to store the output.

This file also contains the log files generated by background (phantom)
processes.

$FORMS This VOC entry points to a file in the QMSYS account that is shared by
all accounts as a repository for Pick style form queue definitions created
using the SET.QUEUE command and used by the SP.ASSIGN
command.

$HOLD This is a directory file used to receive output sent to a print unit by a

Introduction to the QM Database 23

2.6-6

program or standard command that has been set into mode 3 (output to
hold file).

$SAVEDLISTS This is a directory file used to store saved select lists. See the SAVE.LIST
and GET.LIST commands for more information.

$SCREENS This is a dynamic file used to hold screen definitions that are to be shared
between accounts. See the description of the SCRB screen builder for
more information.

The $COMO, $HOLD and $SAVEDLISTS files tend to collect redundant data as time goes by and
may be cleared using the CLEAN.ACCOUNT command or some other process appropriate to
your application.

Other files not directly visible from QM are:

cat A subdirectory under the account holding programs added to the private
catalogue using the CATALOGUE verb. Users should not modify this file
except by use of the associated QM commands.

The private catalogue can be moved by creating an X-type VOC entry
named $PRIVATE.CATALOGUE in which field 2 contains the pathname
of the alternative private catalogue directory. This only takes effect when
QM is re-entered or on use of the LOGTO command. This feature is
particularly useful where two or more accounts are to share a common
private catalogue.

stacks A subdirectory under the account used to store saved command stacks
when a user exits from QM. On Windows systems, users of QMConsole
sessions do not use this file. Instead, the command history is stored in a
VOC record named $COMMAND.STACK.

The following files are in the QMSYS account only:

ACCOUNTS The register of account names described above. This file is visible from all
accounts as QM.ACCOUNTS. Field 1 contains the pathname of the
account. Field 2 can be used to store a brief description of the account.

bin A subdirectory, not visible from within QM, containing all the operating
system level executable programs that form part of QM.

ERRMSG A file of standard Pick style message texts provided for compatibility with
other multivalue products and used by the QMBasic STOP, ABORT and
ERRMSG statements for programs compiled with Pick style message
processing.

gcat Not directly visible from inside QM, this is the global catalogue directory.
This file should only be accessed using the standard catalogue processing
commands.

NEWVOC The template vocabulary file from which new accounts are created. This
file should not be updated by users as it will be overwritten on upgrading
to a new release.

$IPC This file, not visible from inside QM, is used to support inter-process
communication and should not be touched by users. (Not present on a
PDA)

OpenQM24

2.6-6

$MAP This file, visible from all accounts, is the default destination for a map of
the system catalogue produced with the MAP command.

SYSCOM The SYSCOM file holds standard definitions for use in QMBasic
programs. It also contains QMClient.bas, a set of definitions for use in
Visual Basic programs that use the QMClient API.

temp Windows only. This subdirectory holds temporary files that are used to
pass control information from the QMSvc service to the QM processes that
it starts. All users must have full access to this directory.

terminfo A subdirectory containing definitions of control data for terminal devices.
(Not present on a PDA)

terminfo.src The master source from which the terminfo definitions are built. (Not
present on a PDA)

Accounts that are no longer needed can be deleted using the DELETE.ACCOUNT command.

Introduction to the QM Database 25

2.6-6

1.6 Entering QM

The QM database can be accessed in a number of ways. The simplest is use of a console session.
This is entry into QM directly from the system on which it is installed. Other methods allow direct
connection over a network or via a serial port and are discussed later in this section.

PDA users should enter QM by using the QM shortcut in the Programs folder. Some commands
may be difficult to use with the default screen size settings. The remainder of this section is not
applicable to PDA systems.

On Windows systems, once QM has been successfully installed, the program group chosen during
the install (usually QM) will contain an item titled "QM Console". Clicking on this item will open a
console window. You will see a copyright line and a site specific licence line. You will then be
asked to enter the name of the account you wish to work in.

On other platforms, login to the operating system and then type qm at the command prompt (this
assumes that the operating system PATH environment variable has been set appropriately). This
technique can also be used from a Command Prompt window on a Windows system. In all cases, if
your current directory when you entered QM was not already a QM account, you will be asked if
you wish to make it into one.

Entering QM Directly via a Network

TCP/IP network technology assigns each computer on the network a unique address, usually written
as four numbers separated by dots (e.g. 193.118.13.14). When a connection is made to a network
address, the caller also specifies a "port number" which identifies the service to which they wish to
connect. If networking is new to you, it may help to consider the concept of network addresses and
port numbers as being similar to telephone numbers and extensions.

With its default configuration, QM listens for users entering via a network connection on TCP/IP
port 4242. This can be changed to an alternative port or disabled completely by amending the QM
configuration parameters. Windows users who do not have any other telnet software running on
their system may wish to change this to port 23, the default telnet port.

You can connect to QM using most terminal emulators. A licence for the AccuTerm emulator from
AccuSoft Enterprises is bundled with a commercial QM licence. This emulator includes several
features specifically for QM. Although the licence is bundled, you will need to download the latest
version of the emulator software from the AccuSoft website.

On Windows 98/ME, the installation process installs a server program, QMSrvr, in the bin
subdirectory of the account. This must be started manually though this can be automated via the
Startup folder. Due to a published defect in Windows, the server cannot detect a system shutdown
and must be closed manually.

On later versions of Windows, the QM installation process installs a Windows service (QMSvc) to
manage the network. There should be no need to change anything as it will start and stop
automatically as required.

On all Windows environments, there is a QM Network Control program in the QM program group
that can be used to start and stop the appropriate network server.

OpenQM26

2.6-6

On other platforms, the install process will make the necessary changes to the operating system files
that control the network. There should be no need for any manual user intervention unless you
decide to modify the default settings.

Port Mapping

Some software originating in other multivalue environments relies on being able to connect via
multiple telnet ports, each leading to creation of a process with a fixed user number related to the
port number. QM supports this capability via a feature known as port mapping. For more details,
see the PORTMAP configuration parameter.

Port mapping is not available on Windows 98/ME.

Entering QM Directly via a Serial Port

On Windows NT and later, the QMSvc service can monitor one or more serial ports for incoming
QM connections. This allows entry from directly connected terminals of via dial-up lines. See the
SERIAL configuration parameter of QMSvc for more details.

It is also possible to login a serial port from another QM process using the LOGIN.PORT
command. This will skip the user authentication described below as the new process runs with the
user name and access rights of the user who established the connection. This style of login can be
useful when connecting to automated data collection devices. The LOGIN paragraph would
typically be used to enter the application.

Logging In to QM

Users entering QM directly from a network connection or via a serial port must provide a valid user
name and password for authentication purposes.

On Windows NT and upwards, the user name must also be known to the operating system. Many
users of Windows XP choose to operate their systems with login at the server screen disabled,
however, Windows enforces use of a valid user name on network connections, including "loop
back" to the host system from a terminal emulator running on the same machine. User names can be
set up using the User Administration area of the Windows Control Panel. The QM process will run
as the specified user and with that user's access rights.

When using domain style logins, the format is username@domain.

Earlier versions of Windows (98/ME) did not provide a suitable user authentication system so QM
provides its own. This can be disabled using the SECURITY command if required, leaving the
system open for network users to connect with no authentication.

On other platforms, the user name must be known to the underlying operating system. The resultant
QM process will run as this user and with the access rights of that user. Use the appropriate
operating system administration tools to create and maintain user names.

Suppressing the Copyright and Licence Lines

Introduction to the QM Database 27

2.6-6

The -quiet option to the QM executable suppresses display of the copyright and licence details. This
is particularly useful in situations such as scripts using QM as part of a CGI web interface. The
LOGIN.PORT command mentioned above, implies use of the -quiet option so that no data is sent
to the port until the application starts execution.

OpenQM28

2.6-6

1.7 The Login Process

There are two stages to login; user authentication and process initialisation. The first applies only to
network connections

User Authentication

On Windows NT and later, users connecting to QM via a network must enter a valid Windows
username and password. The new process runs as that user and with the associated access
permissions.

QM implements a further layer of security on top of the Windows authentication by maintaining a
register of usernames allowed to use QM. A username may be added to this register using the
CREATE.USER or ADMIN.USER commands. The register entry determines:

1. whether the user is allowed to use QM at all. This check can be suppressed using the
SECURITY command.

2. whether the user is to be granted administrator rights within QM.

3. the name of the account that the user should start in. If no account is specified, a prompt is
displayed for the account name.

If security has been turned off and the username does not appear in the user register, the user runs
without administrator rights and an account name prompt is displayed.

On Windows 98/ME, the above mechanism is extended such that QM performs the username and
password validation using its own internal user register as these platforms do not provide an
adequate user authentication system. The newly created process runs with the Windows user name
and access permissions of the user that started the QMServer process.

On other platforms, users connecting to QM via a network usually open telnet sessions as normal
users and then enter QM, perhaps automatically via their profile script. It is, however, possible to
connect directly to QM in which case the security mechanisms described above for Windows NT
and later apply.

Process Initialisation

When a user successfully enters an interactive QM session, the following steps occur:

1. For users entering QM directly from a network connection, QM attempts to determine the
terminal type by use of telnet negotiation commands. If the emulator in use does not
support these, QM looks for an environment variable named TERM and, if this is found,
uses it to set the default terminal type. If this also fails, vt100 is used by default.

For PDA users, the terminal type is set to pda.

For QMConsole users on Windows, the terminal type is set to qmterm.

For users entering QM from an operating command prompt on other platforms, QM looks

Introduction to the QM Database 29

2.6-6

for an environment variable named TERM and, if this is found, uses it to set the default
terminal type. If this fails, vt100 is used by default.

In all cases except for PDA users, the terminal type can be changed later from within QM
using the TERM command. When using AccuTerm, it is strongly recommended that the
terminal types with the -at suffix (e.g. vt220-at) are used as these enable AccuTerm
specific features such as the screen switching required for the full screen mode of the
QMBasic debugger.

2. On all platforms except the PDA, QM then looks for environment variables named LINES
and COLUMNS and, if found and valid, uses these to set the initial size of the terminal
window. When using a QMConsole session on Windows, the displayed window will be
adjusted to be this size. On other connections, it is the user's responsibility to ensure that
the terminal emulator screen dimensions match those expected by QM.

3. The system looks in the QMSYS account VOC file to find a paragraph named

MASTER.LOGIN and, if this exists, executes it. This paragraph can be used for system
wide initialisation such as setting European date format or standard printer associations.

4. The system checks in the user's account VOC file to find an executable (menu, paragraph,
sentence, verb) item named LOGIN and, if this exists, executes it. The LOGIN item is
typically used to perform account specific initialisation and the enter the application. Note
that this happens for all QM processes, including phantoms and QMClient sessions. To exit
from the LOGIN paragraph for a phantom process, insert a line

IF @TTY = 'phantom' THEN STOP

at the relevant point in the paragraph. For a QMClient session, test for 'vbsrvr'. See @TTY
for more details.

5. The break key is enabled. By running the MASTER.LOGIN and LOGIN paragraphs with
the break key disabled, the user cannot quit out of any security checking done in these
paragraphs. If a LOGIN paragraph is used to start the application, it may be necessary to
enable the break key at this stage by including a BREAK ON command.

Step 4 above is also executed when the LOGTO command is used to move to a new account.

User specific process initialisation can be performed by testing the content of the @LOGNAME
variable in the MASTER.LOGIN or LOGIN paragraphs. For example,

IF @LOGNAME = 'ADMINISTRATOR' THEN ADMIN.STARTUP

or even executing a user name dependant paragraph by a command of the form

START.<<@LOGNAME>>

OpenQM30

2.6-6

1.8 Command Scripts

The QM VOC file normally contains one or more items that represent scripts of commands to be
executed automatically at certain events. Although these are usually paragraphs, all except for the
MASTER.LOGIN item may actually be any executable type of VOC record (verbs, menus, Procs,
etc). None of these items need exist. They provide the means to perform a fixed sequence of
commands at the events described below.

LOGIN

The LOGIN paragraph is executed on entry to QM and also when the LOGTO command is used to
switch to a new account. The break key is inhibited until execution of this paragraph has been
completed. This paragraph is executed for terminal users, phantom processes and QMClient
connections. The @TTY variable can be tested to determine the user type. The LOGIN paragraph
is typically used to set QM option flags perform security checks, set up printers, set terminal
characteristics and enter the application.

Example
PA
DATE.FORMAT ON
IF @TTY = 'phantom' THEN STOP
PTERM CASE NOINVERT
BELL OFF
OPTION NO.USER.ABORTS
BREAK ON
RUN BP MAIN

ON.LOGTO

The ON.LOGTO paragraph is executed on use of the LOGTO command before switching to the
new account. This paragraph might be used, for example, to clear down application specific data
such as named common blocks.

Example
PA
DELETE.COMMON ALL

ON.EXIT

The ON.EXIT paragraph is executed on leaving QM by use of the QUIT command. The break key
is inhibited during execution of this paragraph. An abort occurring in this paragraph will terminate
the QM session immediately.

Example
PA
SELECT TEMP WITH UNO = <<@USERNO>>
IF @SELECTED THEN DELETE TEMP NO.QUERY

Introduction to the QM Database 31

2.6-6

ON.ABORT

The ON.ABORT paragraph is executed when QM aborts a program due to an internally detected
error, a QMBasic program executes an ABORT statement or when the Abort response is chosen
after use of the break key. The @ABORT.CODE and @ABORT.MESSAGE variables may be
useful in determining the cause of the error. An abort occurring whilst executing the ON.ABORT
paragraph will cause a message to be displayed. The paragraph is not re-entered. Aborts occurring
in commands started using the QMBasic EXECUTE statement with the TRAPPING ABORTS
option do not execute the ON.ABORT paragraph.

The primary role of the ON.ABORT paragraph is to prevent the user reaching a command prompt
if the application fails. It may be useful to include logging of the cause of the abort.

Example
PA
RUN BP LOG.ABORT
QUIT

MASTER.LOGIN (QMSYS account)

This item, if present, must be a paragraph and is executed on initial entry to QM in any account
before the LOGIN paragraph but not when the LOGTO command is used to switch to a new
account. This paragraph is executed with the break key inhibited for terminal users and phantom
processes. It is not executed for QMClient connections.

Example
PA
DATE.FORMAT ON
OPTION NO.USER.ABORTS
OPTION DUMP.ON.ERROR

Part

2
The Command Environment

OpenQM34

2.6-6

2 The Command Environment

Although applications commonly use the graphical interface capabilities of QM, developers
normally work from the character mode interface command prompt using a terminal emulator or
directly from the system console. Commands can also originate from within application programs.

Commands entered at the terminal or generated from within a QM application are processed by the
command processor. This uses the vocabulary file (VOC) to determine the meaning of each word or
symbol within the command.

The terminal command prompt is the colon character. Whenever this is displayed at the start of a
line, QM is ready to accept a new command. The command prompt changes to a double colon if the
default select list is active. This serves as a warning that the select list may impact execution of the
next command. The prompt characters may be modified using the PTERM command.

The first word of a command entered at the command prompt must identify an executable item
within the VOC. This will be the name of a verb, sentence, paragraph, menu or Proc. It is also
possible to run a program from the system catalogue by typing its name as a command. Other valid
actions at the command prompt are:

Command stack operations, prefixed by a dot character

Command editor keystrokes

Save the command without execution by appending a question mark

A command usually commences with a verb which may also require one or more arguments to
determine exactly what the verb is to do.

The command processor performs the VOC look-up for a verb in three stages; firstly by looking for
a record with the name of the verb exactly as entered. If this fails, it then tries again with the name
mapped to uppercase. All system verbs have uppercase names and can therefore be entered in
lowercase, uppercase or a mix. For compatibility with Pick databases, a third attempt is made with
any hyphens in the uppercase version of the verb name replaced by dots. Thus a command such as
CREATE.FILE can be entered as create.file or CREATE-FILE.

If the command is not found in the VOC, a final check is made in the private and global catalogues.
If the name exists here, the catalogued program is executed. The names of catalogued programs
executed in this way must commence with a letter or an asterisk.

Many commands perform the first two phases of this look-up for file names, keywords, etc,
however, commands that might have a detrimental effect if used in error (DELETE.FILE, for
example) either insist on the file name being entered exactly as it appears in the VOC or prompt for
confirmation if the name is not an exact match.

Command lines commencing with an asterisk followed by at least one space are treated as
comments and ignored except that inline prompts are still processed. Although comments are
primarily of use within paragraphs, they can be entered directly at the keyboard when they will
appear in any active como file.

Many QM commands return status values via the @SYSTEM.RETURN.CODE variable. In
general, a positive or zero value indicates success. A negative value is an error code and the actual
value is the negative of the codes listed in the ERR.H include record in SYSCOM.

The Command Environment 35

2.6-6

2.1 The Command Stack

Commands entered at the terminal are stored in a command stack (to be technically correct, it a
queue but historically users have called it a stack). They may subsequently be recalled for
re-execution by a simple short form command. By default, the stack holds the last 99 commands but
this value can be changed by use of the CMDSTACK configuration parameter. The list is indexed
by number such that the most recent command is numbered as 1, the oldest as 99.

The stack can be manipulated by commands prefixed by a dot character entered at the command
prompt. These allow commands on the stack to be edited and also provide facilities to save and
restore sequences of commands to and from VOC paragraphs.

The stack manipulation commands are

.An text Append text to command stack entry n. There must be a space before
text. Any additional spaces will be included in the appended data. If n
is omitted, the top entry on the stack (position 1) is updated. The text
is displayed after modification.

.Cn /old/new/G Change string old to new in stack entry n. If n is omitted, it defaults to
one. The delimiters around old and new may be any non-space
character. The space before the first delimiter may be omitted if the
delimiter is not a digit. The optional G causes a global replacement,
that is, all occurrences of old are replaced by new. If G is not
specified, only the first occurrence of old is changed. The text is
displayed after modification.

.Dn Delete stack entry n. If n is omitted, the top stack entry is deleted.

.D name Delete VOC entry name if it is a sentence or paragraph record. A
confirmation prompt is issued prior to deletion.

.In text Insert text as stack entry n. If n is not specified, text is inserted at the
top of the stack. There must be a space before text. Any additional
spaces will form part of the inserted entry.

.Ln List the most recent n commands. The value of n defaults to 20.

.L name List VOC entry name.

.Rn Recall stack entry n to the top of the stack without deleting the original
copy. If n is omitted, the top entry is duplicated.

.R name Read VOC entry name to the top of the stack if it is a sentence or
paragraph. Field one of the VOC entry is discarded and any
continuation lines are merged.

.S name n m Save stack lines m to n as VOC entry name. The value of m and n may
be entered in either order. If m is omitted it defaults to the same value
as n. If n is also omitted, the top line of the stack is saved. The VOC
entry will be a sentence if only a single line is saved, otherwise it will
be a paragraph.

.Un Convert stack entry n to upper case. n defaults to one if omitted.

.Xn Execute command n. If n is omitted, the last command is executed.

The repeated command is copied to the top of the stack except when
executing the current topmost command.

OpenQM36

2.6-6

.X file record Execute command stored in the named file and record. This record
must have the same format as a VOC record.

.? Display a help message regarding the stack manipulation commands.

For compatibility with other environments, a command can also be saved on the stack without
execution by entering it at the command prompt with a question mark as the last character. The
question mark is removed.

The command stack is saved between sessions if the VOC contains a record named
$COMMAND.STACK with field 1 set to X. This record is inserted automatically when a new
account is created but can be deleted if the stack is not to be saved. For console users on Windows
systems, the command stack will be saved into this record on leaving QM and loaded from it on
re-entry. For all other Windows users and on other platforms, presence of this record causes the
command stack to be saved to, or restored from, a file named as the user's login name in the stacks
subdirectory of the account in which QM was entered.

See also The Command Editor

The Command Environment 37

2.6-6

2.2 The Command Editor

The command line editor allows editing of a command line. It is of use in correcting typing errors or
repeating saved commands, possibly after modification.

The command line editor handles the following keystrokes:

Ctrl-A or HOME Move cursor to start of command.

Ctrl-B or Cursor Left Move cursor left one place.

Ctrl-D or DELETE Delete character under cursor.

Ctrl-E or END Move cursor to end of command.

Ctrl-F or Cursor Right Move cursor right one place.

Ctrl-G Exit from the command stack and return to a clear command
line.

Ctrl-K Delete all to the right of the cursor.

Ctrl-N or Cursor Down Display "next" command from command stack.

Ctrl-O or Insert Toggle insert/overlay mode.

Ctrl-P Display "previous" command from command stack.

Ctrl-R Search back up the command stack for a given string.

Ctrl-T Interchange characters before cursor.

Ctrl-U Convert command to uppercase.

Ctrl-Z or Cursor Up Display "previous" command from command stack.

Backspace Backspace one place.

Entering a command line containing only a question mark shows a summary of the command editor
keys.

The command editor operation is controlled by option codes which may be entered in field 3 of the
$RELEASE VOC entry. These are:

E Position the cursor at the end of a recalled command rather than the start.

O Start in overlay mode.

S Show the stack commands when moving back through the stack.

X Clear the recalled command if the first character typed is not a control code. This mode
cannot be used with E.

OpenQM38

2.6-6

See also The Command Stack

The Command Environment 39

2.6-6

2.3 Interrupting Commands

It may be necessary to terminate a command because, perhaps, it is producing more output than
expected or it is not functioning as required. The break key (usually ctrl-C) can be used to terminate
processing and return to the command prompt.

To protect against accidental use of the break key, QM will display a prompt asking for
confirmation that processing is to be terminated. Valid responses to this prompt are

A Abort. Returns to the command prompt in exactly the same way as an abort generated
by an ABORT statement in a QMBasic program or an ABORT command in a
paragraph. The ON.ABORT paragraph is executed, if present. The @ABORT.CODE
variable will be set to 1. The default select list (list 0) will be cleared if it was active.

D Only offered when appropriate, this option enters the QMBasic debugger.

G Go. Continues processing from where it was interrupted. If the terminal supports the
necessary operations, QM will restore the display image to remove the prompt.

P Creates a process dump file and continues execution.

Q Quit. Returns from the current command to the paragraph, menu, program or command
prompt that initiated the command. The ON.ABORT paragraph is not executed. The
@ABORT.CODE variable will be set to 2. The default select list (list 0) is not cleared.

S Stack. Displays the call stack showing the program name and location for each entry.

W Where. Displays the current program name and location.

X Exit. Aborts totally from QM without executing the ON.EXIT paragraph. This option
should only be used if QM appears to be behaving incorrectly.

? Help. Displays a brief explanatory help text for each option.

OpenQM40

2.6-6

2.4 Output Pagination

Output to the display is automatically paginated, where appropriate, by inserting a prompt at the
end of each page of output. The options available at this prompt are

A Abort. Returns to the command prompt in exactly the same way as an abort generated
by an ABORT statement in a QMBasic program or an ABORT command in a
paragraph. The ON.ABORT paragraph is executed, if present. The @ABORT.CODE
variable will be set to 1. The default select list (list 0) will be cleared if it was active.

Q Quit. Returns from the current command to the paragraph, menu, program or command
prompt that initiated the command. The ON.ABORT paragraph is not executed. The
@ABORT.CODE variable will be set to 2. The default select list (list 0) is not cleared.

S Suppress pagination. Continues execution with no further pagination prompts.

Other Any other key continues execution until a further pagination prompt is displayed.

The number of lines per page can be adjusted from its initial value by use of the TERM command.

Pagination can be disabled by application software or by use of the NO.PAGE option to some
commands.

The Command Environment 41

2.6-6

2.5 The VOC File

The VOC file is central to everything that QM does. This file is the vocabulary of words and
symbols that may appear in commands and holds many other things as well. The initial VOC file is
a copy of NEWVOC from the QMSYS directory. By modifying the VOC it is possible to change
the names of commands to meet particular needs of an application or user. It would be possible, for
example, to include French translations of all the command names. More often, changes are made
simply to use wording that is more appropriate to the manner in which the product is used.

Records in the VOC are of differing types, the type of the record being determined by the first one
or two characters of field 1 of the record. The remainder of field 1 after the identifying characters
may contain any value and is typically used to comment the role of the VOC entry.

The VOC record types are

D Data item
Defines a field within a data file. D type entries may appear in the VOC but are more
commonly found in dictionaries.

F File
Defines a file, relating its application level name for use within QM to its operating
system pathname.

K Keyword
Many commands have keywords which affect the behaviour of the command or
introduce optional clauses in the command syntax.

M Menu
A menu record defines a menu that can be displayed by executing the VOC entry.

PA Paragraph
A paragraph is a sequence of commands that can be executed by entering the name of
the VOC entry.

PH Phrase
A phrase is a short form for a sequence of items to be substituted into query processor
commands.

PQ PROC
A PROC is the predecessor of paragraphs. QM supports PQN style PROCs for use
when migrating applications. It is recommended that new developments should use
paragraphs or QMBasic programs instead.

Q Remote File
A remote file pointer refers to a file in another QM account, perhaps on a different
server.

R Remote
An R type VOC entry points to a record in another file which is constructed in the same
way as an executable (M, PA, R, S or V type) VOC entry.

OpenQM42

2.6-6

S Sentence
A sentence is a single command.

V Verb
A verb is the portion of a command which identifies the part of QM which will process
it.

X Other
X type records may be used to store miscellaneous information in the VOC.

Users may add handlers for other VOC record types that are to be usable as commands. This is
done by creating a VOC record named $VOC.PARSER:

Field 1 X

Field 2 A multivalued list of VOC record type codes.

Field 3 A corresponding multivalued list of catalogued handler subroutine names.

The handler is a QMBasic subroutine taking two arguments; the verb name and the VOC record.

The VOC includes an F-type entry referencing itself so that commands that access the VOC do not
have to treat it as a special case. Users must not modify this VOC entry as any change is likely to
cause QM to malfunction because internal components reference the VOC by pathname.

The VOC also includes a Q-type entry named MD as a synonym for VOC for compatibility with
other systems.

The Command Environment 43

2.6-6

VOC D-type records - Data items

A D-type record defines a field stored in a data file.

Although D-type records may be stored in the VOC file, they are more usually found in
dictionaries. A D-type entry in the VOC can be used to reference a field in any file whereas a
D-type entry in a dictionary can only be used in queries against the associated file.

A D-type record has up to 8 fields:

1: D { descriptive text }

2: Field number. This is the position in the data record at which the field described by this
dictionary entry can be found. A value of zero denotes the record id.

3: { Conversion code }

4: { Display name. This will be used as the default column heading by the query processor. }

5: Format specification

6: Single/multi-value flag. Set as S if the field is always single valued or M if it can be
multi-valued.

7: { Association name. Where a multi-valued field has a value by value relationship with some
other multi-valued field defined in the same dictionary, this name links the fields together.}

8: {Available for user use in any way. Not referenced by QM. }

Fields 9 onwards are reserved for internal use and users should not assume anything about their
content.

Click here for a detailed description of dictionaries.

OpenQM44

2.6-6

VOC F-type records - File definitions

Every file referenced by an application is accessed via an F-type VOC record. This record maps the
QM name of the file to the pathnames of the data and dictionary components.

1: F { descriptive text }

2: The pathname(s) of the data portion of the file. In a multi-file, the pathname of each subfile
appears as a separate value in this field

3: Dictionary pathname. This field is empty if the file has no dictionary.

4: Subfile names for a multifile. This field is empty for a simple file.

5: File inclusion flags for ACCOUNT.SAVE and FILE.SAVE.
There are three possible values:

D Include only the dictionary of this file in the save
E Exclude this file from the save
I Include this file in the save

Leaving the field empty causes ACCOUNT.SAVE and FILE.SAVE to fall back on
alternative file selection methods.

Either pathname field may be blank to indicate that the file portion does not exist.

Three special pathname prefixes are allowed:

· @QMSYS will be replaced by the QMSYS account directory pathname, ensuring that
references to items in the QMSYS account will still function if a new release is installed at
a different location.

· @TMP will be replaced by the pathname in the TEMPDIR configuration parameter.

· @HOME will be replaced by the value of the HOME environment variable. Windows users
may need to create this variable before using this feature.

Where two or more accounts share a file, the VOC files in each account could have F-type records
mapping the QM name to the pathnames. This is not recommended. Instead, the account that owns
the file should have an F-type record and all other accounts should have Q-type records to access
the file indirectly.

The pathname of either or data or dictionary portion of a file may be specified as
VFS:handler:detail

to make use of the Virtual File System.

A summary of F-type VOC records may be displayed or printed using

LISTF Show all F-type entries

LISTFL Show only local files (in the account directory)

LISTFR Show only remote files (not in the account directory)

The Command Environment 45

2.6-6

VOC K-type records - Keywords

Keywords affect the behaviour of commands or introduce optional components in the command
syntax. Keywords are defined by K-type VOC records.

1: K { descriptive text }

2: Keyword number

3: { alternative expansion }

Each keyword is assigned a number which appears in field 2 of a keyword VOC entry.

Keywords with internal number 0 in field 2 are ignored by the query processor and some other parts
of QM. They are provided to allow construction of more natural English sentences. For example,
the THAN keyword can be used with other elements such as GREATER and LESS to allow a
query such as

LIST STOCK WITH PRICE GREATER THAN 100

instead of

LIST STOCK WITH PRICE GREATER 100

Users can freely add new keywords with internal number 0 as required.

In some cases, a keyword is also needed as a command name (e.g. OFF which is a synonym for
QUIT but also a modifier in several other commands). A keyword can never be the first token in a
command. If the command processor finds a K-type VOC item used as the first token in a
command, it looks for an alternative VOC record structure starting at field 3.

Thus, as an example, the OFF VOC entry reads
1: K
2: 20
3: V
4: IN
5: 1

where fields 3 onwards contain an alternative V-type (verb) definition.

A summary of K-type VOC records may be displayed or printed using LISTK.

OpenQM46

2.6-6

VOC M-type records - Menu definitions

A VOC menu record defines a menu of numbered options to be displayed to the user when the menu
entry is executed. Because menu records may be very large, they are often stored in some other file
with a VOC R-type record as a remote pointer to the actual menu definition.

A menu record has 11 fields:

1: M { descriptive text }

2: Menu title line to appear at the top of the screen

3: Item text. This field is multi-valued with one value for each menu entry. Blank entries are
allowed to insert spacing in the menu. Each menu entry is numbered except as described
under field 4 below.

The descriptions are normally displayed starting on the third line of the screen, left justified.
If the menu has more items than will fit in a single column on the screen and the items are
all sufficiently short, the menu will be displayed as two columns. Any menu items that will
not fit on the screen are lost.

4: Action. This field is multi-valued with entries corresponding to the text in field 3. If the
action is terminated by a semicolon, the menu processor issues a "Press return to continue"
prompt when the command is completed. Blank entries cause the field 3 text to be treated as
a sub-title and not numbered on the displayed menu.

5: Help text. A multi-valued set of one line help texts corresponding to each menu option in
the previous fields.

6: Access key. An optional multi-valued set of access control keys corresponding to the menu
items. The access key value is passed to the access control subroutine if this is used.

7: Hide inaccessible entries. This field may be single valued in which case it applies to all
menu entries or it may have one value for each menu item. Each value present is a boolean
(1 or 0 corresponding to true or false) flag indicating whether inaccessible menu entries
should be hidden (not displayed) or shown as unavailable.

8: Access subroutine. This optional field contains the name of an access control subroutine.
When the menu is displayed, this subroutine is called for all entries with an access key in
field 6 to determine whether the option is to be offered. The subroutine takes three
arguments; the returned true/false accessibility flag, the menu name and the access key
from field 6.

9: Prompt text. If present, this text replaces the default option prompt.

10: Exit codes. An optional multi-valued list of codes which when entered at the option prompt
will exit from the menu. If this field is blank, entering a null response to the menu prompt
will exit from the menu. Because exit codes are processed before option numbers, it is
possible to include an option that causes an exit by specifying the option number as an exit
code.

11: Stop codes. An optional multi-valued list of codes which when entered at the option prompt
will generate an abort event, terminating all active processing and returning to the command
prompt. If this field is blank, it defaults to Q. Because stop codes are processed before
option numbers, it is possible to include an option that causes a stop by specifying the
option number as a stop code.

Menus may be constructed and maintained using the menu editor MED.

The Command Environment 47

2.6-6

A summary of M-type VOC records may be displayed or printed using LISTM.

When used on a PDA, QM allows selection of menu options using a stylus tap. Clicking on or
below the option line exits from the menu.

OpenQM48

2.6-6

VOC PA-type records - Paragraphs

A paragraph is a sequence of stored commands or sentences which will be executed in turn by
entering the paragraph name in response to the command prompt.

1: PA { descriptive text }

2: First sentence

3: Second sentence

4: etc...

Field 1 of the VOC paragraph record commences with PA, fields 2 onwards are the commands to
execute. Any sentence within the paragraph may be broken into shorter parts by using the
underscore character to indicate that the command continues on the next line.

The Cn and In control codes of inline prompts may be used to substitute additional text from the
sentence that started the paragraph into the commands within the paragraph.

Paragraphs may contain a number of special commands and constructs that are not allowed in
sentences. These are

DATA Embedded data for an application

IF Conditional execution

GO Jumps to labels

LOOP Repeated execution of a loop

Paragraphs may invoke other paragraphs. Beware of accidental recursive invocation of the same
paragraph.

There are four reserved paragraph names for special functions. These are:

LOGIN Executed on entry to QM and also when the LOGTO command is used to
switch to a new account.

ON.LOGTO Executed on use of the LOGTO command before switching to the new
account.

ON.EXIT Executed on leaving QM by use of the QUIT command.

ON.ABORT Executed when QM aborts a program.

The QMSYS account may contain a paragraph with a further reserved name:

MASTER.LOGIN Executed on initial entry to QM in any account before the LOGIN
paragraph.

For more details of the above, see Command Scripts.

A summary of PA-type VOC records may be displayed or printed using LISTPA.

The Command Environment 49

2.6-6

VOC PH-type records - Phrases

A phrase can be used in query processor sentences. When the sentence is executed, the phrase name
is replaced by the phrase expansion. Typically, phrases are used to give names to groups of fields to
be displayed or selection criteria.

1: PH { descriptive text }

2: Phrase expansion

Phrases may be included in the VOC but are more commonly found in dictionaries. A phrase in the
VOC can be used in queries against any file whereas a phrase in a dictionary can only be used in
queries against the associated file.

A summary of PH-type VOC records may be displayed or printed using LISTPH.

OpenQM50

2.6-6

VOC PQ-type records - PROCs

PROCs are the predecessor of paragraphs. They are generally thought to be much harder to
understand and maintain but are supported in QM for compatibility with other systems. New
applications should use paragraphs or QMBasic programs in place of PROCs.

1: PQ{N} { descriptive text }

2+: PROC statements

PROCs come in two styles identified by the VOC record type; standard PROCs (PQ) and new style
PROCs (PQN). QM supports the major features of PROCs but is not a full implementation of the
various PROC environments found in other multivalue environments.

Because development if new PROCs is discouraged, only an overview of what elements of PROCs
are supported by QM is given here. It is not intended as a detailed reference document or a learning
aid.

Proc Buffers

A PROC works by manipulating data in a set of buffers, each stored internally as a field mark
delimited dynamic array (PQN) or a space delimited string (PQ). These are:

The Primary Input Buffer (PIB)

The PIB initially holds the command that started the PROC and any command line options. A
PROC can use the PIB to store other data during its operation.

The Secondary Input Buffer (SIB)

The SIB is typically used to store user input entered in response to the IN statement.

The Primary Output Buffer (POB)

The POB is used to construct a command to be executed. Execution of the assembled command is
triggered by use of the P statement or by termination of the PROC.

The Secondary Output Buffer (SOB)

The SOB, often called the stack, is used to hold data to be processed by the command in the POB.
It can also hold supplementary commands to be executed after the POB has been executed.

At any moment, one input and one output buffer is considered as being active. The SP and SS
statements can be used to make the primary or secondary input buffer active respectively. Similarly
the STOFF and STON statements can be used to select the primary or secondary output buffers as
active.

The Command Environment 51

2.6-6

The input buffer pointer is used to identify a position within the active input buffer.

When a PROC starts, the primary input and output buffers are active and the input buffer pointer
points to the start of the PIB.

The File Buffers

There are ten file buffers, numbered from 0 to 9. File buffers 1 to 9 are the standard file buffers.
File buffer 0 is the fast file buffer and can be accessed with a special buffer reference syntax.

Select List Buffers

The eleven numbered select lists can be accessed using the select list buffers.

Buffer References

Many statements can reference buffers using the tokens shown below:

Token Buffer Direct Indirect

% Primary input buffer %1 PIB field 1 %#2 PIB field referenced by #2

Active output buffer #1 AOB field 1 #%1 AOB field referenced by %1

& File buffer &4.2 File 4, field 2 &%1.%2 File %1, field %2

& Fast file buffer &1 Field 1 &%2 Field referenced by %2

! Select list !5 List 5 !%1 List referenced by %1

An indirect reference uses the content of one buffer to index into another.

In a file buffer, field 0 references the record id associated with the buffer.

A-References

An A-reference is a reference to data in the active input buffer using the syntax of the A statement
described in the following section. When used in this form, an A-reference does not move the input
pointer or change the content of the buffers.

PROC Statement Summary

A Move a field from the active input buffer to the end of the active output buffer.

A{c}{p}{,m}
Move up to m characters of field p to the output buffer, enclosing the text in character c.
c may be any character except a digit, left bracket or comma and defaults to a space.
Specifying c as a backslash suppresses the surround character. The surround character is
ignored if the data is copied to the secondary output buffer.
If p is omitted, data is copied from the field addressed by the current position of the input
pointer.
If m is omitted, data is copied until the end of the field is reached.

OpenQM52

2.6-6

The input pointer is positioned following the last character moved.

A({n}{,m})
Move up to m characters, starting at character n, to the output buffer.
If n is omitted, data is copied from the current position of the input pointer.
If m is omitted, data is copied until the end of the field is reached.
The input pointer is positioned following the last character moved.
Data copying normally terminates at the end of the field. Use OPTION PROC.A to enable
compatibility with D3 where the copy continues past the end of the field.

B Move the input pointer back to the previous field.

If the input pointer is at the start of a field, it is moved back to the start of the previous field.
Otherwise it is moved back to the start of the current field.

BO Move the output pointer back to the previous field

The output buffer pointer is move back to the previous field, truncating the data at its new
position.

C Comment

Ctext
All text following the C is ignored.

D Display fields from the active input buffer

D{ref|p}{,m}{+}
ref is a direct or indirect reference to a buffer containing the field number of the active input
buffer that is to be displayed.
p is the field number of the active input buffer that is to be displayed. If p is zero, the entire
input buffer is displayed.
m is the maximum number of characters to be displayed.
+ suppresses the normal newline after display

DB Display all input and output buffers

The content of the primary and secondary input and output buffers is displayed.

DF Display file buffer

DF{n}
The content of the specified file buffer is displayed. If n is omitted or specified as zero, the fast
file buffer is displayed.

DS Display select buffer

The Command Environment 53

2.6-6

DSn
The content of the specified select buffer is displayed. If n is omitted, it defaults to zero.

F Moves the input buffer pointer forward

The input buffer pointer is moved forward to the start of the next field. If the pointer was in the
last field, it is moved to the end of the buffer.

F; Perform stack based arithmetic

F;element{;element...}
The F; statement performs integer arithmetic using a stack. The element list contains values to
be added to the stack and operators to be performed against the stack values.
ref A direct or indirect reference to a buffer element to be placed on the stack.
n A numeric constant to be placed on the stack. The value may be preceded by C.
+ Adds the top two stack items, replacing them by the result.
- Subtracts the top stack item from the next item, replacing them by the result.
* Multiplies the top two stack items, replacing them by the result.
/ Divides the second item on the stack by the first item, replacing them by the truncated

integer result.
R Divides the second item on the stack by the first item, replacing them by the remainder

value.
{ Interchanges the top two items on the stack.
_ Interchanges the top two items on the stack.
?P Moves the top item from the stack into the primary input buffer at the input pointer

position.
?ref Moves the top item from the stack into the specified register location.

F-CLEAR Clear a file buffer

F-C{LEAR} n
The file buffer for file n is cleared.

F-DELETE Delete a record from an open file

F-D{ELETE} n
The record identified by the file and id associated with file buffer n is deleted. An error will be
reported if there is no open file associated with the file buffer.

F-FREE Release a record lock in an open file

F-F{REE} {n {id|ref}}
The record identified by the file and id associated with file buffer n is deleted. The record id
may be specified using a buffer reference. If no id is specified or it is a null string, all locks in
that file are released. An error will be reported if there is no open file associated with the file
buffer.
If no file number or id are specified, all locks associated with files opened by the PROC are
released.

OpenQM54

2.6-6

F-OPEN Open a file

F-O{PEN} n {DICT} {filename|ref}
Opens the file specified by filename or by the buffer addressed by ref, associating it with file
buffer n. The DICT qualifier specifies that the dictionary portion of the file is to be opened.
If the file cannot be opened, the PROC continues at the next statement, otherwise this statement
is skipped.
All files are closed on return to the command processor.

F-READ Read a record from an open file

F-R{EAD} n {id|ref}
The record with id specified by id or by the direct or indirect ref is read into file buffer n. If the
record cannot be found, the PROC continues at the next statement, otherwise this statement is
skipped. In either case, the record id will be stored as field zero of the file buffer.

F-UREAD Read a record from an open file with an update lock

F-U{READ} n {id|ref}
The record with id specified by id or by the direct or indirect ref is read into file buffer n,
locking it for update. If the record cannot be found, , the PROC continues at the next statement,
otherwise this statement is skipped. In either case, the record id will be stored as field zero of
the file buffer and the process will own the lock.

F-WRITE Write a record to an open file

F-W{RITE} n
The record stored in file buffer n is written using the id stored in field zero of the file buffer.

FB Read a record into the fast file buffer

FB{U}({DICT} filename|ref1 id|ref2)
The file identified by filename or ref1 is opened to the fast file buffer and the record identified
by id or ref2 is read into the buffer. The U option specifies that an update lock is required.
If the file cannot be opened or the record cannot be found, the PROC continues at the next
statement, otherwise this statement is skipped. Where the action fails because the file was
opened but the record could not be found, the id will be stored in field zero of the file buffer and
the process will own the update lock if the U option was specified.

GO Jump to a label or a mark (Synonyms G and GOTO)

GO label|A-ref|ref|F|B
The PROC continues execution at the given position.
label specifies a numeric label attached to the destination.
A-ref is an A-reference used to determine the destination label.
ref is a direct or indirect buffer reference to a location containing the label.
F jumps forward to the next M statement in the PROC.

The Command Environment 55

2.6-6

B jumps to the location of the last M statement executed within the PROC.

GOSUB Enter a labelled subroutine

GOSUB label
Label specifies a numeric label at the start of the subroutine.
Execution continues at the given location. The subroutine may return to the statement following
the GOSUB by use of RSUB.

H Add text to the active output buffer

H{text|ref}
The literal text or the content of the buffer location identified by the direct or indirect ref is
added to the active output buffer. Multiple spaces are compressed to a single space. All spaces
within the string are then replaced by field marks.

IF Conditional execution

IF {N} condition statement
N specifies that a numeric comparison is to be performed where only the leading numeric part
of the data to be tested is used.
The condition may take several alternative forms referencing an item which may be:

A-ref Data obtained using an A-reference
ref A direct or indirect buffer reference
E The value of @SYSTEM.RETURN.CODE
Sn Tests whether select list is active. n defaults to 0 if omitted.

The conditions are:
item Tests that item is not blank. Used with E, this tests whether the value

is negative.
#item Tests that item is blank. Used with E, this tests whether the value is

not negative.
item op text|ref Compares item with unquoted literal text or a value obtained from a

direct or indirect buffer reference. The operator op may be
= Equality
Inequality
> Greater than
< Less than
] Greater than or equal to
[Less than or equal to

If text or ref is enclosed in round brackets and the operator is = or #, it
is treated as a pattern match.

If the data identified by text or ref is multivalued and the operator is =
or #, the operator tests whether item appears in the multivalued data.
There are two extended syntaxes available with this style of test:

IF item = AVMBVMC GO 10VM20VM30
and

IF item = AVMBVMC GOSUB 10VMGO 20VMXDone
The first form, applicable to GO only, jumps to one of a list of labels
dependant on the value of the item. The second form takes a

OpenQM56

2.6-6

multivalued list of statements to be executed dependant on the value
of item.

IH Insert test in the active input buffer

I{B}Htext|ref|\| \}
Copies the unquoted literal text or the data addressed by the direct or indirect buffer ref to the
active input buffer at the position given by the input buffer pointer. If this is positioned at the
start of a field, the entire field is replaced. If it is positioned part way though the field, the new
data is appended to the portion before the input pointer position.
The \ token with no preceding space, clears the field addressed by the input buffer pointer. If
the pointer is positioned part way through a field, characters before the pointer position are
retained.
The \ token with a preceding space, inserts an empty field.
Leading and trailing spaces are removed and multiple embedded are compressed to single
spaces. If the B option is not present, the spaces are then converted to field marks.
The input buffer pointer is not moved by this operation.

IN Input data from the terminal to the secondary input buffer

I{B}N{c}
The secondary input buffer is activated and the user input overwrites any existing content. All
leading and trailing spaces in the input data are removed and multiple embedded spaces are
compressed to a single space. If the B option is not present, all remaining spaces are then
replaced by field marks. The optional prompt character c specifies an alternative to the default
of a question mark and remains in effect for subsequent input until another prompt character is
set.

IP Input data from the terminal to any buffer

I{B}P{P}{c}ref
User input overwrites the location specified by the direct or indirect ref. If ref is omitted, the
field addressed by the input buffer pointer in the primary input buffer is overwritten. All leading
and trailing spaces in the input data are removed and multiple embedded spaces are compressed
to a single space. If the B option is not present, all remaining spaces are then replaced by field
marks. The optional prompt character c specifies an alternative to the default of a question
mark and remains in effect for subsequent input until another prompt character is set. The
prompt character must be present if ref is used.

In a PQ style Proc, entering a blank response retains the existing content of the input buffer. A
PQN style Proc would clear the buffer.

IS Input data from the terminal to the secondary input buffer

This is a synonym for IN described above.

L Send output to a printer

The Command Environment 57

2.6-6

L{'text'|ref|(col),...}{+}
Outputs the items specified in the comma separated list. These may be quoted literal text or the
data addressed by the direct or indirect buffer ref. Use of ref may be followed by an input
conversion code enclosed in semicolons or an output conversion code enclosed in colons.
The (col) element can be used to move to a specific column number where the leftmost column
is column one.
The + element suppresses the normal newline at the end of the output.
The list may span multiple lines by breaking it after a comma.

LC Close printer

The printer is closed and the output is passed to the underlying print management system for
printing.

LE Page eject

Starts a new page

LHDR Set page header

LHDR{'text'|ref|(col)|P|T|Z|n|,...}
Sets the page header using the items specified in the comma separated list. These may be quoted
literal text or the data addressed by the direct or indirect buffer ref. Use of ref may be followed
by an input conversion code enclosed in semicolons or an output conversion code enclosed in
colons.
The (col) element can be used to move to a specific column number where the leftmost column
is column one.
The P element inserts the page number.
The T element inserts the date and time.
The Z element restarts page numbering.
The n element specifies a number of newlines.
The list may span multiple lines by breaking it after a comma.

LN Redirect printer output to the terminal

Specifies that output from the L statement is to be directed to the terminal. This is mainly
useful for debugging purposes.

M Mark

The M statement marks a location in a PROC for use by the GO F and GO B operations.

MV Move data from one location to another

MV destination source
destination is a direct or indirect reference to the buffer location to which data is to be copied.

OpenQM58

2.6-6

source is a list of one or more items to be copied. Each item may be direct or indirect buffer
reference or a quoted literal string.
A comma separating two items inserts the items as separate fields. Use of two or more
consecutive commas with no source item between them skips fields in the destination.
An asterisk between two items concatenates them.
An asterisk after a file buffer reference as the last item in the source list copies all remaining
fields from the file buffer.
An asterisk followed by a number after a file buffer reference in the source list copies the given
number of fields from the file buffer.
An underscore as the last item in the list truncates the destination by removing all fields after
the last one copied.

MVA Move data from one location to another as a sorted multivalued field

MVA destination source
destination is a direct or indirect reference to the buffer location to which data is to be copied.
source is a direct or indirect buffer reference or an unquoted literal string.
The source data is inserted as a new value in the multivalued destination using a left aligned
ascending sort order to determine its position. The item will not be inserted if it would duplicate
an existing entry in the list.

MVD Delete an entry from a multivalued field

MVD destination item
destination is a direct or indirect reference to the buffer location from which the data is to be
deleted.
item is a direct or indirect buffer reference or an unquoted literal string.
The multivalued destination is searched for the first occurrence of item, removing this entry
from the list.

O Output text to the terminal

Otext{+}
The unquoted literal text is displayed on the user's terminal. The optional + token suppresses
the normal newline after output.

P Process the command in the primary output buffer

P{P}{H}{X}{W}{Ln}
The command in the primary output buffer is passed to the command processor for execution.
Any data in the secondary output buffer is queued up as data for use by the executed command.
If there is any unprocessed data remaining after the command has been executed, the first field
of this data is passed to the command processor for execution, using the remaining fields as
data. This cycle continues until all the data has been processed.
The P option displays the content of the output buffer before execution of the command.
The H option suppresses terminal output by the executed command.
The X option terminates the PROC after the command has been executed.
The W option displays the command and prompts the user to confirm whether it should be
executed. Valid replies are Y to execute the command, N to terminate the PROC without
executing the command and S to skip the command but continue execution of the PROC.

The Command Environment 59

2.6-6

The Ln option sets process task lock n for the duration of the command.
After the command has been executed, the output buffers are cleared and the primary output
buffer is activated.
There is an implied P command at the end of a PROC.

Q Quit

Qtext
The PROC and all other underlying programs, paragraphs, menus, etc are terminated,
displaying the optional unquoted text on the user's terminal. The user is returned to the
command prompt, executing any ON.ABORT VOC entry on the way.

RI Reset input buffers

RI{f|(col)
Used with no options, this statement clears both input buffers, resets the pointer to the start of
the primary input buffer and makes this the active buffer.
The f option specifies that the primary input buffer is to be cleared from field f onwards,
leaving the input buffer pointer positioned at the end of the remaining data.
The (col) option specifies that the primary input buffer is to be cleared from the given character
position, leaving the input buffer pointer positioned at the end of the remaining data.

RO Reset output buffers

Both output buffers are cleared and the primary output buffer is activated.

RSUB Return from a GOSUB

RSUB{n}
Without the n option, the PROC continues execution at the statement following the last
GOSUB executed.
n specifies that execution is to continue starting n lines following the GOSUB.
The RSUB statement is ignored if the PROC is not in a subroutine.

RTN Return to a calling PROC

RTN{n}
The PROC returns to the PROC from which it was called, continuing execution n lines after the
[] statement that called the current PROC. If n is omitted, it defaults to 1.

S Set the input buffer pointer

Sf|ref|(col)
Moves the input buffer pointer of the active input buffer at the specified position.
f specifies that the pointer is to be positioned at field f.
ref is a direct or indirect buffer reference used to obtain the field number.
The (col) option sets the pointer to the given character position.

OpenQM60

2.6-6

SP Active the primary input buffer

The primary input buffer is activated.

SS Active the secondary input buffer

The secondary input buffer is activated.

STOFF Active the primary output buffer

The primary output buffer is activated. This statement can also be written as STOF or ST
OFF.

STON Active the secondary output buffer

The secondary output buffer is activated. This statement can also be written as ST ON.

T Terminal output

Telement{,element...}
Outputs each element of a comma separated list to the terminal. The elements may be:

text Quoted literal text
ref A direct or indirect buffer reference identifying the data to be displayed. This

may be followed by an input conversion code enclosed in semicolons or an
output conversion code enclosed in colons.

(col) Position the cursor to the specified column of the current line. The value of col
may be given as a number or as a direct or indirect buffer reference.

(col,row) Position the cursor to the specified row and column. The value of row and col
may be given as a number or as a direct or indirect buffer reference.

B Sounds the terminal "bell".
C Clears the screen.
D Pauses for one second.
In Displays character n where n may be given as a number or a buffer reference.
L Terminates a T...L loop.
Sn Emits n spaces where n may be given as a number or a buffer reference.
T Starts a T...L loop where the elements enclosed in the loop will be executed

three times.
U Moves the cursor up by one line.
Xn Displays character n where n may be given as a number or a buffer reference

to a two digit hexadecimal value.
+ Suppresses the normal newline after display.

The (col) and (col,row) elements can also be used to access the terminal control codes that use
negative col values.
The list of elements for display can span multiple lines by breaking it after a comma.

TR Enable or disable tracing

The Command Environment 61

2.6-6

TR {ON|OFF}
The ON option causes the PROC processor to display each statement before it is executed.
The OFF option terminates trace mode.
The space before the mode keyword can be omitted. If no mode is specified, tracing is enabled.

U Call a QMBasic program

Uname
The catalogued program identified by name is called. This program should take no arguments
and can access the PROC buffers using @-variables.

X Exit from the PROC

Xtext
Displays the optional unquoted text and terminates the PROC, returning to the calling PROC,
program, menu, etc.

+ Add an integer value to a numeric field

+n
The specified numeric value is added to the field of the active input buffer identified by the
input buffer pointer. Non-numeric data is treated as zero.

- Subtract an integer value from a numeric field

-n
The specified numeric value is subtracted from the field of the active input buffer identified by
the input buffer pointer. Non-numeric data is treated as zero.

() Transfer control to another PROC

({DICT} filename {id}) {label}
The PROC identified by the given filename and id is executed, starting at label, or the first
statement if no label is specified. If id is omitted, the record id is obtained from the field of the
active input buffer addressed by the input buffer pointer.
The buffers and pointers are not changed by this statement.
Control does not return to the current PROC when the called PROC terminates.

[] Transfer control to another PROC

[{DICT} filename {id}] {label}
The PROC identified by the given filename and id is executed, starting at label, or the first
statement if no label is specified. If id is omitted, the record id is obtained from the field of the
active input buffer addressed by the input buffer pointer.
The buffers and pointers are not changed by this statement.
Control returns to the current PROC when the called PROC executes a RTN or X statement.

OpenQM62

2.6-6

The Command Environment 63

2.6-6

VOC Q-type records - Remote file pointers

A Q-type VOC record points to a file defined in the VOC of another account.

1: Q { descriptive text }

2: Account name or pathname. Leave blank for the same account.

3: VOC record name in target account

4: Server name for files accessed using QMNet

Field 2 contains either the account name or the pathname of the account directory. If field 2 is
blank, the target record is assumed to be in the same VOC file.

Field 3 holds name of a VOC record in the target account. This VOC item must be either an F-type
(file) or a further Q-type record. A chain of Q pointers is extremely inefficient and is restricted to a
maximum of ten steps.

If the remote file is on a different QM server, this is specified by putting the server name in field 4
of the VOC entry. The network address and user authentication information is defined using the
SET.SERVER command.

The SET.FILE command provides an easy way to create Q-pointers.

A summary of Q-type VOC records may be displayed or printed using LISTQ.

OpenQM64

2.6-6

VOC R-type records - Remote pointers

An R type VOC entry points to a record in another file which is constructed in the same way as an
executable (M, PA, R, S or V type) VOC entry.

1: R { descriptive text }

2: File name

3: Record name

4: {Security subroutine name}

R-type VOC entries are used to:

· Move large paragraphs and menus out of the VOC as large records degrade the
performance of the hashing process.

· Reference a common version of a VOC item to be used from multiple accounts.

· Add security checks prior to command execution.

The file name in field 2 must correspond to an F-type or Q-type entry in the same VOC.

The record name in field 3 is the record in the target file that holds the item to be executed.

An R-type VOC record can optionally hold the name of a catalogued security subroutine in field 4.
This subroutine can be used to determine whether the user is to be allowed to execute the command
pointed to by the R-type record. If the validation fails or the subroutine cannot be found in the
catalogue a message is displayed:

This command is restricted (verb)

A summary of R-type VOC records may be displayed or printed using LISTR.

The Command Environment 65

2.6-6

VOC S-type records - Sentences

Where a particular command is executed frequently, it may be useful to store it as a sentence.

1: S { descriptive text }

2: Sentence text

A sentence is a command containing a verb and, optionally, its arguments. Sentence names may be
entered in response to the command prompt in the same way as a verb. Any arguments following
the sentence name on the command line entered at the keyboard will be appended to the sentence
retrieved from the VOC.

Field 1 of a VOC sentence record must commence with a letter S. Field 2 holds the text of the
sentence. This text replaces the sentence name in the current command and parsing continues with
the first word of the substituted sentence.

Where a sentence is very long it may be broken into multiple lines within the VOC record by
terminating all but the final line with an underscore character. When the sentence is executed, the
lines are merged, replacing the underscore with a single space.

Any additional text following the sentence name in a command that starts the sentence will be
appended to the sentence expansion retrieved from the VOC. For example, the EDIT.LIST
command is actually a sentence stored as

1: S
2: ED $SAVEDLISTS

Typing

EDIT.LIST MYLIST

actually executes the command

ED $SAVEDLISTS MYLIST

This automatic appending of additional text in the command makes stored sentences very useful as
the start of commands but prevents effective use of some inline prompt control codes in the sentence
expansion.

A summary of S-type VOC records may be displayed or printed using LISTS.

OpenQM66

2.6-6

VOC V-type records - Verbs

A V type record defines a command name and determines the QM component that will be used to
process the command.

1: V { descriptive text }

2: Dispatch code

3: Processor

4: { Qualifying information }

5: { Security subroutine }

The dispatch code identifies the type of processor referenced by field 3. It may be:

CA A catalogued verb. Field 3 holds the catalogue name of the function to be executed. For
system supplied verbs, field 4 may also be significant and should not be altered.

CS A locally catalogued function program. This format allows a QMBasic program to
CALL a function that is in the compiler output file rather than in the catalogue.

IN An internal verb. Field 3 holds an identifying number which determines the action of
the verb.

OS An operating system command. QM will execute an operating system command made
up from the contents of field 3 of the VOC record (which may be null) followed by the
remainder of the current sentence after the verb.

Users may add their own V-type records for catalogued programs (usually by use of the
CATALOGUE verb) or make copies of standard records to provide synonyms for other verbs.

A V-type VOC record can optionally hold the name of a catalogued security subroutine in field 5.
This subroutine can be used to determine whether the user is to be allowed to execute the command.
If the validation fails or the subroutine cannot be found in the catalogue a message is displayed:

This command is restricted (verb)

A summary of V-type VOC records may be displayed or printed using LISTV.

The Command Environment 67

2.6-6

VOC X-type records - Miscellaneous storage

X-type VOC items are miscellaneous data storage records which may be used in any way the
application designer wishes.

1: X { descriptive text }

2: user data

Fields 2 onwards are available for data storage. Users may freely create X type records for their
own purposes but should avoid names containing $ signs as these may clash with system defined
records.

OpenQM68

2.6-6

Security subroutines

An R-type or V-type VOC entry can optionally include the name of a catalogued security
subroutine in field 4 (R-type) or field 5 (V-type). This subroutine can be used to determine whether
the user is to be allowed to execute the command.

The security subroutine is written using QMBasic. A simple subroutine that prompts for a
password is shown below.

SUBROUTINE SECURITY(OK, VERB, REMOTE.FILE, REMOTE.ID)
 PROMPT ''
 DISPLAY 'Enter security password: ' :
 FOR I = 1 TO 3
 ECHO OFF
 INPUT PASSWORD
 ECHO ON
 IF PASSWORD = 'FSKJJ' THEN RETURN (@TRUE)
 NEXT I

 RETURN (@FALSE)
END

The arguments to this subroutine are:

OK Used to return the result of the validation. This should be set to true (1) if
the command is to be allowed, false (0) if it is to be rejected.

VERB The name of the R-type VOC entry being processed.

REMOTE.FILE The name of the file containing the remote item to be executed. This is a
null string for a security subroutine referenced from a V-type VOC record.

REMOTE.ID The record of the remote item to be executed. This is a null string for a
security subroutine referenced from a V-type VOC record.

If the validation fails or the subroutine cannot be found in the catalogue a message is displayed:
This command is restricted (verb)

The Command Environment 69

2.6-6

2.6 Inline Prompts

Inline prompts provide a means to prompt for data needed by a sentence or paragraph when it is
executed. The DATA command does not affect inline prompting which always takes its response
from the keyboard. There are also variants on inline prompts that retrieve data from other sources,
providing a generalised way to substitute variable items into a command.

An inline prompt has the general form

<<{control,} text {, check}>>

where

control determines the way in which the prompt is displayed and how it is actioned on
subsequent execution of the same statement or another with the same text. Control
codes are generally case sensitive.

text is the prompt text to be displayed. An equals sign is automatically added to the end
of the prompt text.

check is used to check whether the response to the prompt is valid. If omitted, no
checking is performed.

The control option has two parts; the display control and the response control. Both parts are
optional.

The display control may contain any of the following items. Multiple items may be concatenated,
separated by commas, and are performed in the order in which they appear.

@(col, row) specifies the display position for the prompt text. The QMBasic @() function
variants with a negative value for the first (or only) argument are also
supported.

@(BELL) sounds the audible warning. The BELL OFF command will suppress this
action.

@(CLR) Clears the display.

@(TOF) Positions to the top left of the display.

The response control consists of one of the items listed below. If omitted, the prompt is actioned
only for the first occurrence of a prompt with the given text. Subsequent execution of the same
inline prompt or another with the same text will not cause a prompt to be displayed but will use the
response to the previous prompt. All prompt responses are discarded on return to the command
prompt. The CLEAR.PROMPTS command can be used to discard all inline prompt responses
from within a paragraph.

A Always prompt. This is usually needed on the first occurrence of each prompt
in a loop so that each iteration of the loop prompts again.

OpenQM70

2.6-6

Cn Used in paragraphs to take the n'th token of the sentence that started the
paragraph as the response to the prompt. No prompt text will appear unless the
implicit response fails to meet the check conditions. The C control code has
several extended forms:

Cm-n Returns tokens m to n.

Cn+ Returns tokens n onwards.

C# Returns the number of tokens in the command line.

All formats of the C control code may include a default value. For example,

<<C4:SALES>>

The default value will be applied if the prompt would otherwise return a null string.

F(file, key {,field {, value {, subvalue}}}) Use record key of the data portion of the
named file as the response to the prompt. The optional field, value and
subvalue allow extraction of a particular part of the record.

In Used in paragraphs to take the n'th token of the sentence that started the
paragraph as the response to the prompt. If this is a null string or the implicit
response fails to meet the check conditions, an input prompt appears.

Ln Extracts the next item from select list n. If n is omitted, it defaults to zero.
When the select list is exhausted, a null string is returned.

R Prompt repeatedly for input, concatenating data with an intervening space until
a blank line is entered.

R(string) Prompt repeatedly for input, concatenating the responses with string between
responses until a blank line is entered. The string may not include field mark
characters. An abort will occur if a field mark is specified as part of string.

Sn Take the n'th token of the sentence entered at the command prompt as the
response to the prompt. If this is a null string or the implicit response fails to
meet the check conditions, an input prompt appears.

SUBR(name) Execute catalogued QMBasic function name, returning the result of this
function as the value of the inline prompt.

SUBR(name, arg1, arg2) Execute catalogued QMBasic function name, passing in the given
arguments and returning the result of this function as the value of the inline
prompt. Up to 254 arguments may be specified. These may be enclosed in
quotes if necessary to avoid any syntactic ambiguity.

SYSTEM(n) Returns the value of the QMBasic SYSTEM(n) function.

U Converts the data entered in the response to the prompt to uppercase. Note that
this control has no effect on data from other sources such as the command line,
a file or a select list.

@var The name of an @-variable, including user defined names (see the SET
command), may be used to retrieve the value of the given variable. A default
value may be applied by use of a prompt of the form:

The Command Environment 71

2.6-6

<<@name:value>>

The default value will be applied if the prompt would otherwise return a null
string.

$var The name of an operating system environment variable may be used to retrieve
the value of the given variable. . A default value may be applied by use of a
prompt of the form:

<<$name:value>>

The default value will be applied if the prompt would otherwise return a null
string.

The Cn and In control codes are only useful in paragraphs. A command that references a paragraph
(PA-type VOC entry) may include additional text that can be accessed using these control codes. In
a command that references a stored sentence (S-type VOC entry), any additional text following the
sentence name is added to the end of the sentence expansion, making effective use of these control
codes impossible. There is no reason why a paragraph cannot contain only a single sentence if these
control codes are to be used.

The <<@var>> construct allows @variables to be inserted into any command, simplifying
paragraph structure. For example:

SAVE.LIST LIST.<<@USERNO>>

could be used to save a select list with a name that includes the user number to ensure uniqueness
for the duration of the user's QM session.

The check code performs simple data validation and is either a pattern match template or an input
conversion code. Multiple patterns can be specified separated by the word OR with a single space
either side. For example,

3N'-'4N OR 4N'-'3N

would accept numbers of the form 123-4567 or 1234-567.

Input conversion codes must be enclosed in brackets. Any of the codes that can be used with the
ICONV() function may be used. The check is considered successful if no conversion error occurs.
The value returned by the prompt is the actual text entered, not the result of the conversion.

Entry of QUIT at the keyboard in response to an inline prompt will abort and return to the
command prompt. The @ABORT.CODE variable will be set to 2 as for QUIT entered at other
prompts.

Inline prompts are expanded as the first stage of processing a command. This has two important
effects:

An inline prompt in a comment line will be evaluated. This slightly strange effect can be useful
as a means to perform all prompts at the start of the paragraph rather than as they are needed,
perhaps much later.

An IF command in a paragraph where the conditioned statement includes an inline prompt will
display the prompt before determining whether the condition is true.

OpenQM72

2.6-6

A single command may contain multiple inline prompts. These will be evaluated left to right. Nested
inline prompts will be evaluated from the inside outwards.

The response to an inline prompt may not include the left or right double angle bracket symbols (<<
and >>) or field marks. Entering a response containing one of these will cause the prompt to be
repeated.

When used as an item to test in an IF command, the prompt will usually need to be enclosed in
quotes so that a response that contains spaces or reserved keywords does not cause the command
parsing to fail. For example

IF <<Customer number>> = "" THEN STOP

should be written as

IF "<<Customer number>>" = "" THEN STOP

Examples

PA
SELECT ORDERS SAVING UNIQUE CUST.NO_
 WITH DATE AFTER <<Start date>>
LIST CUSTOMERS NAME_
 HEADING "Clients ordering after <<Start date>>"

The above paragraph uses two identical inline prompts. The first asks the user to enter a start date
for a SELECT operation. The second prompt will not repeat the request as the answer is already
known. Note that the prompt text can contain spaces and that the inline prompt substitution occurs
even though it is part of a quoted string.

PA
* <<Target file>>
RUN OVN.PROCESS
OVN.RPT <<Target file>>

In this example, the inline prompt is in a comment. Although the prompt will be issued at the start
of the paragraph, the result is not used until the final command. If the OVN.PROCESS program
takes a considerable length of time to execute, this technique allows the prompt to be answered
early, without having to wait for the program to complete.

PA
* <<I2,Target file>>
RUN OVN.PROCESS
OVN.RPT <<Target file>>

By adding the I2 control option to the previous example, the paragraph will take the target file name
from the second word on the command line if present, prompting if it is not given.

PA
LOOP
 IF <<A,Customer>> = "" THEN STOP
 LIST ORDERS WITH CUST.NO = <<Customer>>
REPEAT

The Command Environment 73

2.6-6

This paragraph uses a loop in which the user is prompted to enter a customer number. If this is a
null string, the paragraph terminates. Otherwise it lists the ORDERS file records for this customer.
Note the use of the A option on the first prompt in the loop so that it is repeated on each cycle of the
loop. Without this, the paragraph would list the orders for the same customer continuously until
stopped by user action.

SAVE.STACK <<@LOGNAME>>
DISPLAY Domain is <<$USERDOMAIN>>

These two commands show use of the inline prompt mechanism to insert the value of system
variables into commands. The first uses an internal QM @variable to retrieve the user's login name,
the second accesses the operating system USERDOMAIN environment variable.

DISPLAY Licence number <<SYSTEM(31)>>

This example uses the inline prompt mechanism to access the QM licence number via the QMBasic
SYSTEM() function.

See also:
CLEAR.PROMPTS

OpenQM74

2.6-6

2.7 Pattern Matching

Pattern matching is a way to test whether data has a particular structure. It can be used for data
validation and as a means to extract the part of a data item that matches against a specified element
of the pattern. The pattern matching operations are the query processor LIKE and UNLIKE
keywords, the QMBasic MATCHES operator and MATCHFIELD() function, and the M search
of ED. All of these compare a character string with a pattern template.

Pattern matching breaks the character set into three classes of character, each represented by a
character type code:

A Alphabetic, upper and lowercase A - Z
N Numeric, digits 0 - 9
X Any character, including alphanumerics

There are also three ways to specify how many characters are present:
4 Exactly 4 characters
2-7 Between 2 and 7 characters
0 Any number of characters, including none

The template consists of one or more concatenated items formed from pairs of lengths and character
type:

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type

0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters

0N Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly. Either single or double quotation marks
may be used.

The values n and m are integers with any number of digits. m must be greater than or equal to n.

The 0X code is a wildcard that matches against anything. It has a commonly used synonym:

... Zero or more characters of any type

The 0A, nA, 0N, nN and "string" patterns may be preceded by a tilde (~) to invert the match
condition. For example, ~4N matches four non-numeric characters such as ABCD (not a string
which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, 0N, their inverses (~0A, etc) and "".

The 0X and n-mX patterns match against as few characters as necessary before control passes to

The Command Environment 75

2.6-6

the next pattern. For example, the string ABC123DEF matched against the pattern 0X2N0X
matches the pattern components as ABC, 12 and 3DEF.

The 0N, n-mN, 0A, and n-mA patterns match against as many characters as possible. For example,
the string ABC123DEF matched against the pattern 0X2-3N0X matches the pattern components as
ABC, 123 and DEF.

The template string may contain alternative patterns separated by value marks. The source data will
match the overall pattern if any of the pattern values match.

Examples

"A123BCD" would match successfully against patterns of
1A3N3A
1A1-3N3A
'A'1-3N3A
0A0N0A
1A...3A
1A~3A3A
and many more

It is often acceptable to omit the quotes around literal components. The above example would also
match

A1-3N3A

There is no confusion between the leading A as a literal or as a character type as it is not preceded
by a length value. It is, however, recommended that the quotes should be included. Omitting the
quotes in a pattern used in the MATCHFIELD() function may affect the function's behaviour as
each character of the literal will be counted as a separate component of the pattern.

A program might need to test whether data entered by a user is a non-negative integer (whole
number) value. The QMBasic NUM() function can be used to test for numeric data but this would
allow fractional or negative values. Testing against a pattern of "1-4N" would allow only integer
values in the range 0 to 9999. To remove the upper limit, a pattern of 1N0N tests for one digit
followed by any number of further digits, including none.

OpenQM76

2.6-6

2.8 Printing

QM applications do not drive printing devices directly. Instead they reference numbered print units
with no knowledge of where the output will actually go. This leads to a very flexible printing system
where the output can be sent to a printer, a file or the user's screen. QM uses the underlying Print
Manager on Windows or the operating system spooler on other platforms to perform output to
printer devices.

Windows Mobile and Windows CE used on PDA devices have no built-in printer support. Third
party software packages are required to print on these platforms. QM retains support for mode 3
print units as described below.

Each QM session has its own pool of print units, numbered from 0 to 255. In most cases, if a print
unit is not specified in a command, printer 0, the default printer, is used. Application developers are
free to use these print units in any way that meets their needs. They might correspond to different
printers, different paper types on the one printer, selection of portrait or landscape mode, etc.
Although it is unlikely, all 256 print units can be used simultaneously.

Within QMBasic programs printer 0 is treated as a special case. If the program has not used the
PRINTER ON statement (or the LPTR qualifier to the RUN command), output to printer 0 is
actually sent to the user's screen rather than the printer. This allows an application to use either the
screen or the default printer simply by choosing whether to execute the PRINTER ON statement
rather than having to implement two alternative paths for every place that performs output.

QMBasic programs can also reference print unit -1 as a synonym for the user's screen.

Pick Style Form Queues

As an aid to migration from other systems, QM provides limited support for Pick style form queues
by use of the SP.ASSIGN command. Internally, QM needs to relate form queue numbers to the
equivalent SETPTR options and this is managed by a mapping file, $FORMS, using the
SET.QUEUE command.

For more information, see the SP.ASSIGN and SET.QUEUE command descriptions.

Setting Print Unit Characteristics

Unless otherwise defined, print unit 0 is directed to the system's default printer and all other print
units are directed to the $HOLD file. Almost all applications will need to modify this default
behaviour by using the SETPTR command. This may be executed from the MASTER.LOGIN
paragraph in the QMSYS account (to affect all users), from the LOGIN paragraph of a specific
account (to affect only users of that account), or from within the application.

The SETPTR command defines the shape of the printed page (width, depth, margins), the
destination and various options relating to the treatment of the output.

A print unit can operate in several modes:

Mode 1 directs the output to the underlying operating system print processor, usually to send it
to a physical printer.

Mode 3 formats the data ready for printing but directs it to a record in the $HOLD file from

The Command Environment 77

2.6-6

where it may subsequently be viewed on the screen with a suitable editor or sent on to a printer
when required. The hold file is most commonly used to defer printing until a process has
completed, to gather diagnostic output, or for testing.

Mode 4 directs the output the the stdout (standard output) file unit.

Mode 5 buffers the data in the $HOLD file and then sends it to the terminal when the printer is
closed, prefixing it with the control code to enable the terminal auxiliary port and disabling this
port on completion of the print. This feature relies on the mc5 (aux on) and mc4 (aux off)
terminfo items being set correctly.

Mode 6 combines the actions of modes 1 and 3, creating a file and also printing the data.

A print job commences when the first line of output is sent to the printer and normally terminates
when the program closes the print unit either explicitly or implicitly by returning to the command
processor. It is possible to merge output from several successive print programs into one job by use
of the PRINTER command. The KEEP.OPEN option used before output commences followed by
the CLOSE option after the final program completes treats the entire sequence as a single print job.

Printing on Windows

Windows defines two alternative printing interfaces. The graphical device interface (GDI) allows a
Windows application to construct complex text and graphics images whereas the non-GDI mode
(known in QM as raw mode) is a much simpler interface that permits only simple text output. QM
uses the raw mode by default though, for compatibility with older releases, the GDI configuration
parameter can be used to make GDI the default though QM does not provide any functions to
generate GDI graphics.

Some options of the SETPTR command are applicable only to one or other of the two modes. Also,
some options may not be supported by all Windows print drivers. In most cases, inapplicable
options are simply ignored.

Printing on Other Platforms

QM normally uses the underlying lp command to print data on these platforms though this can be
modified by use of the SPOOLER configuration parameter or the SPOOLER option of the
SETPTR command. SETPTR options that are not applicable are ignored.

Printing to a File

The SETPTR command can be used to direct output to a record in the $HOLD file or to any
specific pathname on the server system. Hold file entries have a default name of Pn where n is the
print unit number but this can be modified in SETPTR to use a different name and/or to add a
rolling sequence number to the name.

Print Prefix Files

The PREFIX option of the SETPTR command can be used to specify the pathname of a file
containing printer initialisation commands. The content of this file is sent to the printer before the
first output from the application. A typical use of a prefix file might be to select a paper tray.

OpenQM78

2.6-6

PCL Printer Support

The printing system of QM includes features for greater control of PCL printers. These include font
selection, basic graphics and enhanced report formats. The PCL features are enabled by including
the PCL option in the SETPTR command when defining the printer characteristics.

By default, a PCL printer will print in Courier font at 10 characters per inch and 6 lines per inch.
The SETPTR command includes options to specify alternative values for the character and line
spacing. The paper size defaults to A4 but can also be amended using SETPTR. The
LANDSCAPE option will rotate the page through 90 degrees.

The query processor also has special support for PCL printers in report generation commands (e.g.
LIST). Page headings, footings and breakpoint values are printed in bold face. The BOXED option
draws a box around the page and separates the heading and footing from the text with horizontal
lines.

Graphical Overlays

The OVERLAY option of the SETPTR command can be used to specify the name of a catalogued
subroutine that will be called at the start of each page of output and can be used to emit printer
specific control codes to draw a graphical overlay on the page. The OVERLAY option of the query
processor reporting commands performs the same action but applies only to the report in which it is
used.

In either usage, the catalogued subroutine takes a single argument which is the print unit number.
Any control strings output by this subroutine should be emitted using the PRINT statement,
normally with the trailing carriage return/line feed suppressed. For PCL printers, it is recommended
that the standard QMBasic PCL control string functions should be used.

Example

subroutine overlay(pu)
$catalog overlay
$include pcl.h

 s = pcl.save.csr() ;* Save cursor position
 s := pcl.box(0,0,2320,3300,2,10) ;* Draw box
 s := pcl.restore.csr() ;* Restore cursor position
 s := pcl.left.margin(1) ;* Left margin column 1
 print on pu s :
 return
end

The above subroutine draws a box around an A4 sized page on a PCL printer. Note how it saves
the cursor position to ensure that subsequent application output appears at the correct place.

Because the subroutine is called before any other output to the page, it is possible for the subroutine
to make other changes to the page settings. Note in the above example how the left margin is
indented to bring the application output away from the left edge of the box.

The Command Environment 79

2.6-6

Commands Relating to Printing

CLEAN.ACCOUNT Clears $HOLD and other system temporary files.
PRINTER Various printer control operations
SETPTR Display or set print unit characteristics
SPOOL Sends record(s) to the printer

Query Processor Keywords Relating to Printing

FOOTING Set page footing
HEADING Set page heading
LPTR Direct output to a printer (applies to many commands)

QMBasic Statements and Functions Relating to Printing

FOOTING Set page footing
HEADING Set page heading
GETPU() Retrieve print unit characteristics
PAGE Force a new page
PRINT Emit data to a print unit
PRINTER CLOSE Close a print unit
PRINTER OFF Direct print unit 0 to the screen
PRINTER ON Direct print unit 0 to the printer
PRINTER RESET Resets the default print unit
PRINTER DISPLAY Direct printer output to the screen
PRINTER FILE Direct printer output to a file
PRINTER NAME Direct printer output to a named printer
SETPU Set print unit characteristics

OpenQM80

2.6-6

2.9 User Management and System Security

This section applies to Windows users only.

Because QM runs on all multi-tasking Windows environments, some of which do not feature
particularly good security systems, QM supports two methods of user authentication.

On Windows 98/ME, QM supplies its own user name and password checking for network users.
This can be disabled if required so that no user name or password is requested on connecting to the
system.

On later versions of Windows, QM uses the Windows security system. This cannot be disabled and
a valid user name and password must be supplied for all network connections. Many of the user
name management commands described here are still relevant as they handle the QM aspects of
user control.

User name management is handled by four commands, available from all accounts but restricted to
users with administrator rights. QMConsole users and users logging in with user names that are
defined as administrators at the operating system level always have administrator rights. Other
users can be registered as QM administrators using the commands described below.

The user name management commands are:

ADMIN.USER User name administration tool

CREATE.USER Creates a new user name

DELETE.USER Deletes a user name

LIST.USERS Lists all defined user names

In addition, Windows 98/ME users can change their passwords using the PASSWORD command.
This command can be used by users with administrator rights to change other users' passwords.

By default on Windows 98/ME, all network connections to a QM system require a username and
password to be supplied. This security system can be disabled by the System Administrator if a
simpler but less secure system is desired. This is achieved using the SECURITY command in the
QMSYS account:

SECURITY ON to enable security checks

SECURITY OFF to disable security checks

SECURITY to display the current setting

This command can only be executed from a QMConsole session. If security checking is enabled,
the SECURITY command can only be used by a user with administrator rights. If disabled, all
QMConsole users have access to this command.

Part

3
The QM File System

OpenQM82

2.6-6

3 The QM File System

File Types

The files used by QM are of two types; directory files and dynamic files. Directory files do not give
high performance but allow data to be viewed from outside of the QM environment. They are
therefore frequently used for data interchange with other software. Dynamic files offer very high
performance and are typically used for the bulk of the data stored by an application.

Facilities are provided to create data files, enter, modify and retrieve data, produce reports and,
where the data processing operation required cannot be achieved using the standard commands, to
construct powerful programs with the minimum of effort.

Most files consist of two parts; a data part holding the actual data and a dictionary part holding a
description of the structure of data records. Files do not have to have both parts. Files with no
dictionary portion are fairly common. Dictionaries with no data part usually exist only to provide a
single dictionary common to the data portion of many files.

For compatibility with other multivalue database products, QM also supports multifiles. These are
a collection of data files that share a common dictionary where the component files are referenced
by a two part name consisting of a file name and a subfile name separated by a comma. See the
CREATE.FILE command for further details.

Files contain data stored as records which are the basic unit of file access. Records are identified by
unique keys which may be any sequence of up to 63 characters. This limit can be increased by the
system administrator.

Special Filename Syntaxes

Normally, QM commands that reference files use a file name that corresponds to an F or Q-type
VOC entry which, in turn, references the actual operating system file to be accessed. There are
three special extended syntaxes for filenames that allow access to files without needing a VOC
entry. Use of these is controlled by the FILERULE configuration option. Users should consider any
impact of the security of their system before enabling these.

The three extended syntaxes are:
Implicit Q-pointer account:file
Implicit QMNet pointer server:account:file
Pathname PATH:pathname

Note that in the final form, depending on context, Windows users may need to use forward slash
characters (/) as directory delimiters because the backslash (\) is reserved as a string quote.
Alternatively, the entire "PATH:pathname" construct can be quoted.

These special syntaxes cannot be used with a multifile component name.

For details of file processing from QMBasic programs, see File Processing.

The QM File System 83

2.6-6

3.1 Creating and Deleting Files

As a general rule, files that may be accessed from the operating system level must be directory files
and all other files should be dynamic files. Dynamic files give best performance but records cannot
be accessed from outside of QM.

QMBasic source programs are normally stored in directory files. Dictionaries are automatically
created as dynamic files regardless of the type of the associated data file as a directory file
dictionary could cause severe performance degradation in query processor commands.

Files are created using the CREATE.FILE command which normally creates both a data and
dictionary portion for the file. Either may be created individually by use of the DATA or DICT
keywords. Dictionary portions are not required for files used to hold QMBasic source programs or
include records.

The CREATE.FILE command creates the file and also writes an F-type record to the VOC. If the
file is to be accessed from more than one account, this F-type record may be duplicated in the other
accounts, changing the pathnames in fields 2 and 3 to include the drive and directory components as
necessary. A better method is to use Q-type VOC entries for remote file pointers.

The data portion of a file is created at the specified or default minimum modulus size and with no
records. The dictionary portion has a single record, @ID, added to it to represent the record key.

Files may be deleted using the DELETE.FILE command. The DATA or DICT keywords allow
deletion of just the appropriate portion of the file.

Where the file's pathname in the VOC includes drive or directory components, the DELETE.FILE
command assumes the file to be in some other account and prompts for confirmation that it should
be deleted. If the file is to be retained but the reference to it from the current account is to be
deleted, use the DELETE command to delete the VOC record.

Rules and Restrictions

The QM file system uses the underlying operating system file structures to store its data. This
imposes some rules on how the operating system level files should be managed.

On Windows XP systems, use of mapped drives can assign different physical locations to the same
drive letter for different users. This will cause serious problems to QM as it is impossible to identify
a file uniquely. In particular, the locking system is likely to become unreliable.

All QM users should use the same mappings. For users entering QM via a network connection,
including connections looped back to the same machine, the DOS SUBST command may need to be
used to create the drive mapping. This can be included in the LOGIN or MASTER.LOGIN
paragraphs in the form

SH SUBST X: C:\ABC

where X: is the mapped drive letter and C:\ABC is the target directory to which X: is to be
mapped.

Similarly, use of chroot on non-Windows systems destroys the uniqueness of file names. Although

OpenQM84

2.6-6

this may work in some cases, it can lead to ambiguities that will cause QM to fail in unpredictable
ways. Use of this command is at the user's own risk.

Systems other than Windows allow a file to be renamed or deleted while it is in use. This action is
likely to cause QM to fail and should not be used.

The QM File System 85

2.6-6

3.2 Directory Files

A directory file is represented by an operating system directory and the records within it by
operating system files. The record key is the name of the operating system file holding the data for
the record except where this would be an invalid name in which case QM performs automatic name
mapping as described below.

Directory files do not give high performance because the process of searching a directory for a file
is, with many operating systems, essentially a linear scan. Locating a record to be read would,
therefore, require on average that half of the entries in the directory are examined. Writing a new
record would require the entire directory to be processed to verify that the file does not already
exist.

Directory files are mainly used for data that is to be processed from outside of QM or for very large
records (hundreds of kilobytes) where the operating system file structures may give better
performance than the hashed file system. Typical uses include storage of QMBasic programs,
COMO (command output) files, and saved select lists.

When a record is written to a directory file, any field mark characters are converted to the operating
system dependent representation of a newline. Thus, each field becomes a line of text which allows
the data to be processed by external software that does not understand the concept of field marks.
Conversely, when data is read from a directory file, the newlines are translated to field marks.
Where the data contains value marks or subvalue marks, these are not translated as it is assumed
that whatever software will process this data must understand multivalued data.

One common use of directory files is to store scanned documents, digital photographs, etc. In this
case, the data is not text divided into fields using the field mark character but is simple binary data
that may contain any sequence of bytes. The data will nearly always contain bytes that appear to be
field marks and other bytes that are the ASCII linefeed character. On writing the data to disk, the
field marks will be converted to newlines. On reading the record back again, all of the newlines get
converted to field marks such that the record does not match the original data written. This is
clearly unacceptable. Application developers using director files to store binary data must suppress
the translation of field marks by use of the QMBasic MARK.MAPPING statement.

Where a record id contains characters that are not valid in operating system file names, QM
automatically replaces them with an alternative representation. This is totally invisible from inside
QM but other software that accesses directory file records must allow for these translations. Rather
than have a different set of translations for each platform, QM adopts a single set based on the most
restrictive platform (Windows) so that data may be moved between environments without
modification of record names. The translations performed are:

* %A " %Q
\ %B / %S
, %C + %V
= %E : %X
> %G ; %Y
< %L ? %Z
% %P

Depending on the operating system in use, record ids in directory files may be case insensitive.

Note also that the Windows file system does not allow file names that clash with Windows device
names such as COM.

OpenQM86

2.6-6

When writing a record to a directory file, QM normally opens the operating system file that will
represent this record and writes to it, overwriting any existing data. There is a possibility of data
loss when updating an existing record if the system fails during this write (e.g. a power outage) or if
there is insufficient disk space. To prevent this, the SAFEDIR configuration parameter can be set to
adopt a "safe update" technique where the data is written to a temporary file, the original is deleted
and the temporary item is renamed to replace the original. This removes nearly all possibility of
losing the record but degrades performance of the write.

Records in directory files may be read, written or deleted by applications in exactly the same way as
records in hashed files. The QMBasic programming language provides some additional operations
for directory file access. A record may be opened using the OPENSEQ statement and then
processed on a line by line basis (READSEQ, WRITESEQ, etc) or as a simple binary item (
READBLK, WRITEBLK, etc). In addition, programming statements are provided to simplify
processing of comma separated variable format data (READCSV, WRITECSV).

The QM File System 87

2.6-6

3.3 Dynamic Files

A dynamic file is represented by an operating system directory, the records within it stored in a fast
access file format in the directory. Users should not place any other files in the directory or make
any modifications to the files placed there by QM. Dynamic files are so called because of the
dynamic reconfiguration of the file which takes place automatically to compensate for changes in
the file's size and record distribution.

Record keys may have between 1 and 63 characters but these may not include mark characters or
the ASCII null character. This length limit can be increased to a maximum of 255 by changing the
value of the MAXIDLEN configuration parameter but this can lead to compatibility problems when
transferring data to other systems and significantly increases the size of QM's internal locking
tables.

A dynamic file has two parts; a primary subfile which is examined first when looking for data and
an overflow subfile which contains data which does not fit into its correct location in the primary
subfile. Users do not need to understand the mechanisms that are involved in accessing dynamic
files though the following information will help in determining settings for the parameters which
control file configuration and hence performance. In most cases these can be left at their default
values.

Data within a dynamic file is stored in record groups. The number of groups in the files is known
as the modulus. The group in which a record is located is determined mathematically by using the
hashing algorithm associated with the file.

A group consists of a fixed sized area in the primary subfile and, if the data assigned to the group
does not all fit into this area, as many additional overflow subfile blocks as are needed will be
created. A dynamic file performs best when the data is distributed evenly across each group and no
group extends into the overflow area. In reality, this is almost impossible to achieve whilst still
keeping each group reasonably full. A well tuned dynamic file typically has less than 20 percent of
its data in overflow.

The group size parameter determines the size of the primary subfile groups as a multiple of 1024
bytes. This parameter may have a value in the range 1 to 8 and defaults to 1 though this default can
be changed using the GRPSIZE configuration parameter. It should be set to a multiple of the disk
block size if this value is known. As a general rule, use values of 1, 2, 4 or 8.

Where a file contains very large records, performance can be improved by placing these in disk
blocks of their own with just the record key and a reference to their location stored in the primary
subfile. Such records are known as large records and the size above which data is handled in this
way is configurable. The default value of 80% of the group size is good for most purposes. Because
a large record has only its key stored in the primary subfile, a SELECT operation will be faster if
the group is mainly large records but reading the record's data will require at least two disk
accesses. Also, since large records are held in their own disk block(s) rather than sharing with other
records, surplus space at the end of the final block is wasted resulting in higher disk space usage. If
the file will be used frequently in SELECT operations where selection is based only on the record
id, a lower large record size may be beneficial. If data records are frequently read from the file, a
higher large record size may help. In general it is best only to change the large record size if
performance problems are seen.

The number of groups in a dynamic file changes with time. QM uses two parameters to determine
when the number of groups should change. At any time, the file's load value is the total size of the
data records (excluding large records) as a percentage of the primary subfile size. This value

OpenQM88

2.6-6

changes as records are added, modified or deleted. It may have a value in excess of 100%,
indicating that there is very high usage of overflow space. The split load value (default 80%)
determines the load percentage at which an additional group will be added to the file by splitting the
records in one group into two. The merge load value (default 50%) determines the point at which
two groups are merged back into one. A split may result in the load falling below the merge load or,
conversely, a merge may result in a new load value above the split load. In neither case will the file
be immediately reconfigured back again.

The split and merge loads determine the way in which the file's modulus and hence actual load vary.
A low load results in reduced overflow at the expense of increased disk space. Conversely, a high
load increases overflow but reduces disk usage. High overflow in turn results in poor performance
as more disk blocks must be read to find a record. The split load value determines the load at which
a group will be split into two, the merge load determines the load at which groups will be merged.
The difference between the two values needs to be reasonably large to avoid continual splitting and
merging of groups.

The minimum modulus value determines the size below which the file will not merge groups. The
default setting of this parameter is one, resulting in full dynamic reconfiguration. If the file is
subject to frequent addition or deletion of large numbers of records so that its modulus varies
widely, it may be worth setting the minimum modulus to a typical average size or higher, however,
a file with a higher modulus than is necessary is relatively slow in SELECT operations that must
read the entire file. The minimum modulus parameter can also be used to pre-allocate primary
subfile disk space when creating a new file, minimising fragmentation.

Record ids in dynamic files are normally case sensitive. Case insensitive ids can be selected when
the file is created or a file can be converted at a later date using the CONFIGURE.FILE
command.

The total size of a dynamic file is limited to 2Gb for file versions 0 and 1, and 2147483647 groups
(up to 16384Gb) for version 2 upwards.

Disabling File Resizing

Although dynamic files are very reliable, the split/merge mechanism that maintains optimum file
performance introduces the possibility of file corruption in the event of a power failure or other
situation that causes outstanding write operations not to be completed. QM offers a mode of
operation that forms a hybrid between the dynamic file system and the static files found in many
other database products.

The NO.RESIZE option of the CONFIGURE.FILE command can be used to disable splits and
merges, locking the file at its configuration when the command is issued. As new data is added, the
file will extend into overflow, reducing performance. Conversely, if large volumes of data are
deleted, the groups will become less tightly packed, again resulting in reduced performance. Files
can be created with this mode set by use of the NO.RESIZE option to the CREATE.FILE
command.

The file can be reconfigured using the IMMEDIATE mode of the CONFIGURE.FILE command.
This performs the outstanding splits or merges, bringing the file back to the configuration that it
would have had if resizing had not been disabled. For typical file update patterns and reasonably
frequent use, this should be considerably faster than the equivalent resizing of a static file system.

One scenario for use of this mechanism would be to operate the file(s) with resizing disabled during
normal day time activity, perform backups at the start of an overnight downtime period and then

The QM File System 89

2.6-6

use CONFIGURE.FILE to reconfigure the files ready for the next day. In the unlikely event of a
system failure during the reconfiguration process, the backup provides an up to date copy of the
data. This resizing operation is fully interruptable and can be performed while the file is in use.

OpenQM90

2.6-6

3.4 QMNet Network File Access

QMNet uses the QMClient interface to provide an extension to the QM file system allowing
network access to files on another QM system. Unlike use of NFS or mapped network drives,
QMNet provides locking of remote records, ensuring that data integrity can be maintained on
distributed data.

Two steps are necessary to use QMNet. Firstly, the server must be defined, mapping the server
name to a network address, user name and password. Secondly, the remote file must be defined
using a Q-type VOC record.

Defining the Server

The remote server is defined using the SET.SERVER command. This can only be executed by
users with administrative rights in the QMSYS account.

The command is

SET.SERVER name address user.name password

where

name is the name to be given to the server. This must consist of letters, numbers, periods
and hyphens only and will be mapped to uppercase internally.

address is the IP address or server name of the remote server. If the remote server uses a
non-standard port number for QMClient access, the port number should be
included, separated from the IP address by a colon (e.g. 193.118.13.48:4229).

user.name is the login name to be used on the remote system.

password is the password for the specified user.

The remote server must have remote access enabled by setting the NETFILES configuration
parameter to 2.

Defining the Remote File

Each remote file is defined by an extended form of the Q-type VOC entry where field 4 contains the
name of the server.

Once the file has been defined, it may be accessed by programs in the same way as a local file. The
following restrictions apply to access from QMBasic programs:

· The OPENSEQ statement and related sequential file access operations are not supported.

· Access to remote files inside transactions will be non-transactional.

· The FILEINFO() function will return the file type as FL$TYPE.NET (6). Some modes of
FILEINFO() are not supported.

· A maximum of 10 servers may be accessed at one time by any one QM process. There is

The QM File System 91

2.6-6

no practical limit to the number of files that may be open on each server.

Listing Server Definitions

A list of all defined QMNet servers can be displayed using the LIST.SERVERS command. This
can only be executed by users with administrative rights in the QMSYS account.

The command is

LIST.SERVERS

Deleting a Server Definition

The definition for a remote server may be deleted using the DELETE.SERVER command. This
can only be executed by users with administrative rights in the QMSYS account.

The command is

DELETE.SERVER name

where

name is the name of the server.

OpenQM92

2.6-6

3.5 The Virtual File System

The Virtual File System (VFS) allows application designers to provide access to data that appears
to an application as a file but may actually be something quite different. Possible uses of the VFS
include:

· Providing access to data in other database environments.
· Accessing data transparently over a network where QMNet is not appropriate.
· Implementing an alternative encryption layer on top of standard QM files.

The VFS Handler Class Module

A VFS handler is a globally catalogued QMBasic class module that intercepts all attempts to access
the file. It processes requests, storing or retrieving data as appropriate.

A template class module named VFS.CLS is provided in the BP file of the QMSYS account. This
includes a brief description of each of its component functions and subroutines.

Creating a Virtual File System

There are two steps; creating the VFS handler and creating the VOC entries.

Like all files, a VFS file is identified by an F-type VOC item. It is possible for only some parts of a
file to be VFS items. Thus a file might have a VFS data part but a normal dictionary part. The
components of a multifile can be a mix of VFS and normal items.

A VFS item is identified by the pathname in the F-type VOC entry being specified as "VFS:
handler" where handler is the name of the globally catalogued VFS handler class module. There
is an optional third component to this syntax which will be passed to the handler on opening the
VFS item. The full syntax of the VOC item is thus

VFS:handler:string
This third component could be used, for example, when a single handler class module is used to
access many files. The string might be the pathname or other reference to the actual file to be
opened by the handler.

Partial Select Lists

The QM file system optimises select list generation by arranging that the QMBasic SELECT
statement (not the query processor equivalent) used against a hashed file actually performs the
select group by group as the READNEXT statement is used to walk through the list. Anything that
requires the list to be completed (e.g. using SELECTINFO() to determine the number of items in
the list) will cause the remainder of the list to constructed immediately.

A VFS handler can work in much the same way. The V$SELECT function can return the entire list
or just the initial part of the list. When a program processing this list reaches the end of the list
returned by V$SELECT, the V$CONTINUE.SELECT function is called to return the next part of
the list. The V$COMPLETE.SELECT function will be called if the remainder of the list should be
returned as a single item and the V$END.SELECT subroutine is called to terminate generation of a
partial list.

The QM File System 93

2.6-6

VFS handlers that do not use partial list construction can omit the V$CONTINUE.SELECT,
V$COMPLETE.SELECT and V$END.SELECT entry points.

Alternate Key Indices

The Virtual File System does not support alternate key indices at this release. The INDICES(),
SELECTINDEX, SELECTLEFT, SELECTRIGHT, SETLEFT and SETRIGHT operations
are not valid with a VFS item.

OpenQM94

2.6-6

3.6 Database Records and Mark Characters

A database record may have any number of fields (table columns). The entire record and the
constituent fields are of variable length, there being no restriction applied by QM. A record may
exist in the database with no data or with many megabytes of data.

The record stored on disk or manipulated in memory may be divided into fields by field mark
characters. A field may be divided into values by use of value mark characters and values may be
further divided by use of subvalue mark characters.

Two additional mark characters are defined. The text mark is typically used to mark points in text
data where newlines should be inserted. This mark character is often inserted by programs
manipulating data in memory rather than being stored in the database. The item mark is defined
mainly for compatibility with other database systems. Its only reserved use within QM is to
separate items in the DATA queue.

The internal representation of the mark characters uses the last five characters of the ASCII
character set:

Item mark char(255)
Field mark char(254)
Value mark char(253)
Subvalue mark char(252)
Text mark char(251)

The memory representation of a record containing mark characters for use in QMBasic programs is
known as a dynamic array and there are many specialised program operations for working on this
data.

Fields, values within a field and subvalues within a value are numbered from one upwards. By
convention the record key is sometimes referred to as field zero though it is not part of the dynamic
array and references to field zero are only recognised by QM in certain contexts.

Database records are often entered, modified or retrieved by the ED, SED and MODIFY
commands.

In directory files, the internal field mark character is replaced by the ASCII newline character when
a record is written to disk so that fields appear as lines if the record is viewed, edited or printed
from outside QM. Conversely, ASCII newlines are converted to field marks on reading a record.
Mechanisms are provided in QMBasic (see the MARK.MAPPING statement) to turn off this
translation when handling binary data.

The QM File System 95

2.6-6

3.7 Dictionaries

Every data file normally has an associated dictionary which describes the structure of the data
records in the file. The dictionary is normally only used by the query processor and a few other
commands. Application developers may find it useful to construct data structure definitions from
the dictionary for use in programs using the GENERATE command.

It is possible to create a file that has no dictionary or for multiple files to share a common
dictionary.

A dictionary contains the following types of record, identified by the leading characters of field 1.

A Pick style data definitions. An A-type record describes data that is held in a field of the
record or calculated from that data.

C Calculated values. Similar in concept to an I-type, a C-type is a program that returns a
calculated value via the @ANS variable. C-types are provided for compatibility with
other environments and I-types should be used by preference.

D Direct data types. A D-type record describes data that is held in a field of the record.

I Indirect data types. An I-type record describes data that can be evaluated from data in
fields of the record, perhaps with reference to other records or other files. It is
essentially a small program that returns a value.

L Links to other files. Used only in query processor commands.

PH Phrases for use in query processor commands.

S Pick style data definitions. An S-type record describes data that is held in a field of the
record or calculated from that data. S-type records are identical to A-type records in
QM.

X Other miscellaneous data.

The names given to A, D, I and S-type dictionary records are the names used in queries to reference
the field. Every field to be used in query processor sentences must have a corresponding dictionary
record. There may be multiple dictionary references to a single field thus allowing synonyms for
query processor commands, perhaps with different default display characteristics.

OpenQM96

2.6-6

Dictionary A and S-type records

A and S-type dictionary items are an alternative to the preferred D and I-type items that describe
data stored in database files. QM provides a limited subset of the full A and S-type functionality
found in other multivalue database environments. There is no difference between A and S-type
records within QM.

An A or S-type record has up to 11 fields:

1: Type (A or S) plus optional description

2: Location of this field (field number)

3: { Display name to be used by LIST or SORT when displaying this field. The text can
commence with 'R' (including the quotes) to right justify the heading, 'X' to suppress the
normal dot filler characters, or 'RX' to apply both modifications. }

4: { Association }

5: Not used

6: Not used

7: { Conversion code for entry and display of this field }

8: Correlative code.

9: Display justification

10: Display width

11: Available for user use. Not referenced by QM.

12+Reserved for internal use

Field 2 of an A or S-type record holds the field number of the data record to which this dictionary
entry relates. This must be a positive integer value. A value of zero may be used to refer to the
record id. For compatibility with other multivalue database products a value of 9998 or 9999 will
be recognised by the query processor as references to the item number within the query and the
length of the record respectively. Both of these special cases are better implemented using I-type
records. Where field 8 contains an A or F correlative, the value in field 2 is not used.

Field 4 defines the relationship between associated multivalued fields. Within an association, one
field is considered to be the controlling item and the remainder are considered as dependant. The
controlling field has C;p;q;r in field 4 where p, q, r (etc) are the field numbers of the associated
items. The dependant fields all have D;n in field 4 where n is the field number of the controlling
field. Internally, Internally, QM converts Pick style association definitions into an association name
__n.

Field 7 contains an optional conversion code to be applied immediately before the data is displayed
in a query processor report. QM does not support use of A or F-correlative expressions in this field.

Field 8 contains an optional expression to be evaluated to calculate the value of the item. This may
be an A or F correlative or a conversion code to be applied to the field identified in field 2 of the
dictionary record. Conversion codes appearing in field 8 are applied immediately to the data
extracted from the record and hence affect sorting and selection.

Field 9 contains the justification code L, R, T or U that determines the alignment of data in a query

The QM File System 97

2.6-6

processor report.

Field 10 contains the field width to be used in a query processor report.

Important note: In Pick systems, correlatives are processed in an interpretive manner. QM
compiles A and S-type dictionary items in a similar way to I-types. This results in better
performance but, if one dictionary item uses the value of another, it will be necessary to compile
both if changes are made. The COMPILE.DICT command with no record ids will compile all A,
C, I and S-type items in the specified dictionary.

QM does not support the LPV (load previous value) data item found on Pick systems as it is
dependant on the exact sequence in which the query processor evaluates expressions. The query
optimiser of QM may cause this to behave in an unexpected manner. It is always possible to
restructure dictionary items that used LPV to work without it.

OpenQM98

2.6-6

Correlatives

A correlative is an expression in an A or S-type dictionary item that derives a value from data in a
database record. Although similar in concept to the preferred I-type dictionary items, correlatives
are less powerful and more difficult to maintain. They are provided in QM to aid migration of
applications from other multivalue environments. New developments should use I-type items instead
and it is recommended that correlatives should be converted to I-types as part of the migration
process.

There are two styles of correlative:

· A-correlatives are algebraic expressions and are relatively easy to understand.

· F-correlatives are written in reverse Polish notation which makes them difficult for less
experienced developers to understand.

On other multivalue databases, correlatives are processed interpretively and A-correlatives are
translated into their equivalent F-correlative format at the start of a query for improved
performance. On QM, correlatives are compiled in much the same way as I-type expressions so the
potential minor performance advantage of writing an F-correlative directly is lost. The query
processor will compile correlatives automatically when they are first used. The COMPILE.DICT (
CD) command can be used to force a compilation.

A-Correlatives

An A-correlative is an algebraic expression that applies operators to fields, constants and other data
to produce a result. It is similar in concept to an I-type expression but very limited and often
difficult to maintain.

The expression is prefixed by A and an optional semicolon.

Data items

n A field number. This field is extracted from the current record

N(name) A field name. This name is looked up in the dictionary when the correlative is compiled
and run time code generated to extract the field from the current record.

"string" A constant. All constants, including numeric values, must be enclosed in single quotes,
double quotes or backslashes.

Any of the above three data item types may be followed by R to indicate that the
REUSE() function is to be applied to the data.

D The internal date. This is the actual date at the point when the function is executed, not
a reference to the @DATE variable (which does not change during a command).

T The internal time. This is the actual time at the point when the function is executed, not
a reference to the @TIME variable (which does not change during a command).

@NB The breakpoint level.

The QM File System 99

2.6-6

@ND The detail line counter.

@NI The item counter.

@NS The subvalue counter.

@NV The value counter.

Functions and Operators

+ Adds operands

- Subtracts operands

* Multiplies operands

/ Divides operands. Note that this is an integer division.

= Relational equality test.

or <> Relational inequality test.

> Relational greater than test.

< Relational less than test.

>= Relational greater than or equal to test.

<= Relational less than or equal to test.

p[q,r] Returns a substring of p starting at character q, r characters long.

R(p,q) Returns the remainder from dividing p by q.

S(p) Returns the sum of all the values in multivalued item p.

IF p THEN q ELSE r
Returns q if p is true, r if p is false.

(conv) Applies the given conversion code to the expression value. Note that conv is not quoted.

AND Logical AND

OR Logical OR.

Examples

A;3*2
Multiplies the content of field 3 by the content of field 2.

A;(N(PRICE)+N(TAX))(MD2)
Adds the PRICE and TAX fields. The result is then converted using an MD2 conversion code.

OpenQM100

2.6-6

A;N(PRICE)*"1175"/"1000"
Adds 17.5% tax to the single valued PRICE field. Note the need to perform the calculation in
two steps because correlatives use integer arithmetic.

A;N(PRICE)*"1175"R/"1000"R
Adds 17.5% tax to each value in the multivalued PRICE field. Note the use of the R qualifier
on both constants in this expression.

A;DESCRIPTION["1","20"]
Extracts the first 20 characters of the DESCRIPTION field.

A;IF N(QTY)<"10" THEN "Re-order" ELSE ""
Returns "Re-order" if the QTY field is less than 10, otherwise returns a null string.

F-Correlatives

On systems that process correlatives interpretively, A-correlatives are converted to the more
efficient F-correlative format at the start of a query that uses them. F-correlatives use "reverse
Polish" notation which, whilst actually very simple, is difficult for inexperienced developers to
maintain.

QM compiles both A and F-correlatives to its own internal instruction set and, therefore, the
potential advantage of writing these more complex expressions on other systems is irrelevant.

Reverse Polish notation defines data and operations to be performed on it as a series of steps that
manipulate an internal stack. Each step is separated by a semicolon. As an example, consider a
simple A-correlative expression such as

A;1*"11"/"10"

that adds 10% to the value in field 1. As an F-correlative expression this becomes

F;1;"11";*;"10";/

where the steps are
1 Push the value of field 1 onto the stack
"11" Push the constant "11" onto the stack
* Multiply the top two items on the stack, replacing them with the result
"10" Push the constant "10" onto the stack
/ Divide the top two items on the stack, replacing them with the result

Data items

n A field number. This field is extracted from the current record

"string" A constant. All constants of this style, including numeric values, must be enclosed in
single quotes, double quotes or backslashes.

Cnumber An integer constant.

Any of the above three data item types may be followed by R to indicate that the
REUSE() function is to be applied to the data. The field number form can be followed
by a conversion code in brackets. If used with R, the sequence is nR(conv).

The QM File System 101

2.6-6

D The internal date. This is the actual date at the point when the function is executed, not
a reference to the @DATE variable (which does not change during a command).

T The internal time. This is the actual time at the point when the function is executed, not
a reference to the @TIME variable (which does not change during a command).

@NB The breakpoint level.

@ND The detail line counter.

@NI The item counter.

@NS The subvalue counter.

@NV The value counter.

Functions and Operators

+ Adds the top two items on the stack, replacing then with the result

- Subtracts the top item on the stack from the next item, replacing them with the result.

* Multiplies the top two items on the stack, replacing then with the result

- Divides the second item on the stack by the top item, replacing them with the result.
Note that this is an integer division.

: Concatenates the top stack item on to the end of the second stack item, replacing then
with the result

= Replaces the top two items on the stack by 1 if they are equal, 0 if they are unequal.

Replaces the top two items on the stack by 1 if they are unequal, 0 if they are equal.

> Replaces the top two items on the stack by 1 if the top item is greater than the second
item, otherwise 0.

< Replaces the top two items on the stack by 1 if the top item is less than the second item,
otherwise 0.

] Replaces the top two items on the stack by 1 if the top item is greater than or equal to
the second item, otherwise 0.

[Replaces the top two items on the stack by 1 if the top item is less than or equal to the
second item, otherwise 0.

[] Replaces the top three stack items with a substring of third stack item, starting at the
character position given by the second stack item, with a length determined by the top
stack item.

P Duplicates the top stack item.

OpenQM102

2.6-6

R Replaces the top two stack items with the remainder from dividing the second item by
the top item.

S Replaces the top stack item by the sum of all the values in multivalued item at the top
of the stack.

_ Exchanges the top two items on the stack.

^ Deletes the top item from the stack.

 (conv) Replaces the top item on the stack with the result of applying the given conversion code
to the current top stack item. Note that conv is not quoted.

& Replaces the top two items of the stack with the result of a logical AND between their
values.

! Replaces the top two items of the stack with the result of a logical OR between their

values.

Examples

F;3;2;*
Multiplies the content of field 3 by the content of field 2.

F;3;7;+;(MD2)
Adds the field 3 and field 7. The result is then converted using an MD2 conversion code.

F;3;"1175";*;"1000";/
Adds 17.5% tax to the price in field 3. Note the need to perform the calculation in two steps
because correlatives use integer arithmetic.

F;3;"1175"R;*;"1000"R;/
Adds 17.5% tax to each value in the multivalued price in field 3. Note the use of the R qualifier
on both constants in this expression.

F;1;"1";"20";[]
Extracts the first 20 characters of field 1.

The QM File System 103

2.6-6

Dictionary C-type records

A C-type record defines a calculated value and has up to 8 fields:

1: C { descriptive text }

2: QMBasic program, multivalued.

3: { Conversion code }

4: { Display name. This will be used as the default column heading by the query processor. A
special value of a backslash character can be used to specify that no heading is to be
displayed. The text can commence with 'R' (including the quotes) to right justify the
heading, 'X' to suppress the normal dot filler characters, or 'RX' to apply both
modifications.}

5: Format specification

6: Single/multi-value flag. Set as S if the field is always single valued or M if it can be
multi-valued.

7: { Association name. Where a multi-valued field has a value by value relationship with some
other multi-valued field defined in the same dictionary, this name links the fields together.
See Associations for more details. }

8: {Available for user use in any way. Not referenced by QM.}

Fields 9 onwards are reserved for internal use and users should not assume anything about their
content.

A C-type dictionary item is a QMBasic program written with each line of the program as a separate
value in field 2. The EV (edit values) command of ED may help in editing this field. The Dive
function of SED provides similar functionality.

The program must return a result via the @ANS variable. This variable is initially zero on entry to
QM, is automatically updated to contain the result of I-type expressions and should be updated by
C-types. Although it is possible to use @ANS to pass a value from evaluation of one C or I-type
item to the next, this is not recommended as the sequence of execution may be indeterminate.

The program can reference data defined by other items in the same dictionary using the {name}
construct where name is a C-type, D-type or I-type item.

C-type programs may not use the following QMBasic components:
$CATALOGUE
$DEBUG
$QMCALL
CLASS
DEBUG
FUNCTION
PROGRAM
SUBROUTINE

OpenQM104

2.6-6

Dictionary D-type records

A D-type record defines a field stored in a data file and has up to 8 fields:

1: D { descriptive text }

2: Field number. This is the position in the data record at which the field described by this
dictionary entry can be found. A value of zero denotes the record id.

For compatibility with other multivalue database products a value of 9998 or 9999 will be
recognised by the query processor as references to the item number within the query and the
length of the record respectively. Both of these special cases are better implemented using
I-type records.

3: { Conversion code }

4: { Display name. This will be used as the default column heading by the query processor. A
special value of a backslash character can be used to specify that no heading is to be
displayed. The text can commence with 'R' (including the quotes) to right justify the
heading, 'X' to suppress the normal dot filler characters, or 'RX' to apply both
modifications.}

5: Format specification

6: Single/multi-value flag. Set as S if the field is always single valued or M if it can be
multi-valued.

7: { Association name. Where a multi-valued field has a value by value relationship with some
other multi-valued field defined in the same dictionary, this name links the fields together.
See Associations for more details. }

8: {Available for user use in any way. Not referenced by QM.}

Fields 9 onwards are reserved for internal use and users should not assume anything about their
content.

The QM File System 105

2.6-6

Dictionary I-type records

An I-type record defines calculated data and has up to 8 fields:

1: I { descriptive text }

2: Expression

3: { Conversion code }

4: { Display name. This will be used as the default column heading by the query processor. A
special value of a backslash character can be used to specify that no heading is to be
displayed. The text can commence with 'R' (including the quotes) to right justify the
heading, 'X' to suppress the normal dot filler characters, or 'RX' to apply both
modifications.}

5: Format specification

6: Single/multi-value flag. Set as S if the field is always single valued or M if it can be
multi-valued.

7: { Association name. Where a multi-valued field has a value by value relationship with some
other multi-valued field defined in the same dictionary, this name links the fields together.
See Associations for more details.}

8: {Available for user use in any way. Not referenced by QM. }

Fields 9 onwards are reserved for internal use and users should not assume anything about their
content.

To simplify editing of compound I-type expressions, the "edit values" mode of both the ED and
SED editors can be used to break the expression such that each element appears on a separate line.

OpenQM106

2.6-6

Dictionary L-type records

An L-type record represents a link to another file. It can be used in query processor commands to
reference fields in a dependent file without the need to create an I-type TRANS() expression for
each field.

1: L { descriptive text }

2: Id expression

3: File name

The expression in field 2 is constructed in exactly the same was as an I-type expression and derives
the record id of the record(s) in the linked file from data in the original file.

Example

If a library application has two files, BOOKS and TITLES where the record id of BOOKS is
formed from the id of the corresponding TITLES record and the copy number separated by a
hyphen, the following link placed in the dictionary of the BOOKS file could be used to access the
associated TITLES record:

1: L
2: @ID['-', 1, 1]
3: TITLES

Queries based on the BOOKS file could then reference data from the TITLES file using field names
made up from the name of the link record, a % character and the name of the TITLES field to be
accessed. For example, if the above line was named TTL, a query such as

LIST BOOKS TTL%TITLE TTL%AUTHOR

could be used to print a list of book titles and their authors.

The QM File System 107

2.6-6

Dictionary PH-type records

A phrase can be used in query processor sentences. When the sentence is executed, the phrase name
is replaced by the phrase expansion. Typically, phrases are used to give names to groups of fields to
be displayed or selection criteria.

1: PH { descriptive text }

2: Phrase expansion

Phrases may also be included in the VOC but are more commonly found in dictionaries. A phrase in
the VOC can be used in queries against any file whereas a phrase in a dictionary can only be used
in queries against the associated file.

There are a number of reserved phrase names as listed below.

@ID A D-type record defining the record id.

@ A phrase record defining the default list of items to be displayed by LIST and
SORT in the absence of any other field names.

@LPTR A phrase record defining the default list of items to be displayed by LIST and
SORT in the absence of any other field names when output is directed to a
printer. If this record is not present, the query processor uses the @ record
instead.

@MODIFY A phrase record defining the default list of items to be processed by the
MODIFY command.

@SHOW A phrase record defining the default list of items to be displayed by SHOW in
the absence of any other field names.

OpenQM108

2.6-6

Dictionary X-type records

X-type dictionary items are miscellaneous data storage records which may be used in any way the
application designer wishes.

1: X { descriptive text }

2: user data

Fields 2 onwards are available for data storage. Users may freely create X-type records for their
own purposes but should avoid names containing $ signs or starting with the @ character as these
may clash with system defined records.

The QM File System 109

2.6-6

Associations

An association is a set of two or more multi-valued fields that are related such that the values are
inter-dependent. For example, an order processing database might contain a file listing the items in
each order. This would require a multi-valued list of products and a corresponding multi-valued list
of quantities. A realistic data file may contain several associated sets of fields.

The query processor needs to know about this relationship. An association is defined by giving it a
name which appears in field 7 of the dictionary entry of each field in the association. There is also
a phrase record with this name which contains a space separated list of the fields that make up the
association.

Thus, starting from any one element of the association, its dictionary entry can be used to find the
phrase record which, in turn, allows the query processor to find all the members of the association.

OpenQM110

2.6-6

I-type expressions

The difference between a D-type and an I-type dictionary item is perhaps best illustrated by a
simple example. A file might contain information about employees including their date of birth. If
we want to list all employees with their date of birth we could do this by a query of the form

LIST EMP.FILE NAME DOB

If we want the employee's age, this data is not recorded and, of course, changes with time.
However, by creating an I-type called AGE we could simply enter

LIST EMP.FILE NAME AGE

What is in this I-type? It is a simple program which calculates the employee's age using the DOB
field and today's date.

Any I-type has an expression in field 2. This is constructed from the following components:

Field names (D or I-type)
Constants
@ variables
Operators
QMBasic functions
Special functions

The AGE I-type referred to above is actually more complex than it may at first seem. It might be
written as

OCONV(DATE(), "D4Y") - OCONV(DOB, "D2Y"); IF
OCONV(@DATE,"DMD") > OCONV(DOB,"DMD") THEN @ + 1 ELSE @

An I-type must be compiled before it can be used and whenever the dictionary is changed in a
manner that would affect fields used by the I-type. The COMPILE.DICT (synonym CD)
command compiles one or more I-types in a dictionary. The MODIFY command also provides
facilities to compile I-types when they are edited and the query processor commands all compile a
previously uncompiled I-type when it is first used.

An I-type expression consists of one or more elements each of which is similar to a QMBasic
expression.

Whereas a QMBasic program would refer to variable names, an I-type expression uses field names
as defined in the file's dictionary. These names may be either D or I-type items.

Many of the @variables used by QMBasic are also available in I-types. The following @-variables
are specific to I-types though some can be used by QMBasic programs to set up the working
environment for the I-type.

@FILE.NAME The name of the file being processed by the command.

@ID The record id of the current record.

@NB Break level number.

The QM File System 111

2.6-6

@NI Item counter.

@RECORD The data of the record being processed by the command.

A compound I-type has multiple elements separated by semicolons. The value of the previous
element may be referred to by the symbol @ and the value of a specific element as @n where n is
the element number, starting at one. The overall value of the I-type is the value of the final
expression.

To simplify editing of compound I-type expressions, the "edit values" mode of both the ED and
SED editors can be used to break the expression such that each element appears on a separate line.

Most QMBasic functions are also available in I-type expressions. The following functions are either
specific to I-type expressions or modified from their QMBasic form:

TOTAL()
TRANS()
SUBR()

OpenQM112

2.6-6

3.8 Conversion Codes

Sometimes data is not stored in the database in the same way as we would wish to present it to a
user. A conversion code determines how data is translated between its internal format and the user
friendly external format.

Although there are many conversion codes, the most important are those that handle dates, times
and scaled decimal values.

Conversion codes appear in field 3 of a C-type, D-type or I-type dictionary item or field 7 of an A
or S-type item. They determine the way in which data is converted prior to output by the query
processor or when input via MODIFY or UPDATE.RECORD. Conversion codes are also used in
the QMBasic ICONV() and OCONV() functions and with the query processor CONV keyword.

The standard conversion codes are:

Base64 B64

Boolean B

Concatenation C

Dates D

Group G

Integer IS, IL

Length L

Radix MB, MO, MX

Radix MCDX, MCXD

Character MCx

Masked Decimal MD, ML, MR

Times MT

Pattern matching P

Range checking R

Substitution S

Text substring Tm,n

Translation Tfile

User defined U

Fields <f,v,s>

The QM File System 113

2.6-6

Base 64 Conversion (B64)

The base64 conversion code translates data to or from a format widely used for transmission over
the internet.

The full format of this conversion code is

B64

Used with OCONV() for output conversion, this operation converts data to base64 format. The
data is returned as a continuous sequence of encoded characters. In common use, this data would
then be divided into lines of manageable length, typically 72 characters. This can be achieved with
the FOLD() function.

Used with ICONV() for input conversion, this operation converts base64 data back to its original
form. Newlines and other filler characters are ignored.

Example

OPENPATH '$HOLD' TO FVAR ELSE STOP 'Cannot open file'
MARK.MAPPING FVAR, OFF
READ TEXT FROM FVAR, 'REPORT.PDF' ELSE STOP 'Cannot read data'
MARK.MAPPING FVAR, ON
B64 = OCONV(TEXT, 'B64')
WRITE FOLD(B64, 72) TO FVAR, 'REPORT.B64'

The above program opens the $HOLD file. It then suppresses the normal directory file translation
of newlines to field marks because the item to be read contains binary data (a PDF document).
Having read this record, mark translation is re-enabled. The B64 conversion is used to translate the
PDF to its base64 encoded equivalent. Finally, the FOLD() function is used to wrap the encoded
data into 72 character lines.

OpenQM114

2.6-6

Boolean conversion (B)

The boolean conversion code converts between the internal representation of false (0) and true (1)
and the external representation Y or N.

The full format of this conversion code is

B

Used with OCONV() for output conversion, this conversion code returns N for false (zero or a null
string) or Y for true (all other values).

Used with ICONV() for input conversion, this conversion code returns false (0) for a null string or
a string containing the single character N in upper or lower case. It returns true (1) for a string
containing the single character Y in upper or lower case. Any other input value returns the original
data and sets an error status of 1.

The QM File System 115

2.6-6

Concatenation conversion (C)

The concatenation conversion code concatenates data items, optionally inserting separators between
them. It behaves identically for input conversion with ICONV() and output conversion with
OCONV().

The general form of a concatenation conversion code is

C{;} c expr c expr ...

where

c is the separator. This may be any single character except for a digit, a mark character,
a quote or a backslash. A semicolon specifies that no separator is to be inserted.
Where c is a space or semicolon and the next character is also a space or semicolon,
this is treated as a further separator, allowing insertion of multiple spaces.

expr is the data to be inserted and may be:

a field number. This will be extracted from the current content of @RECORD or
from @ID if zero.

a string enclosed in single quotes, double quotes or backslashes.

an asterisk to substitute the data supplied in the conversion function call.

Examples

If @RECORD contains F1FMF2FMF3 and @ID contain 21:

Operation Result

OCONV('abc', 'C;3;"xxx";1') F3xxxF1

OCONV('abc', 'C;3;1') F3F1

OCONV('abc', 'C;"aaa"1"bbb"') aaaF1bbb

OCONV('abc', 'C;1 2') F1 F2

OCONV('abc', 'C;1*2') F1*F2

OCONV('abc', 'C;1**') F1*abc

OCONV('abc', 'C; 3') F3

OCONV('abc', 'C;0=1') 21=F1

OpenQM116

2.6-6

Date conversion (D)

Inside QM, dates are stored as a number of days since 31 December 1967 (day zero). All dates
after that point are represented by positive numbers. All dates before that point are represented by
negative numbers. This form of date is used by all multivalue databases and means that they had no
issue with the millennium (day 11689). The multivalue world had its own date crisis on 18 May
1995 (day 10000) when developers discovered that they had stored the date as four characters of a
composite record id or were sorting dates as character strings rather than numbers such that 17
May 1985 (day 9999) came after 18 May 1995. This potential problem still applies to any
application that handles historic dates but the advantages of working with a simple day number
internally far outweigh any disadvantages.

The date conversion code converts a date from its internal day number to one of a number of
external formats or vice versa.

The full format of this conversion code is

D {y} {c} {fmt} {[f1, f2, f3, f4, f5]}

where

y is a digit in the range 0 to 4 specifying the number of digits to appear in the year
number. This defaults to 4.

c is the character to be used to separate the year, month and day components of the
converted date. If omitted, a space is used.

fmt specifies the components to be present in the converted date. Multiple characters may
be chosen from the following list subject to restrictions shown below. If fmt is omitted
it defaults to MDY if American date mode is in use or DMY if European date mode is
in use.

D Day of month.

DO Ordinal day of month (1st, 2nd, 3rd, etc)

E Toggles European date format (day, month, year). See also
DATE.FORMAT.

J Julian date (days since the start of the year).

L Alphabetic month and day names are to appear with only the first
character in uppercase instead of entirely in uppercase.

M Month in format determined by format modifiers. If no format modifiers
are present, a two digit month number is used unless c is present in which
case a three letter alphabetic month is used.

MA Month name.

Q Quarter number (1 to 4).

W Day of week number. Monday is day 1.

WA Weekday name.

WI ISO week number.

Y Year.

The QM File System 117

2.6-6

YI ISO year number. This is not always the same as the calendar year as a
date may be in the last week of the previous ISO year or in the first week
of the following ISO year.

[f1,f2,f3,f4,f5] These format modifiers affect the way in which the above formats are handled.
Up to five modifiers may be specified and they are associated with the formats in the
order in which they appear in fmt. Format modifiers are

n Use n characters.
A Display as alphabetic (applies to month component only).
An Display as n alphabetic characters (applies to month component only).
Z Suppress leading zeros.
Zn Display as n digits with leading zeros replaced by spaces.
"text" Uses the supplied text as the separator after the associated component.

Output Conversion of Dates

The following examples show the result of output conversion of a value of 9649 with various
conversion codes. Where affected by DATE.FORMAT setting, both forms are shown.

Code Result European date

'D' 01 JUN 1994 01 JUN 1994

'D2' 01 JUN 94 01 JUN 94

'D4' 01 JUN 1994 01 JUN 1994

'D/' 06/01/1994 01/06/1994

'D ' 06 01 1994 01 06 1994

'D2/' 06/01/94 01/06/94

'D/E' 01/06/1994 06/01/94

'D2 E' 01 06 94 06 01 94

'D.YJ' 1994.152

'D2:JY' 152:94

'D YMD' 1994 06 01

'D MY[A,2]' JUN 94

'D4DOMAYL' 1st June 1994

'D DMY[,A3,2]' 01 JUN 94

'D DMY[,A9,2]' 01 JUNE 94

'D/MDY[Z,Z,2]' 6/1/94

'D DMYL[,A,]' 01 June 1994

'DDMYL[Z,A,2]' 1 June 94

'DYMD[2,2,2]' 94 06 01

'DW' 3

'DWA' WEDNESDAY

'DWAL' Wednesday

'DMA' JUNE

OpenQM118

2.6-6

'DMAL' June

'DQ' 2

'D-YIWI' 1994-22

Input Conversion of Dates

Alphabetic month names may be supplied in the external format date. At least three letter must be
present and conversion is not case sensitive. If more than three letters are present, the must correctly
match the spelling of the month name. Where an alphabetic month name is used, the day and month
fields of the external format date may be interchanged. Thus '1 Jun 94' and 'Jun 1 94' would both
convert to 9649, the internal representation of 1 June 1994.

For dates entered as two digits, year number values in the range 30 to 99 are assumed to be 1930 to
1999 and 0 to 29 are assumed to be 2000 to 2029. This 100 year window can be moved using the
YEARBASE configuration parameter.

Where not included, the day number or month number is assumed to be one and the year number to
be the current year.

For compatibility with Information style multivalue products, a day number that exceeds the
number of days in the month will roll forward into the next month and return a value of 3 from the
STATUS() function. This feature can be suppressed by enabling the NO.DATE.WRAPPING
option.

Calendar Differences

The process of converting an external format date to its internal day number and vice versa is not as
easy as it sounds. As well as the slightly complex rules that determine which years are leap years
and hence have 29 days in February, there is a problem of calendar differences. Most of the world
now uses the same calendar for business purposes but this has not always been the case. There were
two significant realignments, one in 1752 and an earlier one in 1583 in different parts of the world.
Prior to these changes, the date in one country could be several days different from that elsewhere.

The QM date conversion operations assume the current calendar system and make no adjustment to
handle these realignments. Some multivalue products implement one or other realignment.
Whichever system is used, it will be incorrect in some contexts. Users who require specific handling
of these changes or need to handle dates before 1 January 0001 will need to develop their own date
conversion functions.

The QM File System 119

2.6-6

Group conversion (G)

The group conversion code treats the source data as being formed from a number of components
separated by a delimiter character and extracts specified components. It works identically on input
and output conversions.

Gcn Returns the first n components of the source data delimited by character c.

Gscn Skips s components and then returns the next n components of the source data
delimited by character c.

Example

Consider a date stored in character form as 03/10/98. The G conversion code could be used to
extract components of this date:

G/1 returns 03
G/2 returns 03/10
G1/1 returns 10

OpenQM120

2.6-6

Integer conversion (IS, IL)

The integer conversion codes convert integer values between numeric form and hardware specific
integer representation.

IS Short integer (16 bit value).

IL Long integer (32 bit value).

Used with the ICONV() function, the conversion code translates a QMBasic integer numeric value
to the equivalent hardware specific representation of that integer. Used with the OCONV()
function, the conversion code translates a hardware specific representation of an integer value to its
equivalent QMBasic numeric form.

By default, these conversions adopt the byte ordering of the machine on which the program is being
executed. Adding an optional L to the end of the conversion code (ISL, ILL) causes conversion to
assume a low byte first format for the hardware representation of the value. Similarly, adding an
optional H to the end of the conversion code (ISH, ILH) causes conversion to assume a high byte
first format for the hardware representation of the value.

These codes should not be used to encode numeric values to be stored in database files as the
hardware specific representation may include bytes that will be interpreted as mark characters.
These conversions are intended for use in, for example, applications that need to generate hardware
specific data for transmission over communications networks.

The QM File System 121

2.6-6

Length conversion (L)

The length conversion code performs string length constraint checks. It works identically on input
and output conversions and has three forms:

L Returns the length of the string being converted.

Ln Returns the original string if its length is less than or equal to n. Otherwise it
returns a null string.

Ln,m Returns the original string if its length is greater than or equal to n and less than or
equal to m. Otherwise it returns a null string.

Examples

Conversion Data Result

L 1234 4

L3 A A

L3 AB AB

L3 ABC ABC

L3 ABCD

L2,3 A

L2,3 AB AB

L2,3 ABC ABC

L2,3 ABCD

OpenQM122

2.6-6

Character conversion (MCx)

The character conversion codes perform various character based conversions.

MCA Delete all non-alphabetic characters

MC/A Delete all alphabetic characters

MCAN Delete all non-alphanumeric characters

MC/AN Delete all alphanumeric characters

MCL Convert to lower case

MCN Delete all non-numeric characters

MC/N Delete all numeric characters

MCP Replace non-printing characters by dots

MCT Capital initial all words (see below)

MCU Convert to uppercase

These conversion codes behave identically for both input and output conversion.

The MCT conversion code is implemented differently across various multivalue products. The
default behaviour of QM is to match D3 and other Pick style products where the first letter after a
non-alphabetic character is converted to uppercase, all others to lowercase. Use of the
SPACE.MCT mode of the OPTION command enables the behaviour found in Information style
products such as UniVerse whereby letters immediately following a space are converted to
uppercase, all others to lowercase. In both modes, the first character of the string is converted to
uppercase.

Examples

Data Code Result

267PS-A17 MCA PSA

267PS-A17 MC/A 267-17

267PS-A17 MCAN 267PSA17

267PS-A17 MC/AN -

267PS-A17 MCN 26717

267PS-A17 MC/N PS-A

Red pencil MCL red pencil

Red pencil MCU RED PENCIL

Red pencil MCT Red Pencil

123FM456 MCP 123.456

The QM File System 123

2.6-6

Masked decimal conversion (MD, ML, MR)

The masked decimal conversion codes convert a number between its internal and external forms.
The formats available provide scaling, currency symbol insertion, thousands separation and a
variety of methods for handling negative numbers.

Scaling provides a means by which items such as currency values which are usually written as
pounds and pence (or dollars and cents) can be handled internally as integer numbers of pence (or
cents) for faster and precise calculation. Scaling is performed by specifying the position of an
assumed decimal point.

Input conversion allows for some degree of flexibility in the exact format used. For example, any of
the negative value representations may be used regardless of the method actually defined in the
conversion code.

The three masked decimal conversion codes are

MD Convert without regard to justification

ML Left justify the converted result

MR Right justify the converted result

The full format of this conversion code is

ML n {f} {,} {$} {s} {[intl]} {P} {Z} {T} {x{c}} {fx}

where

n is a digit in the range 0 to 9 specifying the number of digits to appear to the right of the
decimal point. Rounding occurs on output conversion in the fractional part and, if the
result is an integer, the decimal point does not appear.

f is a digit in the range 0 to 9 specifying the position of the implied decimal point in the
data to be converted. For example, if the value supplied to an output conversion is
12345 and f is 2, the result is 123.45. Conversely, if the value supplied to an input
conversion is 123.45 and f is 2, the result is 12345. If omitted, f defaults to the same
value as n.

, specifies that the national language convention thousands separator is to be inserted
between every third digit to the left of the decimal point. The default delimiter is a
comma but this may be changed by use of the NLS command or the SETNLS
QMBasic statement.

$ specifies that the national currency symbol should be used as a prefix to the converted
data on output conversion and may be present on input conversion. The default
currency symbol is a dollar sign but this may be changed by use of the NLS command
or the SETNLS QMBasic statement.

s specifies the handling of the numeric sign of the value.

+ places a + or - sign to the right of the converted data.

- places a - sign to the right of negative values or a space to the right of positive values.

OpenQM124

2.6-6

(encloses negative values in round brackets. A positive value has a space placed to its
right.

< encloses negative values in angle brackets. A positive value has a space placed to its
right.

C places the letters cr to the right of negative values or two spaces to the right of positive
values. Use the CRDB.UPCASE keyword of the OPTION command to change this to
CR.

D places the letters db to the right of negative values or two spaces to the right of positive
values. Use the CRDB.UPCASE keyword of the OPTION command to change this to
DB.

Input conversion accepts any of these representations of a negative value regardless of
the actual conversion code used.

[intl] specifies alternative international handling of currency symbols and separators. intl
consists of up to four comma separated items which specify the prefix, thousands
separator, decimal separator and suffix to be applied to the converted value. These
components should be quoted if there is any potential confusion.

Z specifies that a zero value should be represented by a null string on output conversion.
This option is ignored on input conversion.

T specifies that trailing decimal places should be truncated rather than rounded. This
option is ignored on input conversion.

x{c} specifies that the result of an output conversion is to be a field of x characters, left or
right justified as specified by use of ML or MR. If the converted data is longer than x
characters it will be truncated to fit. If it is less than x characters it is padded using
character c or spaces if c is not specified. The value of x may be one or two digits.

On input conversion, the value of x is ignored and all occurrences of character c, or
spaces if c is not specified, within the data are ignored.

fx is an alternative style of padding specification. It cannot be used with x{c}.
f specifies the padding character to be used; * for asterisk, # for space, % for zero.
x specifies the field width.

The fx element may be a complete mask as used in format specifications (e.g. #3-#4).

Masked Decimal Output Conversion

The following table sets out a variety of combinations of masked decimal output conversion
features.

Value Conversion Result

0 MD0 '0'

0 MD0Z ''

The QM File System 125

2.6-6

Sign handling

12345678 MD0 '12345678'

-12345678 MD0 '-12345678'

12345678 MD0+ '12345678+'

-12345678 MD0+ '12345678-'

12345678 MD0- '12345678 '

-12345678 MD0- '12345678-'

12345678 MD0< ' 12345678 '

-12345678 MD0< '<12345678>'

12345678 MD0(' 12345678 '

-12345678 MD0('(12345678)'

12345678 MD0C '12345678 '

-12345678 MD0C '12345678CR'

12345678 MD0D '12345678 '

-12345678 MD0D '12345678DB'

Scale factors

12345678 MD22 '123456.78'

1234567.89 MD22 '12345.68'

-12345678 MD22 '-123456.78'

12345678 MD02 '123457'

12345678 MD02T '123456'

Thousands separators and currency symbols

1234567 MD0, '1,234,567'

12345678 MD2,$ '$123,456.78'

Left justification and padding

0 ML004* '0***'

12345678 ML0010* '12345678**'

12345678 ML0+12* '12345678+***'

-12345678 ML0+12* '12345678-***'

12345678 ML0-12* '12345678 ***'

12345678 ML0(12* '12345678 ***'

-12345678 ML0(12* '(12345678)**'

12345678 ML0C12* '12345678 **'

-12345678 ML0C12* '12345678CR**'

Right justification and padding

OpenQM126

2.6-6

0 MR004* '***0'

12345678 MR0010* '**12345678'

12345678 MR0+12* '***12345678+'

-12345678 MR0+12* '***12345678-'

12345678 MR0-12* '***12345678 '

12345678 MR0(12* '***12345678 '

-12345678 MR0(12* '**(12345678)'

12345678 MR0C12* '**12345678 '

-12345678 MR0C12* '**12345678CR'

Masked Decimal Input Conversion Examples

The following table sets out a variety of combinations of masked decimal conversion features.

Value Conversion Result

'' MD0 ''

'0' MD0 '0'

Sign handling

'12345678' MD0 '12345678'

'-12345678' MD0 '-12345678'

'12345678-' MD0 '-12345678'

'<12345678>' MD0 '-12345678'

'(12345678)' MD0 '-12345678'

'12345678CR' MD0 '-12345678'

'12345678DB' MD0 '-12345678'

Scale factors

'123456.78' MD2 '12345678'

'123456.78' MD23 '1234567.8'

Currency symbols and thousands separators

'12,345' MD0, '12345'

'$123,456.78' MD2,$ '12345678'

'($123456.78)' MD22$('-12345678'

The QM File System 127

2.6-6

Time conversion (MT)

The time conversion code converts a time from its internal representation (number of seconds since
midnight) to a string representing hours, minutes and seconds or vice versa.

The full format of this conversion code is

MT {H} {S} {c}

where

H specifies that the time is to appear in 12-hour format with either AM or PM appended.
If H is not specified, 24-hour conversion is used for output conversion and assumed for
input conversion.

S specifies that output conversion is to include the seconds field. Input conversion
determines whether seconds are included by examination of the data to be converted.

c is the character to separate the hours, minutes and seconds fields. If omitted, a colon is
used. The separator character should be enclosed in quotes if required to avoid
syntactic ambiguity (for example MT'h' for French format times such as 09h30).

Examples

Conversion Data Result

MT 0 00:00

MT 31653 08:47

MT 63306 17:35

MTH 0 12:00am

MTH 31653 08:47am

MTH 63306 05:35pm

MTS 31653 08:47:33

MTS 63306 17:35:06

MTHS 63306 05:35:06pm

MTS. 63306 17:35:06

MT'h' 63306 17h35

OpenQM128

2.6-6

Radix conversion (MB, MO, MX)

The radix conversion codes convert a number to/from binary (MB), octal (MO) or hexadecimal
(MX).

Input Conversion

The MB, MO and MX conversions take a number represented by a character string of binary, octal
or hexadecimal digits and converts it to an internal integer value.

Addition of the 0C suffix to these codes (MB0C, MO0C, MX0C) takes a character string holding a
series of binary, octal or hexadecimal digits and translates each group of 8, 3 or 2 digits to the
corresponding ASCII character. If the source data is not an exact multiple of 8, 3 or 2 digits in
length, as appropriate to the conversion type, implied leading zeros are added.

Output Conversion

The MB, MO and MX conversions convert a number to binary, octal or hexadecimal form as a
character string. Non-integer values are truncated towards zero. Negative values are treated as
unsigned 32 bit values. Leading zeros are suppressed.

The addition of the 0C suffix to any of these conversion codes treats the source data as a character
string and converts each character to its binary, octal or hexadecimal representation.

Examples

Input conversion:

Source data Conversion Result

1110 MB 14

37777777762 MO -14

31342E36 MX 14.6

010000010100001001000011 MB0C ABC

101102103 MO0C ABC

414243 MX0C ABC

Output conversion:

Source data Conversion Result

19 MB 10011

19 MO 23

19 MX 13

ABC MB0C 010000010100001001000011

ABC MO0C 101102103

ABC MX0C 414243

The QM File System 129

2.6-6

Radix conversion (MCDX, MCXD)

Used as an output conversion, MCDX converts a number from decimal to hexadecimal and MCXD
converts from hexadecimal to decimal. Used as an input conversion, the roles of these two codes are
reversed.

The final character of the conversion code name is optional. They can be written as MCD and
MCX.

OpenQM130

2.6-6

Field extraction (<f,v,s>)

The field extraction code, only supported for output conversion, extracts a field, value or subvalue
from the source data. It is used most frequently in conjunction with other conversion codes.

<f> Extracts field f.
<f,v> Extracts field f, value v.
<f,v,s> Extracts field f, value v, subvalue s.

The QM File System 131

2.6-6

Pattern matching conversion (P)

The P conversion code attempts to match the supplied data against one or more pattern templates

The full format of this conversion code is

P(template){;(template)...}

where

template is a pattern template as for the MATCHES operator and must be enclosed in
brackets. If more than one template is supplied, they may be separated by
semicolons (;) or forward slashes (/).

The P conversion code tests whether the input data matches template. If a match is found, the
original data is returned. If no match is found, a null string is returned.

If more than one template is provided, the input value is tested against each in turn.

A null input value always returns a null result.

Examples

Conversion Data Result

P(3A) 123

P(3A) ABC ABC

P(1-2N) 74 74

P(1-2N) 123

P(2A);(3N) 12

P(2A);(3N) AB AB

P(2A);(3N) 123 123

P(2A)

OpenQM132

2.6-6

Range Check Conversion (R)

The R conversion code checks whether a numeric value is within a specified range.

The full format of this conversion code is

Rn,m{;n,m...}

where

n,m specifies a range of numeric values. Negative values are allowed. If more than one n,m
pair is supplied, they may be separated by semicolons (;) or forward slashes (/).

The R conversion code tests whether the input data is an integer value in the range n to m. If the
value is within the specified range, the conversion returns the input data. If the value is outside the
range, a null string is returned.

If more than one n,m pair is provided, the input value is tested against each in turn.

A null input value always returns a null result regardless of the values of n and m.

A non-numeric data item will return the original data. The STATUS() function would then return 1
to indicate an error.

Examples

Conversion Data Result

R3,5 1

R3,5 3 3

R-2,0 -3

R-2,0 -1 -1

R1,3;6,8 7 7

R1,3;6,8 5

R1,3 0002 0002

R1,3

R1.3 A A

The QM File System 133

2.6-6

Substitution conversion (S)

The S (substitution) conversion code allows an application to handle zero or null data items as a
special case.

The full format of this conversion code is

S;value1;value2

The S code returns a value determined by value1 if the source data is not zero or null, or the value
determined by value2 if the source data is zero or null.

The value1 and value2 items may be:

A number specifying the field from @RECORD (the current record being processed in a query)
to be returned. A value of zero returns the content of @ID.

A literal string enclosed in single quotes, double quotes or backslashes.

An asterisk indicating that the original data is to be returned.

If either value is omitted, it defaults to a null string.

Examples

A file has a date field that contains zero when it is not significant. Using a date conversion would
return this as 31 Dec 1967. The S conversion code could be used to replace the zero by a null string
before applying the date conversion. The dictionary conversion code field could be

S;*;''VMD4DMY

The following table shows a variety of conversions for a data record of "F1FMF2" and a record id of
"ID".

Conversion Data Result

S;1;2 0 F2
S;1;2 F2
S;1;2 5 F1
S;1;2 XX F1
S;*;'ZZ' 0 ZZ
S;*;'ZZ' 2 2
S;0 0
S;0 1 ID
S;;0 0 ID

OpenQM134

2.6-6

File translation conversion

The T conversion code uses the source data as a record id to the named file and returns data from
this record.

The format of the conversion code is

Tfile;cv;i;o

where

file is the file name. This may be prefixed by either DICT followed by a space or by an
asterisk with no space to reference the dictionary part of the file. Where necessary to
avoid ambiguity, the file name may be enclosed in quotes.

c identifies the action to be taken if the requested record does not exist of the field to be
extracted is null. This is a single letter:

C Returns the record id.
V Displays a warning message and returns a null value.
X Returns a null value
I Like V for input conversion, C for output conversion
O Like C for input conversion, V for output conversion

v specifies the value position to be extracted from the returned data. If omitted, all values
are returned with value and subvalue marks replaced by spaces.

i specifies the field position of the data to be returned when performing an input
conversion.

o specifies the field position of the data to be returned when performing an output
conversion.

This conversion code is closely related to the TRANS() function. Where possible, TRANS() should
be used in preference to the T conversion code for best performance.

The QM File System 135

2.6-6

Text substring conversion

The text substring extraction code returns a portion of the source data.

The format of the conversion code is

Tm,n
Tm

The first form returns n characters starting at character m from the source data. The second form
returns the last m characters of the source data.

OpenQM136

2.6-6

User defined conversions

Users may add their own conversion codes to the system by writing a QMBasic subroutine to
perform the conversion.

The format of the conversion code is

Usubrname
or

Usubrname.extension

where

subrname is the catalogue name of the subroutine to be called. To allow creation of
substitutes for Pick user exits, this name may commence with a digit.

extension is optional qualifying information for the conversion code. This can be accessed
within the subroutine in the @CONV variable.

The subroutine should have four arguments:

CONV.SUBR(result, src, status, oconv)

where

result should be set to the result of the conversion.

src is the item to be converted.

status is the value to be set for the STATUS() function.

oconv indicates whether this is an input (0) or output (1) conversion.

See the U50BB subroutine in the BP file of the QMSYS account for an example of a Pick user exit
routine.

The QM File System 137

2.6-6

3.9 Format Specifications

Format specifications appear in field 5 of C-type, D-type and I-type dictionary items to determine
the default format of output from the LIST and SORT query processor commands. They are also
used in the QMBasic FMT() function and with the query processor FMT keyword.

The full form of a format code is

{field.width} {fill.char} justification {n{m}} {conv} {mask}

where

field.width is the width of the field into which the data is to be formatted. If field.width is
omitted, mask must be specified.

fill.char is the character to be used to expand the string to field.width characters. If
omitted, a space is used by default. Where fill.char is a digit, it must be
enclosed in single or double quotes.

justification indicates the justification mode to be applied. It takes one of the following
values:

C specifies centered justification. The data is centered in a field of
field.width characters, additional fill.char characters being added
to either side if the data is shorter than field.width. If the data is
longer than field.width, text marks are inserted at intervals of
field.width from the start of the data.

L specifies left justification. The data is left aligned in a field of
field.width characters, additional fill.char characters being
appended if the data is shorter than field.width. If the data is
longer than field.width, text marks are inserted at intervals of
field.width from the start of the data.

R specifies right justification. The data is right aligned in a field of
field.width characters, additional fill.char characters being
inserted at the start if the data is shorter than field.width. If the
data is longer than field.width, text marks are inserted at intervals
of field.width from the start of the data.

T specifies text justification. Text marks are inserted to break the
data into fragments of no more than field.width characters,
aligning breaks onto the positions of spaces in the data. Where
there is no suitable space at which to break the data, the text mark
is inserted field.width characters after the last break position. The
final fragment is padded using fill.char to be field.width
characters in length.

When the data is displayed, output moves to a new line where a
text mark is present in the formatted data.

U specifies left justification and is treated identically to the L code
by the QMBasic FMT() function. Within the query processor,

OpenQM138

2.6-6

data formatted with this code that is wider than field.width is not
wrapped over multiple lines but extends into the space to its right,
possibly overwriting whitespace in later columns.

n specifies the number of decimal places to appear in the result when formatting
numeric data. The value is rounded in the normal manner. If n is zero, the
value is rounded to an integer.

m specifies the scaling factor to be applied. The value being formatted is scaled
by moving the decimal point m - p places to the left, where p is the current
precision value.

conv is any meaningful combination of the following codes:

$ specifies that the national currency symbol should be used as a prefix to
the converted data on output conversion and may be present on input
conversion. The default currency symbol is a dollar sign but this may be
changed by use of the NLS command or the SETNLS QMBasic
statement.

, indicates that the national language convention thousands delimiter is to be
inserted every third digit to the left of the decimal point when converting
numeric data. This delimiter defaults to a comma.

B appends db to negative numbers, two spaces to positive numbers. Use the
CRDB.UPCASE keyword of the OPTIONcommand to change this to
DB.

C appends cr to negative numbers, two spaces to positive numbers. Use the
CRDB.UPCASE keyword of the OPTIONcommand to change this to
CR.

D appends db to positive numbers, two spaces to negative numbers. Use the
CRDB.UPCASE keyword of the OPTIONcommand to change this to
DB.

E encloses negative number in angle brackets (<…>). Positive numbers are
followed by a single space.

M appends a minus sign to negative numbers.

N suppresses any sign indicator.

Z indicates that a value of zero should be represented by a null string.

mask specifies a mask to be used to format the data. If omitted, field.width must be
specified. Both can be used together.

The mask consists of a character string containing #, * or % characters and
other characters. Each #, * or % is substituted by one character from the
source data. Other characters are copied directly to the result string. Multiple
#, * or % characters may be represented by a single #, * or % followed by a
number indicating the number of characters to be inserted. Characters having
special meaning within the format string may be prefixed by a backslash (\) to

The QM File System 139

2.6-6

indicate that they are to be treated as text.

The value 1234567 with a format specification of 9L#2-#3-#2 would return
1234567.

Where the mask specifies more characters than in the data being converted,
positions corresponding to # characters in the mask are replaced by the
fill.char, positions corresponding to * characters in the mask are replaced by
asterisks and positions corresponding to % characters in the mask are replaced
by zeros. If the data is left aligned, the padding is inserted in the rightmost
positions. If the data is right aligned, the padding is inserted in the leftmost
positions.

If the mask specifies fewer characters than in the data being converted, part of
the source data will be lost. A left aligned format will truncate the source data
and a right aligned format will lose data from the start of the source.

Data formatting attempts to handle the data as a number if the decimal places, currency symbol,
comma insertion or null zero features are included in the format specification. If these features are
all absent, or if the data cannot be converted to a number, it is handled as a string. The difference in
handling is relevant when processing data such as a string with leading zeros.

Format Code Examples

The following table shows some uses of format codes.

Value Format code Result

'ABCDE' ' 8 L ' 'ABCDE '

'ABCDE' ' 8 R ' ' ABCDE'

'ABCDE' ' 8 ' * ' L ' 'ABCDE*** '

' 0 0 1 2 3 4 5 ' ' 8 R ' ' 0012345'

' 0 0 1 2 3 4 5 ' ' 8 R Z ' ' 12345'

' 0 0 0 0 0 0 0 ' ' 8 4 R Z ' ' '

' 1 2 3 4 5 ' ' 8 " 0 " R ' ' 0 0 0 1 2 3 4 5 '

' 1 2 3 4 5 6 7 ' ' 1 5 R 2 ' ' 1234567.00'

' 1 2 3 4 5 6 7 ' ' 1 5 R 2 $, ' ' $1,234,567.00'

' 1 2 3 4 5 . 6 7 ' ' 1 5 * R 2 $, ' ' * * * * * $ 1 2 , 3 4 5 . 6 7 '

' 1 2 3 4 5 6 7 ' ' 1 4 L 2 ' '1234567.00 '

' 4 3 ' ' L###m ' '43 m'

' 4 3 ' 'R###m' ' 43m'

' 4 3 ' ' " 0 "R###m ' ' 0 4 3 m '

'1234567890 ' ' L###-####### ' ' 123 -4567890 '

' 123456789 ' ' L # 3 - # 3 - # 3 ' ' 1 2 3 - 4 5 6 - 7 8 9 '

' 1 2 3 4 5 ' ' L # ' ' 1 '

' 1 2 3 4 5 ' ' R # ' ' 5 '

' 123456789 ' ' L # 5 ' ' 1 2 3 4 5 '

' 123456789 ' ' R # 5 ' ' 5 6 7 8 9 '

' 1 2 3 4 5 ' ' L # 6 ' '12345 '

OpenQM140

2.6-6

' 1 2 3 4 5 ' ' R # 6 ' ' 12345'

'A LONG LINE' ' 6 T ' 'A LONGTMLINE '

'A LONG LINE' ' 7 T ' 'A LONGTMLINE '

'A LONG LINE' ' 8 T ' 'A LONGTMLINE '

'A LONG LINE' ' 8 R ' 'A LONG LTMI N E '

'BANANAS' ' 3 T ' 'BANTMANATMS '

The QM File System 141

2.6-6

3.10 Locks

In order to prevent undesirable interaction between processes, QM provides a system of locks.
Consider, for example, a process that reads a record, decrements a value in that record and writes it
back to the file. There is no problem here if only one process is operating. If, however, there is a
second process performing a similar operation on the file, there is a danger that both processes read
the record, then both write back an updated copy. Only one of the updates will actually occur as
they both started from an identical version of the original data, unaware that there was another
process updating the record.

Although the single user environment of a PDA appears not to require locking, the PDA version of
QM retains support for the locking operations for use with QMNet connections and to minimise
changes that need to be made when porting applications from other platforms.

Three types of lock are available on files; file, read and update locks. Each has a different role and
care should be taken to use them correctly.

A file lock applies to the entire file and prevents any other user from obtaining any lock on the file
or records therein. File locks are usually only needed during operations that must handle the file in a
consistent "snap shot" manner when, for example, summing the values of some field from all
records. A process can only acquire a file lock if no other process has any locks on the file or its
records. Conversely, no other process can obtain any other sort of lock within the file while the file
lock is active. Use of file locks can have a severe effect on performance and hence they should only
be used where absolutely necessary.

A file lock is obtained by the FILELOCK statement and is released by the FILEUNLOCK or
RELEASE statements, or on closing the file.

A read lock (sometimes called a shared lock) applies to an individual record and prevents other
processes from obtaining the file lock or an update lock on the same record. Any number of
processes may acquire read locks on the record at the same time. An attempt to obtain a read lock
will fail if another process has the file is locked or has an update lock on the record. Read locks can
be used to ensure that a program sees a consistent view of a set of records, without the risk that
some other process has changed any of these records.

An update lock also applies to an individual record and prevents other processes from obtaining the
file lock or either type of record lock on the same record. Only one process may acquire an update
lock on a record at a time. An attempt to obtain an update lock will fail if another process has the
file is locked or has a read or update lock on the record.

A read or update lock may be acquired on a record that does not exist in the file. This provides a
means of locking a record that is about to be written for the first time.

Read and update locks are obtained by the READL or READU statements (and others). These
locks are released on closing the file, by the RELEASE statement or on return to the command
prompt. Additionally, read and update locks are normally released by writing or deleting the locked
record, however, the WRITEU and DELETEU statements provide a means of writing or deleting
without releasing the lock.

Although it is possible to hold very many record locks at a time, this tends to indicate poor
application design and may have an adverse effect on performance. The system wide limit on the
number of concurrent locks is determined by the NUMLOCKS configuration parameter. If this
limit is reached, the program will behave as though the record is locked by another user, taking the

OpenQM142

2.6-6

LOCKED clause of the relevant QMBasic statement with a STATUS() value of -1 or, if no
LOCKED clause is present, waiting for space to become available. A message will be written to
the system error log file.

Where an attempt to obtain a lock fails, the QMBasic language provides two methods of handling
the situation. A program may either wait automatically for the lock to be released or it may regain
control and take some action of its own (see the LOCKED clause of the QMBasic file handling
statements).

A process is not affected by its own locks. Thus it is possible to take a record lock on a record from
a file for which the file lock is held or, conversely, to take the file lock while holding one or more
record locks. Taking a read lock on a record for which an update lock is held or vice versa will
convert the lock type.

Locks are associated with the underlying operating system file, not the VOC reference to the file.
QM will correctly track locks relating to the same file however it was opened. Where a file has been
opened more than once simultaneously by a single process, the locks are released on the final close
of the file.

Locks are also associated with the particular file variable referenced when they are acquired. Thus,
if an application opens the same file more than once, closing one of the file references will
automatically release any locks acquired using that file variable but leave other locks in place.
Similarly, use of the form of the RELEASE statement that takes only a file variable will release
locks associated with that file variable. This mechanism ensures that developers do not need to be
aware of how other modules within the application operate.

Lock Rule Enforcement

The lock handling operations of QMBasic only operate with correctly structured applications. The
non-locking versions of the READ and WRITE operations, etc, take no part in the locking system
and hence can access a file regardless of its lock state. The individual statement descriptions give
more information.

A correctly written application never writes or deletes a record without locking it first, however, for
compatibility with other multivalue database products, this is not enforced by default except within
transactions. A poorly written program that uses READ in place of READU and then writes the
record could overwrite a record that is locked by another user. The MUSTLOCK configuration
parameter can be used to enforce tight control of locks, eliminating this potential problem. This
parameter is not supported on the PDA version of QM.

Enabling lock rule enforcement may not be easy when porting existing applications to QM. Because
multivalue systems have not enforced these rules in the past, programmers sometimes omitted use of
locks in situations where there would never be contention. For example, overnight processing might
not use locks because the developer knew that it is run at a time when there are no other users on
the system. Programs that write a record that is known not to exist also appear not to need locks.
Both of these examples actually represent bad programming practice as the assumption made by the
developer may subsequently turn out not to be true due to changes in business operation.

Task Locks

QM also provides task locks, sometimes known as process synchronisation locks, that are not
related to any particular file and are typically used to ensure that some task cannot be performed by

The QM File System 143

2.6-6

two users simultaneously.

A task lock is simply an numbered entry in a 64 element locking table. A process acquires a task
lock using the LOCK command or the QMBasic LOCK statement. If the lock is already owned
by another user, the process either waits for it to be released or handles the situation for itself. On
completion of the task, the process can release the lock using the CLEAR.LOCKS command or
the QMBasic UNLOCK statement.

Task locks can be difficult to use because the lock is not related to a file, record, etc and the
application designer must choose one that is not also used for some other purpose. Because task
locks are shared across all accounts, this implies a possible unwanted interaction between different
applications.

OpenQM144

2.6-6

3.11 Alternate Key Indices

An alternate key index provides a method to access data file other than by the primary key (record
id).

Consider a file holding information about orders with, for example, 100000 records in it. For
simplicity, assume that these records are made up of 10 orders from each of 10000 customers. To
locate all the orders placed by a specific customer would require all 100000 records to be processed
to find the 10 that we want.

Using an alternate key index on the customer number field of the order records, QM can look up the
customer in the index and then go directly to the 10 order records.

An alternate key index is created using the CREATE.INDEX command. This defines the index
content but does not populate it. The BUILD.INDEX command builds the actual index and
activates it. From that point forwards, QM will maintain the index automatically and the query
processor will use it automatically. No changes are required to application software.

The functions of the CREATE.INDEX and BUILD.INDEX commands are combined in the
MAKE.INDEX command.

Once an index has been built, it is maintained totally automatically by QM such that it is impossible
to write or delete a record without the corresponding index updates being applied. The query
processor will also use the index totally automatically where it appears relevant.

Indices can be built on real data stored in the file (dictionary D-type or A/S-type without a
correlative) or on calculated values (dictionary I-type or A/S-type with a correlative). When using
calculated values, it is essential that the expression relies only on data from the file to which the
index applies and is not time variant. Thus an index using data retrieved from another file using the
TRANS() function, a T-conversion or a subroutine that performs a read will fail because the index
will not be updated if the remote file is modified. Similarly, an index built using a calculation that
uses the date or time (age calculated from a date of birth, for example) will fail because the
expression does not always return the same output value for the same input.

These are both examples of the one and only rule that determines whether an index based on a
calculated value will work: The virtual attribute expression must always return the same value
when evaluated for the same data record.

For an index to be effective, each entry in the index should lead to a very small proportion of the
data in the file. Index entries that lead to very large numbers of records are less effective and may
also be costly to access or update. The worst case of this is indexing on a simple yes/no value.

A file may have up to 32 indices. The more indices there are, the longer it will take to update a
record in the data file though this should be outweighed by the advantage of being able to use the
indices in queries. Also, it should be remembered that indexing on a multivalued field may require
many index entries to be updated when writing a data record.

Indices can be deleted using the DELETE.INDEX command if they are no longer wanted. A report
of any or all indices on a file can be produced with the LIST.INDEX command.

Programmers can gain access to the index itself using the QMBasic SELECTINDEX statement
and advanced index scanning operations can be performed using SELECTLEFT,

The QM File System 145

2.6-6

SELECTRIGHT, SETLEFT and SETRIGHT.

OpenQM146

2.6-6

3.12 Triggers

A trigger is an optional user written function associated with a hashed file and configured to be
executed when certain file operations are performed. Executed before a write or delete, the trigger
can be used to apply data validation. Executed after a record is written or deleted, the function can
trigger other events such as related file updates. Trigger functions can also be executed after a read
and before or after a clear file operation.

The trigger function is simply a catalogued QMBasic subroutine which is automatically executed as
part of the file operation. The subroutine is passed a mode flag to indicate the action being
performed, the record id, the record data (read or write operations) and a flag indicating whether
the QMBasic ON ERROR clause is present. The subroutine may do whatever processing the
application designer wishes. If the write or delete is to be disallowed, the pre-write or pre-delete
trigger function should set the @TRIGGER.RETURN.CODE variable to a non-zero value such as
an error number or an error message text to cause the write or delete to take its ON ERROR clause
if present or to abort if omitted. The STATUS() function will return ER$TRIGGER when executed
in the program that initiated the file operation. Programs should test STATUS() rather than testing
for @TRIGGER.RETURN.CODE being non-zero to determine whether the trigger function has
disallowed the write or delete as @TRIGGER.RETURN.CODE is only updated when the error
status is set.

The trigger function is set up using the SET.TRIGGER command. After it has been set up, the
trigger function is loaded into memory when the file is opened and is called for all write or delete
operations. Modifying and recataloguing the trigger function will have no effect on processes that
have the file open until they close and reopen it.

If the trigger function is not in the catalogue or has the incorrect number of arguments, no error
occurs until the first write or delete is attempted. Note that the trigger function must be visible to all
accounts that may reference the file. Where a file is used by multiple accounts, this can be achieved
by using global cataloguing, sharing a private catalogue, or ensuring that the VOC entry for a
locally catalogued trigger function is present in each account. Although it would be possible for a
shared file to use a different trigger function depending on the account from which it is referenced,
this is not recommended. Files that are to be accessed via QMNet require that associated trigger
functions are globally catalogued.

The interface into a trigger function is:

SUBROUTINE name(mode, id, data, on.error, fvar)

where

name is the trigger subroutine name.

mode indicates the point at which the trigger function is being called:

1 FL$TRG.PRE.WRITE before writing a record

2 FL$TRG.PRE.DELETE before deleting a record

4 FL$TRG.POST.WRITE after writing a record

8 FL$TRG.POST.DELET
E

after deleting a record

16 FL$TRG.READ after reading a record

32 FL$TRG.PRE.CLEAR before clearing the file

mailto:@TRIGGER.RETURN.CODE

The QM File System 147

2.6-6

64 FL$TRG.POST.CLEAR after clearing the file

Other values may be used in the future. Trigger functions should be written to
ignore unrecognised values.

id is the id of the record to be written or deleted.

data is the data. This is a null string for a delete or clearfile action.

on.error indicates whether the program performing the file operation has used the
ON ERROR clause to catch aborts.

fvar is the file variable that can be used to access the file. Beware that reading, writing
or deleting records via this file variable may cause a recursive call to the trigger
function. This argument can be omitted for compatibility with earlier releases.

When writing trigger functions, the original data of the record to be written or deleted can be
examined by reading it in the usual way. Trigger functions should not attempt to write the record
for which they are called. Neither should they release the update lock on this record as this could
cause concurrent update of the record.

If the value of data is changed by a pre-write trigger function, the modified data is written to the
file. Similarly, a read trigger can modify the data that will be returned to the application that
requested the read. Changes to the value of id will not affect the database update in any way.

Trigger functions may perform all of the actions available to other QMBasic subroutines including
performing updates that may themselves cause trigger functions to be executed.

OpenQM148

2.6-6

3.13 Data Encryption

QM supports three data encryption methods:

Ad hoc encryption is provided by two QMBasic functions, ENCRYPT() and DECRYPT().
These take two arguments; the string to be processed and the encryption key. Internally, these use
the AES 128 bit encryption algorithm but the encrypted data is further processed to ensure that it
can never contain the mark characters or ASCII C0 control characters and can, therefore, be stored
as a field within a data record or in a text file.

It is the user's responsibility to provide a mechanism to prevent disclosure of the key string. The key
provided by the user can be of any length and may contain any characters. QM will automatically
transform this into a form that is valid for use with the AES algorithm. For best security, avoid very
short encryption keys which could be determined by repeated attempts to decrypt the data.

Because this style of encryption is performed outside of QM's control, it is unlikely to be practical
to build alternate key indices on encrypted data.

Record level encryption encrypts an entire record using a single, user defined key and the AES
128, 192 or 256 bit encryption algorithm. Because this encryption occurs deep inside the QM file
system, it is possible to have alternate key indices on fields within a file that uses record level
encryption. Note, however, that the index file itself is not encrypted and hence indexed fields are
partially exposed outside of the encryption system.

Field level encryption allows users to encrypt specific fields within a file, possibly using different
keys or algorithms for each encrypted field. It is not possible to build an alternate key index on an
encrypted field. Field level encryption results in a slight increase in record size because of a
transformation performed to ensure that the encryption process can never produce data that contains
the mark characters.

With either level of encryption, an application may use many different encryption keys and each key
can be made accessible to a selected set of users. A user cannot open a file that uses record level
encryption unless they have access to the key. When using field level encryption, read operations
will return null strings for fields to which the user has no access and write operations will preserve
the previous content of these fields.

The encryption system is managed by a user (or multiple users) known as the security
administrator. This user is responsible for management of the key vault, a file that defines the
names and actual values of all encryption keys used on the system. The key vault is itself encrypted
using the master key which should be known only by the security administrator. This key value is
entered when the key vault is created by first use of CREATE.KEY. If the key vault is moved to
another system or a new licence is applied, the master key must be re-entered either via the licence
entry screen or by use of the RESET.MASTER.KEY command.

Because QM uses key names rather than the actual keys in operations such as creating files or
setting encryption rules, there is no need to restrict knowledge of the key names. The security
administrator sets the actual encryption key value when the key is entered into the key vault and this
can subsequently be applied to data files without knowing what encryption is being used. For
example, the security administrator might define a key named CARDNO for use on fields
containing credit card numbers. Developers can freely apply this without knowing the encryption
key. To ensure that data is not lost in the event of a major system failure, the master key and details
of each key name / key value pair should be stored securely off-site in some way. All security

The QM File System 149

2.6-6

administrator commands require entry of the master key though this is remembered for the duration
of the user's session.

A new encryption key is created using the CREATE.KEY command, available only to users with
administrative rights in the QMSYS account. This command assigns the actual encryption key and
the algorithm to be associated with the key name. The AES 128, 192 and 256 bit algorithms require
a key length of 16, 24 or 32 bytes respectively, however, to enable administrators to use convenient
keys of any length up to 64 characters, QM will transform the key entered by the user into a form
that is valid for the AES algorithms. Specifying a key that is approximately the required internal
length give best security.

Defining a key name makes it accessible to the user that defined it. To make it accessible to other
users, the security administrator uses the GRANT.KEY command, specifying the key name and
the login names of the users or user groups (not Windows) to whom access is to be granted. Access
to a key can subsequently be removed using the REVOKE.KEY command. If a key is no longer
used, it can be removed from the key vault using DELETE.KEY.

The security administrator can use the LIST.KEYS command to report the name, algorithm and
access rights of each encryption key in the key vault. There is no way to report the key string
associated with the key. This same command can be used with a filename to report the encryption
key names used by the file.

The actual encryption process uses the key string defined in the key vault. If a file that uses
encryption is moved to another system, the data in that file will be accessible if the encryption key
names used by the file are added to the new system's key vault with the same encryption algorithm
and key string.

The master key is used only to encrypt the key vault. The master key must be re-entered if the key
vault is moved to another system or possibly as a result of relicensing the system. This is an
automatic part of the QM licensing process and helps to ensure security if, for example, a backup
tape of the system is stolen. If the master key is forgotten, there is no way to retrieve it from the key
vault and hence the vault and all encrypted files would become inaccessible.

A file is created for record level encryption by use of the ENCRYPT keyword to the CREATE.
FILE command, specifying the name of the encryption key to be used.

For field level encryption, the developer creates the file, populates the dictionary and then uses the
ENCRYPT.FILE command to specify the names of each field to be encrypted and the name of the
key to be applied. If the file is not empty, the newly defined encryption is applied to the data. This
command can also be used to apply record level encryption to an existing file.

To allow files to be moved to systems where the encryption key name clashes with a name already
defined on that system, the SET.ENCRYPTION.KEY.NAME command can be used to update
the key name index stored in the encrypted data file.

When used with QMClient or QMNet, access to encrypted data is based on the access rights of the
user name under which the process connects to the server system. Because QMClient is a general
library that can be used in various programming environments, it is not possible to apply the
encryption at the client side.

OpenQM150

2.6-6

3.14 Transactions

A transaction is a group of related database updates to be treated as a unit that must either happen
in its entirety or not at all. From a programmer's point of view, the updates are enclosed between
two QMBasic statements, BEGIN TRANSACTION and END TRANSACTION. All writes and
deletes appearing during the transaction are cached and only take place when the program executes
a COMMIT statement. The program can abort the transaction by executing a ROLLBACK
statement which causes all updates to be discarded.

An alternative transaction syntax is available using the TRANSACTION START,
TRANSACTION COMMIT and TRANSACTION ABORT statements. The two styles may be
mixed in a single application.

Transactions affect the operation of file and record locks. Outside a transaction, locks are released
when a write or delete occurs. Because transactional database updates are deferred until the
transaction is committed, all locks acquired inside the transaction are held until the commit or
rollback. Because of this change to the locking mechanism, converting an application to use
transactions is usually rather more complex than simply inserting the transaction control statements
into existing programs. The retention of locks can give rise to deadlock situations.

There are some restrictions on what a program may do inside a transaction. In general, QM tries
not to enforce prohibitive rules but leaves the application designer to consider the potential impact
of the operations embedded inside the transaction. Note carefully, that developers should try to
avoid user interactions (e.g. INPUT statements) inside a transaction as these can result in locks
being held for long periods if the user does not respond quickly.

Example

BEGIN TRANSACTION
 READU CUST1.REC FROM CUST.F, CUST1.ID ELSE ROLLBACK
 CUST1.REC<C.BALANCE> -= TRANSFER.VALUE
 WRITE CUST1.REC TO CUST.F, CUST1.ID

 READU CUST2.REC FROM CUST.F, CUST2.ID ELSE ROLLBACK
 CUST2.REC<C.BALANCE> += TRANSFER.VALUE
 WRITE CUST2.REC TO CUST.F, CUST2.ID
 COMMIT
END TRANSACTION

The above program fragment transfers money between two customer accounts. The updates are
only committed if the entire transaction is successful.

The QM File System 151

2.6-6

3.15 Select Lists

Select lists are lists of things to be processed, usually record keys from a file. The list may contain
all record keys or only those where the key or record data meets some specified criteria. Using
select lists simplifies and speeds up many data processing operations using commands or within
QMBasic programs. There are 11 select lists numbered 0 to 10. List 0 is referred to as the default
select list and is used by some verbs such as COPY to determine the records (or files for other
verbs) to be processed.

Select lists are created by the SELECT or SSELECT query processor commands. The SELECT
command builds a list of keys of records meeting the specified criteria but with no apparent
ordering to the list. The SSELECT command is similar but the list is in order of record key value.
The SELECT command is faster both during generation of the list and subsequent processing of
records as its order reflects the placement of records within the file.

Select lists can also be created by the QMBasic SELECT statement. This statement builds a list of
all records in the file and provides no means of including or excluding records by selection criteria.
Programs can then read keys sequentially from the list using the READNEXT statement.

Select lists may also be saved to records in the $SAVEDLISTS file using SAVE.LIST and later
restored using GET.LIST. Lists that have been written to other files by QMBasic programs may
be restored using FORM.LIST. The EDIT.LIST command allows editing of select lists. Saved
select lists may be copied using COPY.LIST, deleted using DELETE.LIST or merged using
MERGE.LIST.

A select list represents a "snapshot" of the file at the time when it was generated. Adding, deleting
or modifying records will not affect the select list. Thus, if a file may be modified by another
process between generation of the select list and retrieval of records for processing, the program
must allow for records that have been deleted or no longer meet the selection criteria.

A special type of select list, an exploded list, is constructed using the BY.EXP or BY.EXP.DSND
keywords of the query processor. In an exploded select list, the multivalued field from which it was
created generates a separate entry for each value or subvalue. The internal representation of this list
includes information to identify the value and subvalue positions of the corresponding data element.
This can be retrieved by the QMBasic READNEXT statement and is used automatically by some
operations within the query processor.

Part

4
QM Commands

OpenQM154

2.6-6

4 QM Commands

* Comment
$ECHO Paragraph tracing
! Synonym for SH
ABORT Abort processing and return to command prompt
ACCOUNT.RESTORE Restore a Pick style ACCOUNT-SAVE tape
ACCOUNT.SAVE Save an account to tape in Pick compatible format
ADMIN.USER Username administration for network connections
ALIAS Create a temporary alias for a command
ANALYSE.FILE Analyse structure and usage of dynamic file
ANALYZE.FILE Synonym for ANALYSE.FILE
AUTOLOGOUT Set inactivity timer
BASIC Compile QMBasic programs
BELL Enable or disable audible alarm
BLOCK.PRINT Print text using large characters
BLOCK.TERM Display text using large characters
BREAK Enable, disable or query break key
BUILD.INDEX Build an alternate key index
CATALOG Synonym for CATALOGUE
CATALOGUE Add program to system catalogue
CD Synonym for COMPILE.DICT
CLEAN.ACCOUNT Remove records from $HOLD, $COMO and $SAVEDLISTS
CLEAR.ABORT Clear the abort status in an ON.ABORT paragraph
CLEAR.DATA Clear the data queue
CLEAR.FILE Remove all records from a file
CLEAR.INPUT Clear keyboard type-ahead
CLEAR.LOCKS Release task locks
CLEAR.PROMPTS Clear inline prompt responses
CLEAR.SELECT Clear one or all select lists
CLEAR.STACK Clear the command stack
CLEARDATA Synonym for CLEAR.DATA
CLEARINPUT Synonym for CLEAR.INPUT
CLEARPROMPTS Synonym for CLEAR.PROMPTS
CLEARSELECT Synonym for CLEAR.SELECT
CLR Clear display
CNAME Rename a file or record within a file
COMO Activate or deactivate command output files
COMPILE.DICT Compile I-types in a dictionary
CONFIG Display licence and configuration parameters
CONFIGURE.FILE Change file configuration parameters
COPY Copy records
COPYP Copy records using Pick style syntax
COPY.LIST Copy a saved select list
COUNT Count records
CREATE.ACCOUNT Make a new QM account
CREATE.FILE Create a file
CREATE.INDEX Create an alternate key index
CREATE.KEY Creates a data encryption key
CREATE.USER Create user name for network connection
CS Synonym for CLR
CT Display records from a file

QM Commands 155

2.6-6

DATA Add text to the data queue for associated verb or program
DATE Display the date and time
DATE.FORMAT Selects default date format
DEBUG Debug QMBasic program
DELETE Delete records from a file
DELETE.ACCOUNT Delete a QM account
DELETE.CATALOG Synonym for DELETE.CATALOGUE
DELETE.CATALOGUE Delete a program from the system catalogue
DELETE.COMMON Delete a named common block
DELETE.FILE Delete a file
DELETE.INDEX Delete an alternate key index
DELETE.KEY Deletes a data encryption key
DELETE.LIST Delete a saved select list
DELETE.USER Delete user name for network connection
DISPLAY Display text
DUMP Display records from a file in hexadecimal and character format
ECHO Disable or enable keyboard echo
ED Line editor
EDIT Synonym for ED
EDIT.LIST Edit a saved select list
ENCRYPT.FILE Applies encryption to a file
FILE.SAVE Save all accounts to tape in Pick compatible format
FIND.ACCOUNT Find an account on a FILE.SAVE tape
FORMAT Apply conventional formatting to a QMBasic program
FORM.LIST Create a select list from a file record
FSTAT Collect and report file statistics
GENERATE Generate a QMBasic include record from a dictionary
GET.LIST Retrieve a previously saved select list
GET.STACK Restore a saved command stack
GO Jump to a label within a paragraph
GRANT.KEY Grants access to a data encryption key
HELP Display help
HSM Hot Spot Monitor performance monitoring tool
HUSH Disable or enable display output
IF Conditional execution in paragraphs
LIST List records from a file
LIST.COMMON List named common blocks
LIST.DIFF Form difference of two saved select lists
LIST.FILES List details of open files
LIST.INDEX List details of an alternate key index
LIST.INTER Form intersection of two saved select lists
LIST.ITEM List records from a file in internal format
LIST.KEYS Lists details of encryption keys
LIST.LABEL List records from a file in address label format
LIST.LOCKS List task lock status
LIST.READU List file, read and update locks
LIST.UNION Form union of two saved select lists
LIST.USERS List user names for network connection
LIST.VARS List user @-variables
LISTF List all files defined in the VOC
LISTFL List all local files defined in the VOC
LISTFR List all remote files defined in the VOC
LISTK List all keywords defined in the VOC
LISTM List all menus defined in the VOC

OpenQM156

2.6-6

LISTPA List all paragraphs defined in the VOC
LISTPH List all phrases defined in the VOC
LISTPQ List all PROCs defined in the VOC
LISTQ List all indirect file references in the VOC
LISTR List all remote items defined in the VOC
LISTS List all sentences defined in the VOC
LISTU List users currently in QM
LISTV List all verbs defined in the VOC
LOCK Set a task lock
LOGIN.PORT Login a serial port from within another QM session
LOGMSG Write a message to the error log
LOGOUT Terminate a phantom process
LOGTO Change to an alternative account
LOOP / REPEAT Defines loop within paragraph
MAKE.INDEX Create and build an alternate key index
MAP Display a list of the catalogue contents
MED Edit a menu definition
MERGE.LIST Create a select list by merging two other lists
MESSAGE Send a message to selected other users
MODIFY Modify records in a file
NLS Set or report national language support values
NSELECT Remove items from a select list
OFF Synonym for QUIT
OPTION Set, clear or display options
PASSWORD Change user password for network connection
PAUSE Display "Press return to continue" prompt
PDEBUG Runs the phantom debugger
PDUMP Generate a process dump file
PHANTOM Initiate a background process
PRINTER Administer print units
PSTAT Report process status
PTERM Set or display terminal characteristics
QSELECT Construct a select list from the content of selected records
QUIT Terminate session or revert to lower command level
RELEASE Release record or file locks
RENAME Synonym for CNAME
REPORT.SRC Display @SYSTEM.RETURN.CODE at command prompt
REPORT.STYLE Sets the default style for query processor reports
RESET.MASTER.KEY Resets the master encryption key
RESTORE.ACCOUNTS Restore all accounts from a FILE.SAVE tape
REVOKE.KEY Removes access to a data encryption key
RUN Run a compiled QMBasic program
SAVE.LIST Save a select list
SAVE.STACK Save the command stack
SCRB Create or edit a screen definition
SEARCH Search file for records containing string(s)
SECURITY Enable, disable or report system security
SED Screen editor
SEL.RESTORE Selective restore from an ACCOUNT.SAVE or FILE.SAVE tape
SELECT Select records meeting criteria
SET Set a user @variable
SET.DATE Set QM processing date
SET.DEVICE Attach a tape device
SET.ENCRYPTION.KEY.NAME Updates encryption key names for a file

QM Commands 157

2.6-6

SET.EXIT.STATS Set final exit status value
SET.FILE Set a Q-pointer to a remote file
SET.QUEUE Define a Pick style form queue
SET.TRIGGER Set, remove or display trigger function for a dynamic file
SETPORT Set communications parameters of a serial port
SETPTR Set print unit characteristics
SH Execute shell command
SHOW Build select list interactively
SLEEP Suspend process until specified time
SORT List records sorted by record key
SORT.ITEM List records sorted by record key in internal format
SORT.LABEL List records in address label format, sorted by record key
SP.ASSIGN Set printer options using a Pick style form queue
SP.CLOSE Close a print unit previously in "keep open" mode
SP.OPEN Open a print unit in "keep open" mode
SP.VIEW View and print records from $HOLD or other files
SPOOL Send record(s) to the printer
SSELECT Select records meeting criteria, sorting list by record key
STATUS Display list of active phantom processes
STOP Terminate an active paragraph
SUM Report total of named fields
T.ATT Synonym for SET.DEVICE
T.DET Detach a previously assigned tape device
T.DUMP Save a file
T.EOD Position a tape device to the end of the recorded data
T.FWD Move a tape device forward by one file
T.LOAD Restore a file
T.RDLBL Read the label from a tape device
T.READ Read data from a tape device
T.REW Rewind a tape device
T.STAT Report the status of a tape device
T.WEOF Write end of file marker to a tape device
TERM Set or display terminal window size
TIME Display date and time
UNLOCK Unlock a record or file
UPDATE.ACCOUNT Update VOC items from NEWVOC
UPDATE.LICENCE Apply new licence information
UPDATE.RECORD Database maintenance tool
WHO Display user number and account name
WHERE Display pathname of current account

OpenQM158

2.6-6

4.1 * (Comment)

The * (comment) command allows comment text to be embedded in sentences and paragraphs.

Format

* {text}

A comment line has its first non-space character as an asterisk. There must be at least one space
separating the asterisk from any text. The comment is ignored except that any inline prompt
sequences within text will be executed. This enables prompts to be resolved in a convenient and
logical order ahead of the need to use the responses.

Although comments are mainly used within stored paragraphs, they may be entered at the keyboard
in response to the command prompt. The comment will be recorded in any active como file.

The value of @SYSTEM.RETURN.CODE is not affected by a comment.

QM Commands 159

2.6-6

4.2 $ECHO

The $ECHO command inserted in a paragraph enables or disabled paragraph tracing.

Format

$ECHO {ON}
$ECHO OFF

The $ECHO command (optionally with a qualifier of ON) enables paragraph tracing. When this
mode is active, the command processor displays the paragraph name, line number and sentence for
each line executed.

The $ECHO OFF command disables paragraph tracing.

Example

The following paragraph might be used to delete all items in the BP.OUT file for which there is no
corresponding source record in the BP file.

VOC CLEAN.BP
1: PA
2: $ECHO
3: SELECT BP.OUT
4: NSELECT BP
5: IF @SELECTED = 0 THEN STOP
6: DELETE BP.OUT
7: DATA Y

Running this with the $ECHO on line 2 shows are trace of each command prior to execution:
:CLEAN.BP
CLEAN.BP 3: SELECT BP.OUT
223 record(s) selected to list 0
CLEAN.BP 4: NSELECT BP
17 record(s) selected to select list 0
CLEAN.BP 5: IF @SELECTED = 0 THEN STOP
CLEAN.BP 6: DELETE BP.OUT
Use active select list (First item 'J7')? Y
17 record(s) deleted

OpenQM160

2.6-6

4.3 ABORT

The ABORT command terminates all active processing and returns to the command prompt.

Format

ABORT{text}

where

text is the optional message text to be displayed.

The ABORT command is intended for use where a paragraph detects an application fault and
needs to terminate all active processing. All active commands, sentences, paragraphs, menus, etc
are discarded. Unless the command was run using the QMBasic EXECUTE statement with the
TRAPPING ABORTS option, just before return to the command prompt, QM checks for an
executable item (usually a paragraph) in the VOC named ON.ABORT and, if this is found, runs it.

The ON.ABORT paragraph may examine the @ABORT.CODE variable to determine why it was
invoked. The ABORT command sets this variable to 1. The text, if present, will be stored in
@ABORT.MESSAGE

The value of @SYSTEM.RETURN.CODE is not affected by the ABORT command.

See also:
CLEAR.ABORT, STOP

QM Commands 161

2.6-6

4.4 ACCOUNT.RESTORE

The ACCOUNT.RESTORE command restores a Pick style ACCOUNT-SAVE tape.

Format

ACCOUNT.RESTORE {options}

where

options is any combination of the following:

BINARY Suppresses translation of field marks to newlines when
restoring directory files. Use this option when restoring
binary data.

DET.SUP Suppresses display of the name of each file as it is
restored.

DIRECTORY Causes new files to be created as directory files. Existing
files are not reconfigured.

NO.CASE Causes new files to be created with case insensitive record
ids. Existing files are not reconfigured.

NO.INDEX Do not create alternate key indices.

NO.OBJECT Omits restore of object code. This is particularly useful
when migrating to QM from other environments.

POSITIONED Assumes that the tape is already positioned at the start of
the data to be restored.

The ACCOUNT.RESTORE command processes a Pick style "compatible mode" tape or pseudo
tape and restores data from it into a QM system.

The tape to be restored must first be opened to the process using the SET.DEVICE command.

Items in the save that originated in the MD file are restored to a file named MD-RESTORE from
where the user can then determine which are relevant to QM and require transfer to the VOC file.
Similarly, if a save includes a VOC file, this will be restored to VOC-RESTORE.

Note that restoring a file from a different database product may take considerably longer than
restoring the same save on the other product because the file hashing order will be different and the
data will not appear in group by group order.

The format of ACCOUNT.SAVE tapes varies between multivalue products. A Pick style
"compatible mode" (R83 format) tape commences with

Label
EOF block
Label
Descriptor block
EOF block
Label
Data.....

OpenQM162

2.6-6

ACCOUNT.RESTORE therefore normally starts by skipping forwards to the third label block.
On some systems, the tape commences simply with a label block followed immediately by the data.
To allow for the possibility of this and other formats, the T.RDLBL and T.READ commands can
be used to position the tape before the first data block. Use of the POSITIONED option in
ACCOUNT.RESTORE will then omit all other positioning from within ACCOUNT.RESTORE
itself.

ACCOUNT.RESTORE reads the account name and other information from the label it finds on
the tape. This account name is then offered as the default account name in a confirmation dialog. If
the name supplied in this dialog exists in the accounts register, the tape is restored into that account.

If the account name supplied is not found in the accounts register, ACCOUNT.RESTORE
prompts for a system pathname to be used as the path to the account. Therefore one can restore a
backup of an existing account by issuing an ACCOUNT.RESTORE command and then supplying
a different name for the account. Any required items can then be copied into another account via a
Q-pointer.

See also:
ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT, RESTORE.ACCOUNTS,
SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.LOAD, T.xxx

QM Commands 163

2.6-6

4.5 ACCOUNT.SAVE

The ACCOUNT.SAVE command creates a Pick style ACCOUNT-SAVE tape.

Format

ACCOUNT.SAVE {account.name} {options}

where

account.name is the name of the account to be saved. If omitted, the current account is saved.

options specifies options processing features:

BINARY suppresses translation of newlines to field marks
when saving directory files. Use this option when
saving binary data.

DET.SUP suppresses display of the names of files saved.

EXCLUDE.REMOTEcauses remote files to be omitted as described
below.

INCLUDE.REMOTE causes remote files to be saved as described
below.

The ACCOUNT.SAVE command creates a Pick style "compatible mode" pseudo tape and saves a
QM account to it. The account transfer tools are intended for use when migrating to QM from other
systems. Although it would be possible to use this command to create a backup of a QM account, it
is recommended that operating system level tools are used for this purpose.

The tape to be created must first be opened to the process using the SET.DEVICE command.

The command reports its progress by displaying the name of each file as it is saved unless the
DET.SUP option is used.

ACCOUNT.SAVE normally saves all files referenced by F-type records in the VOC of the
account being saved. There is a three level mechanism by which files can be excluded:

1. Field 5 of the F-type VOC entry can contain
D Save the dictionary but omit the data element
E Exclude this file from an ACCOUNT.SAVE or FILE.SAVE
I Include this file in an ACCOUNT.SAVE or FILE.SAVE

2. If field 5 of the VOC record does not specify any of the above flags, the
EXCLUDE.REMOTE and INCLUDE.REMOTE options are used to determine whether
remote files (those with a directory delimiter in their pathnames) are to be saved.

3. If neither of the above methods of file selection is used, the value of the EXCLREM
configuration parameter is used to determine whether remote files are to be saved.

By use of a combination of the above methods, it should be possible to achieve total control of what

OpenQM164

2.6-6

is included in a save.

See also:
ACCOUNT.RESTORE, FILE.SAVE, FIND.ACCOUNT, RESTORE.ACCOUNTS,
SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.LOAD, T.xxx

QM Commands 165

2.6-6

4.6 ADMIN.USER

The ADMIN.USER command allows management of the register of user names for network
connections.

User management is not applicable to the PDA version of QM.

Format

ADMIN.USER

The ADMIN.USER command is built around a form filling interface. Initially it displays a request
for a new or existing user name. The F2 key will display a pick list of registered users. Entering a
blank user name exits from the command.

Selection of an existing user displays their details for possible amendment. Entry of a new user
name displays an empty form into which the user's details may be entered.

The fields in this screen are:

Owner details Unused by QM internally and may be used for any purpose.

Min password (Windows 98/ME only) Minimum acceptable password length. Leave
blank to impose no restrictions.

Force account If set, the user is forced into this account on login. If left blank, they will
be asked for an account name after entry of their user name and password.

Administrator Is this user to have administrator rights?

Last login Displays the date and time of last login.

Action Enter A to amend, F to file changes, D to delete this user or X to exit
without saving any changes.

See also:
CREATE.USER, DELETE.USER, LIST.USERS, PASSWORD, SECURITY

OpenQM166

2.6-6

4.7 ALIAS

The ALIAS command creates a temporary alias for a command.

Format

ALIAS command target Create an alias
ALIAS command Remove an alias
ALIAS List all defined aliases

where

command is the alias name

target is the command to which the alias applies

The ALIAS command creates an alternative name by which a command can be referenced such
that command becomes a synonym for target. It provides a simple mechanism by which standard
commands can be linked to alternative VOC entries as a means of providing improved compatibility
with other multivalue database products. For example, the COPY command could be linked to the
Pick style variant named COPYP by executing

ALIAS COPY COPYP

This change affects only the current process and does not modify the VOC. Typically, ALIAS
commands would be executed from the LOGIN paragraph.

The second form of the ALIAS command removes a previously defined alias for command.

The third form lists all currently defined aliases.

QM Commands 167

2.6-6

4.8 ANALYSE.FILE

The ANALYSE.FILE command (which may be entered using the American spelling) reports
information regarding the structure and efficiency of a dynamic file. It can also be used to produce a
simplified report of a directory file.

Format

ANALYSE.FILE {DICT} file.name {options}

where

file.name is the name of the file to be processed. The optional DICT prefix indicates that the
dictionary portion of the file is to be used.

options are chosen from the following.

LPTR {n} Directs output to the specified logical print unit. If n is
omitted, the default printer is used.

NO.PAGE Suppresses paging of the output. This option is ignored if
LPTR is used.

STATISTICS Extends the analysis to report record and group usage
statistics.

Account : C:\QMSYS
File name : MESSAGES
Path name : C:\QMSYS\MESSAGES

Type : Dynamic, version 1
Group size : 1 (1024 bytes)
Large record size : 819
Minimum modulus : 1
Current modulus : 103 (0 empty, 27 overflowed, 1 badly)
Load factors : 80 (split), 50 (merge), 80 (current)
File size (bytes) : 146432 (106496 + 39936), 89905 used
Total records : 1706 (1704 normal, 2 large)

 Per group: Minimum Maximum Average
Group buffers : 1 3 1.28
Total records : 9 28 16.56
Used bytes : 36 1020 824.19

 Bytes per record: Minimum Maximum Average
All records : 16 4029 52.70
Normal records : 16 804 49.82
Large records : 984 4029 2506.50

The above example shows analysis of a dynamic file.

OpenQM168

2.6-6

4.9 AUTOLOGOUT

The AUTOLOGOUT command sets an inactivity period after which a process will automatically
be logged out.

Format

AUTOLOGOUT {period}

where

period is the inactivity time in minutes. A value of zero disables the timer.

The AUTOLOGOUT command prevents users leaving inactive sessions logged in. If the process
is waiting for input for the given time, it will automatically be logged out. The ON.EXIT paragraph
will be executed if it exists.

Executing the AUTOLOGOUT command with no period option displays the current setting.

Example

AUTOLOGOUT
Autologout is disabled

AUTOLOGOUT 4

AUTOLOGOUT
Autologout period is set to 4 minute(s)
...wait...
Inactivity time expired - Process logged out
Process terminated

In this example, the AUTOLOGOUT command is used to examine the current setting. The
inactivity period is then set to four minutes and the setting displayed again. After four minutes of
inactivity, the process is automatically logged out.

QM Commands 169

2.6-6

4.10 BASIC

The BASIC verb runs the QMBasic compiler.

Format

BASIC {file.name} {record.name...} {options}

where

file.name is the name of the directory file holding the QMBasic source program. If
omitted, the filename defaults to BP.

record.name is the name of the record within the file. Multiple record names may be
specified. An asterisk as the only record.name compiles all programs in
the file. If no names are specified and the default select list is active, the
list will be used to specify the programs to be compiled.

options are as listed below.

When using a select list or an asterisk to compile all programs, record names with a .H or .SCR
suffix are ignored.

The following options are accepted by the BASIC verb

CHANGED Compile only if the program is not already in the output file or the date and
time of modification of the source program record as given in the operating
system directory entry is later than that of the compiled program. Used in
conjunction with a select list it enables all modified programs to be
compiled with a single command.

DEBUGGING Include debugger control information in the compiled program. A program
compiled in debug mode can be executed outside the debugger but will be
slower than when compiled without the DEBUGGING option.

LISTING Generate a compiler listing record with a .LIS suffix.

NOXREF Omit cross reference tables from compiled program. This results in lower
memory usage but run time error messages cannot identify source line
numbers or variable names.

XREF Generates a compiler listing record as for the LISTING option but
includes a cross-reference table of all variables and their use.

The compiler output file, named as the source file but with a .OUT suffix, will be created
automatically if it does not already exist.

@SYSTEM.RETURN.CODE is set to the number of programs successfully compiled. It will

OpenQM170

2.6-6

contain a negative error code in the event of a fatal error.

The $BASIC.OPTIONS VOC Record

Compiler options that you wish to use every time you run the QMBasic compiler can be placed in
an X-type VOC record named $BASIC.OPTIONS. To apply these defaults only to programs stored
in a specific file, place the $BASIC.OPTIONS record in that file. The compiler looks first in the
source file and then, if no record has been found, in the VOC.

The first line of the record holds the type code X. The second and subsequent lines of this record
should contain compiler option keywords from the list below. The keywords allowed are:

CATALOGUE {LOCAL | GLOBAL} Automatically catalogues programs after
compilation using the program name as the
catalogue name. The LOCAL and GLOBAL
keywords may be used to specify that the program
is to be catalogued in the given mode instead of in
the private catalogue. The $NO.CATALOGUE
compiler directive can be used in specific program
modules to override this action. Alternatively, the
$CATALOGUE compiler directive in a program
can set an alternative catalogue name or mode.

DEBUGGING Compiles the program in debug mode.

DEFINE name {value} Defines token name in the same way as the
$DEFINE compiler directive. The value may be
a number or a quoted string. If omitted, the token
is assigned a null string as its value.

LISTING Generates a listing record in the compiler output
file.

MODE option.name Sets the given compilation mode as described for
the $MODE compiler directive. Multiple MODE
lines must be used to set more than one option.

NOCASE.STRINGS Compiles the program with case insensitive string
operations. See the $NOCASE.STRINGS
compiler directive for more details.

NOXREF Compiles the program with no cross reference
tables. This results in slightly lower memory
usage but prevents QM producing detailed
messages in the event of an error.

WARNINGS.AS.ERRORS Causes the compiler to treat warning messages as
fatal errors.

XREF Generates a listing record in the compiler output
file, including a cross-reference table of all
variables and their use.

Unrecognised keywords in this record are ignored.

Examples

QM Commands 171

2.6-6

BASIC PROGRAMS PROG1 LISTING

This command compiles the program in record PROG1 of the PROGRAMS file. A listing record is
produced.

SELECT BP
BASIC CHANGED

This sequence of commands compiles all programs in the BP file which have been updated since
they were last compiled. Note that the compiler will omit all records with names ending with .H or
.SRC, the two standard suffix codes for include records.

See also:
CATALOGUE, DELETE.CATALOGUE, MAP

OpenQM172

2.6-6

4.11 BELL

The BELL command determines whether the audible alarm is sounded by various QM verbs
(typically on encountering error conditions) or by QMBasic programs using the @SYS.BELL
function in a print operation directed to the terminal.

Format

BELL OFF To disable the audible alarm

BELL ON To enable the audible alarm

@SYSTEM.RETURN.CODE is returned as
0 after BELL OFF
1 after BELL ON
-ve after an error

Printing CHAR(7) to the terminal sounds the audible alarm regardless of the setting of the bell
status.

QM Commands 173

2.6-6

4.12 BLOCK.PRINT and BLOCK.TERM

The BLOCK.PRINT command prints text on the default printer using large characters. The
BLOCK.TERM is similar but directs its output to the terminal

Format

BLOCK.PRINT text

BLOCK.TERM text

where

text is the text to be printed or displayed.

The BLOCK.PRINT and BLOCK.TERM commands print text using a large font constructed
from a 7 x 7 matrix of characters. On an 80 character printer or terminal, a maximum of 8
characters will fit on a line. The command will wrap long text across multiple lines, breaking on
spaces where possible.

OpenQM174

2.6-6

4.13 BREAK command

The BREAK command controls the action taken on use of the break key. It can be used, for
example, the suppress quits during critical parts of an application.

Format

BREAK OFF To suppress quits

BREAK ON To enable quits

BREAK CLEAR To cancel deferred breaks

BREAK COUNT To report the number of active BREAK OFF commands

BREAK ON USER n To enable the break key for the specified user

QM maintains a count of the number of times that breaks are disabled. Each BREAK OFF
command increments this count. The BREAK ON command decrements the count unless it is
already zero. The BREAK COUNT command reports the current value of the break inhibit
counter.

If the break key is pressed whilst breaks are suppressed, the break is deferred until the count returns
to zero by a subsequent use of BREAK ON. The normal action prompt will then appear. The
BREAK CLEAR statement cancels any deferred break event.

For all of the above forms, @SYSTEM.RETURN.CODE is returned as the current value of the
break inhibit counter unless an error occurs, in which case it is set to a negative error code.

The final form, BREAK ON USER n, is only available to users registered as administrators and
enables the break key for the specified user. @SYSTEM.RETURN.CODE is returned as zero
unless an error occurs, in which case it is set to a negative error code.

QM Commands 175

2.6-6

4.14 BUILD.INDEX

The BUILD.INDEX command populates an alternate key index

Format

BUILD.INDEX filename field(s)

BUILD.INDEX filename ALL

where

filename is the name of the file for which the index is to be built.

field(s) is one or more field names for which indices have been created.

The BUILD.INDEX command deletes any existing index data for the named field(s) and populates
the index by processing all records currently in the file. The ALL keyword can be used to build all
indices that have been created for the file.

BUILD.INDEX is best performed immediately after using CREATE.INDEX to construct the
index. Once the index has been built, it will be maintained automatically whenever changes are
made to the file and will be used automatically by the query processor.

The BUILD.INDEX command requires exclusive access to the file and may take some time to
complete for a very large file. It is therefore best executed at quiet times.

See also:
CREATE.INDEX, DELETE.INDEX, LIST.INDEX, MAKE.INDEX

OpenQM176

2.6-6

4.15 CATALOGUE

The CATALOGUE command (which may be entered with the American spelling for compatibility
with other products) adds a compiled QMBasic program to the global or private catalogue file or as
a locally catalogued entry in the VOC.

Format

CATALOGUE {file.name {catalogue.name}} record.name {options}

where

file.name is the name of the directory file holding the program. If omitted, this
defaults to BP, the .OUT suffix being added automatically.

catalogue.name is the name by which the program or subroutine is to be catalogued. If
omitted, the record.name is used. The catalogue name is translated to
uppercase though calls from QMBasic programs are case insensitive.
Except as described below, catalogue names must start with a letter.
Subsequent characters may be letters, digits, periods, percent signs,
dollar signs, hyphens or underscores.

For compatibility with other database systems, the catalogue.name
may also commence with a digit though such catalogued items can
only be used as user defined conversion codes and not as call names in
programs.

record.name is the name of the record within the specified file. The record.name
may be specified as an asterisk to catalogue all programs in file.name.
If record.name is omitted and the default select list is active, this list
will be used to determine the programs to be catalogued.

options are any of the following:

LOCAL The program is to be catalogued in the VOC.

GLOBAL The program is to be catalogued for use by all
accounts.

NO.QUERY Suppresses all confirmation prompts.

NOXREF Catalogues the program without any symbol and
line cross-reference information. This results in
lower disk and memory usage but prevents full
diagnostic messages in case of run time errors.

The CATALOGUE command makes a program or subroutine available for access via the
QMBasic CALL statement. Catalogued programs can also be executed as command simply by
entering their name at the command prompt or within a stored sentence or paragraph.

Private Cataloguing

QM Commands 177

2.6-6

Without either the LOCAL or GLOBAL keyword, the program is copied to the private catalogue
in the account from which the command is executed and is available only to users of that account.

The private catalogue is normally a subdirectory, cat, under the account directory but can be moved
by creating an X-type VOC entry named $PRIVATE.CATALOGUE in which field 2 contains the
pathname of the alternative private catalogue directory. This only takes effect when QM is
re-entered or on use of the LOGTO command. This feature is particularly useful where two or
more accounts are to share a common private catalogue.

Global Cataloguing

With the GLOBAL keyword, the program is copied to the global catalogue file in the QMSYS
directory and is available from all accounts. Global cataloguing is also implied by adding one of the
following prefix characters to the catalogue.name of the program:

* User subroutine prefix provided for compatibility with other systems

! User callable system supplied subroutines

_ Internal undocumented subroutines

$ System subroutines, only callable from internal mode programs

Local Cataloguing

With the LOCAL keyword, an entry is written to the VOC file allowing calls only from the account
in which the program is catalogued. This is useful during testing or for functions that are not called
frequently. The first call to programs catalogued in this way are slower than to private or globally
catalogued programs. Once the program has been loaded into memory, speed will be identical.

The VOC entry for a locally catalogued program is of type V (verb) and has a dispatch field of CS.
The third field holds the pathname of the executable program.

See also:
BASIC, DELETE.CATALOGUE, MAP

OpenQM178

2.6-6

4.16 CLEAN.ACCOUNT

The CLEAN.ACCOUNT command clears the $HOLD, $COMO and $SAVEDLISTS files.

Format

CLEAN.ACCOUNT

The CLEAN.ACCOUNT command is used to remove records from the $HOLD, $COMO and
$SAVEDLISTS files. Periodic use of this command will ensure that redundant records are not left
in these files. The $COMO file is not cleared if a como file is active when the command is issued.

QM Commands 179

2.6-6

4.17 CLEAR.ABORT

The CLEAR.ABORT command clears the abort status in an ON.ABORT paragraph.

Format

CLEAR.ABORT

When an application generates an abort event, QM discards all programs, paragraphs, menus, etc
running in the process and returns to the command processor. Before displaying the command
prompt, the system checks for an ON.ABORT item in the VOC (usually a paragraph) and, if found,
executes it.

The ON.ABORT paragraph is intended as a means of preventing a user ever arriving at the
command prompt if the application fails. Typically, the ON.ABORT paragraph simply terminates
the session but it might log the event or perform other processing. If the processing in the
ON.ABORT paragraph causes a further abort, the session is terminated.

Sometimes, it may be useful to restart the application from the ON.ABORT paragraph. In this case,
a further abort should probably re-enter the ON.ABORT paragraph. The normal action of
automatic termination of the session on the second abort can be suppressed by clearing the abort
status in the ON.ABORT paragraph. It then becomes the developer's responsibility to avoid endless
loops if the ON.ABORT action generates a further abort.

See also:
ABORT command, QMBasic ABORT statement

OpenQM180

2.6-6

4.18 CLEAR.DATA

The CLEAR.DATA command (synonym CLEARDATA) clears the data queue created by the
DATA command or the QMBasic DATA statement.

Format

CLEAR.DATA

The data queue is cleared automatically on return to the command prompt. The CLEAR.DATA
command allows the queue to be cleared within a paragraph, for example, when recovering from
premature termination of a program that uses the data queue.

@SYSTEM.RETURN.CODE is not affected by this command.

Example

PA
RUN ARCHIVE.PREVIOUS.YEAR
DATA Y
SELECT ORDERS WITH DATE BEFORE "1 JAN <<@YEAR>>"
DELETE ORDERS

The above paragraph might be used to archive old order data at the start of a new business year and
then delete the old records from the ORDERS file. The archive program asks the user if a report is
to be printed and the DATA statement is used to provide the answer to this question from within the
paragraph. Because it is using a select list, the DELETE command will prompt the user for
confirmation before deleting the selected records.

If the archive program fails before asking whether a report is required, the "Y" in the data queue
will not be read by this program and will still be in the queue when the DELETE command is
executed. It will therefore be used erroneously to answer the delete confirmation prompt.

This sort of situation can be avoided by inserting a CLEAR.DATA statement before the SELECT
. In general, it is good practice to insert a CLEAR.DATA after any command that uses DATA and
could terminate without reading the queued data. This action is not automatic because the data
queue is frequently used to pass data from one program to another.

See also:
CLEAR.INPUT

QM Commands 181

2.6-6

4.19 CLEAR.FILE

The CLEAR.FILE command deletes all records from a file.

Format

CLEAR.FILE {DATA | DICT} file.name

If neither the DATA keyword nor the DICT keyword is not specified, only the data portion of the
file is cleared.

If the DICT keyword is specified, only the dictionary portion of the file is cleared.

In the case of a dynamic file, the file returns to its minimum modulus and all overflow space is
released.

OpenQM182

2.6-6

4.20 CLEAR.INPUT

The CLEAR.INPUT command (synonym CLEARINPUT) clears all unprocessed characters
entered at the keyboard.

Format

CLEAR.INPUT

The CLEAR.INPUT command clears all keyboard type-ahead. It may be useful, for example, after
a program terminates at an error to ensure that unprocessed keyboard data is not treated as input to
the next program.

@SYSTEM.RETURN.CODE is not affected by this command.

See also:
CLEAR.DATA

QM Commands 183

2.6-6

4.21 CLEAR.LOCKS

The CLEAR.LOCKS command releases task locks.

Format

CLEAR.LOCKS {lock.number}

where

lock.number is the number of the task lock (0 to 63) to be released. If omitted, all task
locks held by the process are released.

@SYSTEM.RETURN.CODE is set to the lock number if releasing a single lock or 64 if releasing
all locks. Errors result in negative error code values.

Examples

CLEAR.LOCKS 5
Released task lock 5

This example shows the CLEAR.LOCKS command used to release a specific task lock.

CLEAR.LOCKS
All task locks released

This command releases all task locks held by the process.

See also:
LIST.LOCKS, LOCK

OpenQM184

2.6-6

4.22 CLEAR.PROMPTS

The CLEAR.PROMPTS command (synonym CLEARPROMPTS) clears all stored inline
prompts and responses.

Format

CLEAR.PROMPTS

Inline prompt responses are cleared automatically on return to the command prompt. The
CLEAR.PROMPTS command allows responses to be cleared within a paragraph should this be
necessary for correct processing of later inline prompts.

@SYSTEM.RETURN.CODE is not affected by this command.

See also:
Inline prompts

QM Commands 185

2.6-6

4.23 CLEAR.SELECT

The CLEAR.SELECT command (synonym CLEARSELECT) clears an active select list. It is
useful to prevent use of a select list by a subsequent command when, for example, the SELECT
was performed in error.

Format

CLEAR.SELECT Clears select list 0, the default list

CLEAR.SELECT list.number Clears the specified list (0 to 10)

CLEAR.SELECT ALL Clears all select lists

@SYSTEM.RETURN.CODE is returned as the list.number when clearing a specific select list, 11
when clearing all select lists or a negative error code.

OpenQM186

2.6-6

4.24 CLEAR.STACK

The CLEAR.STACK command clears the command stack.

Format

CLEAR.STACK

The CLEAR.STACK command removes all entries from the current command stack.

@SYSTEM.RETURN.CODE is not affected by this command.

See also:
GET.STACK, SAVE.STACK

QM Commands 187

2.6-6

4.25 CLR

The CLR command (synonym CS) clears the terminal screen.

Format

CLR

@SYSTEM.RETURN.CODE is not affected by this command.

OpenQM188

2.6-6

4.26 CNAME

The CNAME command (synonym RENAME) changes the name of a file or record(s) within a file.

Format

CNAME old.file.name, new.file.name

CNAME old.file.name TO new.file.name

or

CNAME {DICT} file.name old.record.id, new.record.id

CNAME {DICT} file.name old.record.id TO new.record.id

where

old.file.name is the current name of the file to be renamed.

new.file.name is the new name of the file to be renamed.

or

file.name is the name of the file containing the record(s) to be renamed. The optional
DICT prefix specifies that the dictionary portion of the file is to be
processed.

old.record.id is the current name of the record to be renamed.

new.record.id is the new name for the renamed record.

Used with two file names, the CNAME command renames old.file.name to new.file.name. Only the
VOC record defining the file is renamed. The underlying operating system directory representing the
file is not affected.

Used with a single file name and two record names, the CNAME command renames a record
within the file. In this format, multiple records may be renamed in a single command by repeating
the old.record.id TO new.record.id component of the command.

The command

CNAME VOC OLD.NAME TO NEW.NAME

is equivalent to

CNAME OLD.NAME TO NEW.NAME

Examples

CNAME CUST.FILE A7194 TO A7149

This command renames record A7194 of file CUST.FILE to A7149.

QM Commands 189

2.6-6

CNAME STOCK, INVENTORY

This command renames the STOCK file to INVENTORY. The VOC record defining the file is
renamed. The underlying operating system directories representing the data file and the dictionary
are also renamed if they are the default names and the new names are acceptable operating system
directory names.

CNAME STOCK A8135,A008135 D4923,D004923

This command renames two data records within the STOCK file.

OpenQM190

2.6-6

4.27 COMO

The COMO command controls recording of terminal output in a como (command output) file.

Format

COMO ON record.name Commence recording of terminal output in named record.

COMO OFF Terminate recording of terminal output.

Como records are stored in a file named $COMO. This is created automatically when the COMO
ON command is first used. The default pathname of $COMO under the account directory can be
changed by creating the file in an alternative place. The file used for storing como data must be a
directory file.

The COMO command is mainly intended as a diagnostic aid during application development. It can
be used, for example, to look back at an error message that was overwritten on the screen before the
user had time to read it.

QM Commands 191

2.6-6

4.28 COMPILE.DICT

The COMPILE.DICT command (synonym CD) is used to compile A, C, I and S-type records in
dictionaries.

Format

COMPILE.DICT file.name {Itype.name} ... {NO.QUERY} {NO.PAGE}

COMPILE.DICT ALL {NO.PAGE}

COMPILE.DICT LOCAL {NO.PAGE}

where

file.name is the name of the file containing the I-types to be compiled

Itype.name is the name of the record to be compiled. Multiple names may be given in a
single use of the command. If omitted, all A, C, I and S-type records in the
dictionary are compiled unless the default select list is active, in which case
that list is used.

NO.QUERY suppresses the confirmation prompt if a select list is used.

NO.PAGE suppresses pagination of output to the screen.

The COMPILE.DICT ALL and COMPILE LOCAL formats provide an easy way to compile all
items in multiple files. The ALL keyword processes the dictionaries of all files referenced by F-type
VOC entries. The LOCAL keyword restricts this to files that do not have a directory separator in
the dictionary pathname.

A, C, I and S-type records may also be compiled using MODIFY and are automatically compiled
by all query processor commands if necessary.

The main need for the COMPILE.DICT command is where the expression in one dictionary item
uses the value of another. Because nested expressions are handled by a compile time substitution
rather than a run time call, a change to the second expression requires the dictionary item that uses
it to be recompiled. The automatic compilation performed by the query processor will not detect this
need. In general, it is recommended that all dictionary items are recompiled whenever a modification
is made to an expression that may be used by another dictionary item.

OpenQM192

2.6-6

4.29 CONFIG

The CONFIG command reports your licence details and configuration parameters. It can also be
used to modify the values of some parameters.

Format

CONFIG {LPTR}

CONFIG param new.value

The first format of the CONFIG command allows you to examine your system configuration. The
report shows the licence details followed by the values of configurable parameters. The LPTR
option directs the report to the default printer.

The second form can be used to set parameter param to new.value in the current process. Only
parameters that are maintained on a per-process basis can be modified.

Examples

CONFIG

Version number 2.2-10
Licence number 1961491396, System id LWWK-FTXT
Maximum users 50, available 43
Expiry date 31 DECEMBER 2007
Licensed to Manor Developments Limited

MUSTLOCK 0
NUMFILES 60
NUMLOCKS 70
OBJECTS 0
OBJMEM 0 kb
SORTMEM 1024 kb
SORTWORK c:\temp

The first section of output corresponds to the licence data entered when the system was installed or
subsequently relicensed. The second section shows the values of configurable parameters from the
qm.ini file in the Windows directory or the /etc/qmconfig file on other platforms.

Example

CONFIG MUSTLOCK 1

This command modifies the value of the MUSTLOCK parameter to be 1. Only the process in which
the command is executed is affected.

QM Commands 193

2.6-6

4.30 CONFIGURE.FILE

The CONFIGURE.FILE command changes the configuration of a file.

Format

CONFIGURE.FILE {DICT} file.name parameters

where

file.name is the name of the file to be configured.

parameters are the new settings of the file configuration parameters. The following
parameters may be specified:

DYNAMIC Converts file to dynamic hashed type.
Ignored if file is already dynamic.

DIRECTORY Converts file to directory type. Ignored if
file is already a directory.

GROUP.SIZE n sets the group size in units of 1024 bytes.
Values in the range 1 to 8 are permitted.

MINIMUM.MODULUS n sets the minimum modulus for the file.
Any positive non-zero value may be used.

LARGE.RECORD bytes sets the large record size in bytes.

SPLIT.LOAD pct sets the split load factor for the file.

MERGE.LOAD pct sets the merge load factor for the file.

DEFAULT resets all parameters to their default
values.

NO.CASE converts the file to use case insensitive
record ids.

CASE converts the file to use case sensitive
record ids.

NO.RESIZE disables file resizing.

RESIZE enables file resizing.

IMMEDIATE causes an immediate file resize, if
required.

Parameters which are not specified retain their existing values.

The CONFIGURE.FILE command adjusts the settings of one or more file parameters. Changes to
the file type or group size result in immediate restructuring of the file and require exclusive access.
Changes only affecting other dynamic file parameters will occur steadily as the file is updated
unless the IMMEDIATE option is used.

Note that converting a file from case sensitive ids to case insensitive ids will result in loss of data if

OpenQM194

2.6-6

the file contains records that contain two or more record using keys with alternative casing of the
same text.

The NO.RESIZE option disables the normal automatic split/merge operations that occur in dynamic
files. The IMMEDIATE option can be used later to force the deferred splits/merges to be applied.
See the description of dynamic files for more details on the use of this feature.

The resizing operations of the IMMEDIATE option are fully interruptable and can be performed
while the file is in use.

Examples

CONFIGURE STOCK MINIMUM.MODULUS 200 SPLIT.LOAD 75

This command changes the minimum modulus and split load percentage of the STOCK file. The
actual change will take effect as the file is updated by future access.

CONFIGURE STOCK DIRECTORY

This command changes the file to be a directory file.

QM Commands 195

2.6-6

4.31 COPY

The COPY command copies selected records from one file to another, or within the same file.

Format

COPY FROM {DICT} src.file {TO {DICT} tgt.file} {src.rec{,tgt.rec}} {options}

where

src.file is the file from which the records are to be copied.

tgt.file is the file to which the records are to be copied. If omitted, records are copied
within the src.file.

src.rec is the name of the record to be copied.

tgt.rec is the name of the record to which src.rec is to be copied. If omitted, the record is
not renamed.

options are taken from the following:

ALL Copy all records from src.file to tgt.file. This option
cannot be used with named records or a select list.

BINARY Copy data in binary mode, suppressing translation
between field marks and newlines when copying
between a hashed file and a directory file in either
direction. This mode is implied if both are directory
files.

DELETING Delete the record(s) from src.file after copying.

NO.QUERY Suppresses confirmation prompt when using a select
list.

OVERWRITING Overwrite existing record(s) of the same name in
tgt.file. Without this option, records which already
exist are not copied. This option may not be used
with UPDATING.

REPORTING Display the id of each record as it is copied.

UPDATING Only copy records if they already exist in the target
file. This option may not be used with
OVERWRITING.

Any number of source and target record pairs may be specified. If all records in the file are to be
copied, the keyword ALL may be used in place of specified record names.

If no source records are specified and the default select list is active, this list is used to determine

OpenQM196

2.6-6

the records to be copied. A confirmation prompt is issued before copying commences unless the
NO.QUERY keyword is used.

The COPY command does not normally overwrite existing records. The keyword
OVERWRITING allows this operation. Thus a command of the form

COPY FROM src.file TO tgt.file ALL

would only copy records that do not already exist in the target file.

Conversely, the keyword UPDATING copies records only if they already exist in the target file.

The DELETING keyword causes COPY to delete records from the source file after they have been
successfully copied to the target file.

The REPORTING keyword causes a message to be displayed for each record copied.

@SYSTEM.RETURN.CODE is returned as the number of records copied or a negative error code.

Example

COPY FROM NEWVOC TO VOC ALL OVERWRITING

This command copies all records from the NEWVOC file to the VOC, replacing existing records of
the same name. This could be used, for example, if the VOC had been damaged by an accidental
deletion of some standard records.

See also:
COPYP

QM Commands 197

2.6-6

4.32 COPYP

The COPYP command copies selected records from one file to another, or within the same file
using Pick syntax.

Format

COPYP {DICT }src.file {id.list} {options}

where

src.file is the file from which the records are to be copied. The optional DICT prefix
indicates that the dictionary portion of the file is to be used.

id.list is a list of ids of the records to be copied. If specified as an asterisk, all records in
the source file are copied. If omitted, an active select list is used.

options is a list of option codes. These must be prefixed by an open parenthesis. The
available codes are:

B Copy data in binary mode, suppressing translation between field marks and
newlines when copying between a hashed file and a directory file in either
direction. This mode is implied if both are directory files.

D Deletes the source records after copying.
I Suppresses display of record ids.
N Suppresses pagination when displaying records on the terminal.
O Overwrites existing records in the target file.
P Sends the record data to a printer.
S Suppresses field numbers with P or T.
T Sends the record data to the terminal.

If the P or T options are used, the records identified by id.list are sent to the printer or the screen.

If neither the P nor T options are used, the command prompts for a space separated list of
destination record ids. If there are more ids in id.list than in the destination list, the source id is used
as the destination id for the extra items.

The destination list can begin with a file name prefixed by an open parenthesis to direct output to a
different file. The name can optionally be followed by a close parenthesis.

@SYSTEM.RETURN.CODE is returned as the number of records copied or a negative error code.

The ALIAS command can be used to make COPYP the default for COPY without removing the
ability for other users or software packages to access the original COPY command.

Examples

COPYP ACCOUNTS * (D
To: (SAVED.ACCOUNTS
17 record(s) copied and deleted.

OpenQM198

2.6-6

This command copies all records from the ACCOUNTS file to the SAVED.ACCOUNTS file,
deleting the originals.

COPYP BP PRT.INVOICE
To: PRT.INVOICE2
53 record(s) copied.

This command copies record PRT.INVOICE in the BP file to a record named PRT.INVOICE2 in
the same file.

See also:
COPY

QM Commands 199

2.6-6

4.33 COPY.LIST

The COPY.LIST command copies a saved select list to another file or a different record in the
same file. Alternatively, the list can be output to the display.

Format

COPY.LIST src.list {, tgt.list} {FROM src.file} {TO tgt.file} {options}

where

src.list is the name of the saved select list that is to be copied. If src.list is given as *, all
saved select lists in the source file are copied.

tgt.list is the name to be used for the copied select list. If omitted, the list retains its
original name. A tgt.list name cannot be specified when copying all saved lists
from the source file.

src.file is the name of the file holding the src.list to be copied. If omitted, the default saved
lists file $SAVEDLISTS is used.

tgt.file is the name of the file to receive the copied select list. If omitted, the default saved
lists file $SAVEDLISTS is used.

options may be any of the following

CRT Output the select list to the display. Neither tgt.list
nor tgt.file may be specified with this option.

DELETING Delete src.list after copying.

LPTR {n} Output the select list to logical print unit n. If n is not
specified, the default print unit is used.

NO.PAGE Used with the CRT option, this option suppresses the
normal pause between successive pages of output.

OVERWRITING If tgt.list already exists in tgt.file, this option allows
overwriting of the existing list. Without this option, a
message is displayed and no copy occurs.

The COPY.LIST command is used to copy saved select lists. The FROM and TO options allow
copying from and to files other than the default $SAVEDLISTS file. When the default file is used,
it will be created if it does not already exist.

The COPY.LIST command does not affect any active select lists.

Example

COPY.LIST INVENTORY TO INVENT.LISTS OVERWRITING

OpenQM200

2.6-6

This command copies the select list previously stored in $SAVEDLISTS as INVENTORY to a
record of the same name in file INVENT.LISTS. Any existing record of the same name is
overwritten.

See also:
DELETE.LIST, EDIT.LIST, GET.LIST, SAVE.LIST

QM Commands 201

2.6-6

4.34 CREATE.ACCOUNT

The CREATE.ACCOUNT command creates a new QM account.

Format

CREATE.ACCOUNT acc.name pathname {NO.QUERY}

where

acc.name is the name to be given to the new account. This name must start with a letter
and may not contain spaces. The name will be translated to uppercase and
must not exceed 32 characters in length. The command will prompt for this if it
is not given on the command line.

pathname is the pathname of the operating system directory to hold the account. The
directory will be created if it does not already exist but the parent directory
must already exist. The command will prompt for this if it is not given on the
command line.

NO.QUERY suppresses the confirmation prompts when the pathname directory already
contains a VOC file or when creating a new directory.

The CREATE.ACCOUNT command creates a new account and populates the VOC file from the
NEWVOC template stored in the QMSYS account. The new account is added to the register of
accounts in the ACCOUNTS file in the QMSYS account.

If no pathname is specified on the command line, CREATE.ACCOUNT prompts for the
pathname. The command will look in the VOC of the QMSYS account for an X-type record named
$ACCOUNT.ROOT.DIR and, if this is found, will use field 2 of this record to specify a directory
name under which the account should be created by default. This default pathname can be selected
by entering a null response to the pathname prompt.

Example

CREATE.ACCOUNT SALES D:\SALES

This command creates a new QM account named SALES in the D:\SALES directory.

See also:
DELETE.ACCOUNT, UPDATE.ACCOUNT

OpenQM202

2.6-6

4.35 CREATE.FILE

The CREATE.FILE command is used to create a QM file.

Format

CREATE.FILE {portion} file.name {, subfile} {type} {configuration}
{USING DICT other.file} {ENCRYPT keyname} {NO.QUERY}

where

portion identifies the part of the file to create. This may be DATA to create just the
data portion, DICT to create just the dictionary portion or omitted to create
both.

file.name is the name of the VOC record to be created to refer to the file. The operating
system pathname used for the data file is the same as file.name. The directory
for the dictionary component of a file has a .DIC suffix.

subfile is the name of the subfile to be created in a multifile.

type specifies the file type as DIRECTORY or DYNAMIC. If omitted, a dynamic
file is created by default. Dictionaries are always created as dynamic files
regardless of any type argument.

The configuration options are available only when creating a dynamic file and specify the file's
configuration and location. These options are:

PATHNAME path specifies the pathname of an existing operating system
directory under which the file is to be created.

MINIMUM.MODULUS n sets the minimum modulus for the file. Any positive non-zero
value may be used. The default is 1.

GROUP.SIZE size sets the group size as a multiple of 1024 bytes. This must be
in the range 1 to 8. If omitted, the default group size is taken
from the GRPSIZE configuration parameter.

LARGE.RECORD bytes sets the large record size in bytes. The default is 80% of the
group size.

SPLIT.LOAD pct sets the split load factor for the file. The default is 80%.

MERGE.LOAD pct sets the merge load factor for the file. The default is 50%.

VERSION vno allows creation of files with internal formats compatible with
older releases of QM.

NO.CASE creates a file where the record ids will be treated as case
insensitive. QM will write records preserving the casing

QM Commands 203

2.6-6

specified by whatever performs the write. Reads will locate
records regardless of casing.

NO.RESIZE creates the file with resizing disabled. See
CONFIGURE.FILE and dynamic files for more information.

The USING DICT clause allows creation of a data file that is to share the dictionary of an existing
file. The effect of this option is to copy the content of field 3 of the VOC entry for other.file into
field 3 of the newly created entry rather than setting up a new dictionary.

The ENCRYPT keyword enables record level data encryption and prefixes the name of the
encryption key to be used.

The NO.QUERY option suppresses any confirmation prompts associated with the requested
action.

Multifiles

A multifile is a collection of data files that share a common dictionary. Commands and application
software refer to an individual subfile within the multifile by using a name that consists of the file
name and subfile name separated by a comma.

When creating a multifile element, the default action of CREATE.FILE is to create a subdirectory
named file.name under the account and create the element within this directory as subfile. An
alternative location can be specified using the PATHNAME parameter.

The CREATE.FILE command can convert an existing simple file into a multifile. The existing
data becomes a subfile with the same name as the file.

Examples

CREATE.FILE STOCK MINIMUM.MODULUS 150 GROUP.SIZE 4

This statement creates a dynamic file named STOCK with minimum modulus of 150 and group size
4.

CREATE.FILE SALES ENCRYPT SALESKEY

This statement creates a dynamic file named SALES and applies record level data encryption using
the SALESKEY key.

CREATE.FILE DATA PROGRAMS DIRECTORY PATHNAME D:\APPS

This statement creates the data portion of a directory file named PROGRAMS. The full pathname
for this directory file is specified as D:\APPS\PROGRAMS rather than using the default location.

CREATE.FILE ACCOUNTS,NORTH

OpenQM204

2.6-6

This statement creates a multifile component named NORTH within the ACCOUNTS file.

See also:
CONFIGURE.FILE, DELETE.FILE, LISTF, LISTFL, LISTFR, data encryption,
CREATE.KEY, ENCRYPT.FILE

QM Commands 205

2.6-6

4.36 CREATE.INDEX

The CREATE.INDEX command creates an alternate key index.

Format

CREATE.INDEX filename field(s) {NO.NULLS} {PATHNAME index.path}

where

filename is the name of the file for which the index is to be built.

field(s) is one or more field names for which indices are to be created.

The CREATE.INDEX command creates the file structures to hold an alternate key index. The
index must subsequently be populated using BUILD.INDEX before it can be used.

The field(s) referenced in the command must correspond to D, I, A, S or C-type dictionary items.
The dictionary items can be deleted once the index has been constructed as all details of the indexed
field are stored in the index file but this is not recommended. The value to be indexed must not
exceed 255 characters. Values longer than this will not be included in the index.

Indices constructed on I or C-type dictionary items or on A or S-type items that use correlative
expressions should be such that they always produce the same result when executed for the same
data record. Examples of possibly invalid I-type expressions would be those that use the date or
time and those that use the TRANS() function to access other files.

The NO.NULLS specifies that no entry is to be added to the index for records where the indexed
field is null.

Normally, the indices are stored as subfiles in the directory that represents the data file. The
PATHNAME option allows the indices to be stored in an alternative location. This might be
useful, for example, to balance loads across multiple disks or to exclude indices from backups as
they can always be recreated.

All indices for a single data file must be stored together. The PATHNAME option can be used
when creating the first index and specifies the pathname of a new directory that will be created at
the same time as the index. If this option is included when creating subsequent indices the
index.path must be the same as for the first index. It is suggested that the pathname should be based
on the data file name for ease of recognition.

Index subfiles can be moved using the operating system level qmidx utility.

Data Encryption

Alternate key indices may be applied to files that use record level data encryption but developers
should be aware that the index itself is not encrypted and hence weakens the security of the indexed
fields.

Files using field level encryption cannot have indices on encrypted fields. Also, indices constructed

OpenQM206

2.6-6

from calculated values such as I-types that use encrypted fields will fail if the record is updated by
a user that does not have access to the relevant encryption key.

Example

CREATE.INDEX ORDERS DATE
BUILD.INDEX ORDERS DATE

The above commands create and build an index on the DATE field of the ORDERS file.

See also:
BUILD.INDEX, DELETE.INDEX, LIST.INDEX, MAKE.INDEX

QM Commands 207

2.6-6

4.37 CREATE.KEY

The CREATE.KEY command creates a data encryption key. This command can only be executed
by users with administrator rights in the QMSYS account.

Format

CREATE.KEY {keyname {algorithm {keystring}}}

where

keyname is the name for the new encryption key.

algorithm is the encryption algorithm to be associated with the key.

keystring is the actual encryption key.

The command prompts for items not supplied on the command line.

The CREATE.KEY command creates a new entry in the key vault defining the encryption
algorithm and actual key string to be used. If the key vault does not already exist, this command
will create it, prompting for the master key to be used to encrypt the key vault. If the key vault does
exist, the user will be asked to enter the master key unless it has already been entered during this
session.

The keyname may be any sequence of up to 64 letters, digits, periods and hyphens. It is case
insensitive.

The algorithm may be any of AES128, AES192 and AES256. The name is case insensitive.

The keystring is up to 64 characters, is case sensitive and can contain any character. For best
security, the length of the keystring should be close to the actual length needed by the selected
algorithm. This is 16, 24 or 32 characters for the 18, 192 and 256 bit algorithms respectively. The
CREATE.KEY command will automatically transform the supplied key to the required length if
necessary.

Once a key has been defined, it may be referenced in commands that set up encryption without
needing to enter the master key. The keyname does not need to be treated as a secure item. The
keystring, on the other hand, must not be disclosed. It is strongly recommended that a copy of the
keystring is maintained off-site in case it is ever necessary to rebuild the key vault.

The CREATE.KEY automatically grants access to the key to the user that created it. Other users
can be granted access using the GRANT.KEY command

Example

CREATE.KEY CARDNO AES256

The above command creates a 256 bit encryption key named CARDNO. The actual encryption
string will be entered in response to a prompt.

OpenQM208

2.6-6

See also:
Data encryption, CREATE.FILE, DELETE.KEY, ENCRYPT.FILE, GRANT.KEY,
LIST.KEYS, RESET.MASTER.KEY, REVOKE.KEY, SET.ENCRYPTION.KEY.NAME

QM Commands 209

2.6-6

4.38 CREATE.USER

The CREATE.USER command creates a new user name in the register of users for network
security checks.

User management is not applicable to the PDA version of QM.

Format

CREATE.USER {username {account}}

where

username is the name of the user to be created. User names may be up to 32 character in
length. On Windows systems the name is case insensitive. If omitted, a prompt
is displayed for the user name.

account is the name of the account to be entered when this user logs in. If not specified,
an account name prompt will be issued when the user logs in.

The new user will not have administrator rights. See the ADMIN.USER command for a more
powerful method of managing user names.

On Windows 98/ME, the new user is created with no password. Either the PASSWORD command
should be used to apply a password or the user should be encouraged to set a password on first
login.

On later versions of Windows and other platforms, this command does not affect the underlying
operating system user name database. If the SECURITY command is used to enable QM's internal
security system, users connecting directly to QM via a network who do not appear in the user
register will be rejected. If the security system is not enabled, a previously unknown user will be
added to the register automatically.

See also:
ADMIN.USER, DELETE.USER, LIST.USERS, PASSWORD, SECURITY

OpenQM210

2.6-6

4.39 CT

The CT (Copy to Terminal) command displays the content of record(s) from a file.

Format

CT {DICT} filename {record ... | *} {options}

where

filename is the name of the file to be processed. The DICT keyword indicates that the
dictionary portion of filename is to be used.

record is the name of the record to be displayed. Multiple record names may be given in a
single command. If the default select list (list 0) is active, this list is used as the
source of record names. . If the default select list (list 0) is active, this list is used
as the source of record names. Specifying a record name of an asterisk (*) displays
all records in the file. If no record name is given and the default select list is active,
this list will be used to determine which records are reported.

options are chosen from the following:

BINARY Display the record as a binary data item.

HEX Display the data in each field in hexadecimal format.

LPTR n Redirects the output to printer n. If n is omitted, the default
printer is used.

NO.QUERY When using a select list, the confirmation prompt is omitted.

The CT command displays the specified records from file. Each record is preceded by the file and
record names.

When using the default select list as the source of record ids to be processed, a confirmation prompt
is issued prior to commencing the display. This can be suppressed using the NO.QUERY option.

By default, the report shows each line (field) of the record on a separate line, prefixed with the line
number. Lines that are wider than the output device are wrapped to the next line.

The HEX option, produces a report in which the data is displayed in hexadecimal form, two
hexadecimal digits per character.

The BINARY option treats the record as binary data in which field marks are simply part of the
data. The record is shown in both hexadecimal and character format, 16 bytes per line.
Non-printing characters are displayed as dots (.) except for the field mark, value mark and subvalue
mark which as shown as ^,] and \. Each line is prefixed by the byte offset (from zero) of the first
byte on the line.

Example

SELECT VOC WITH F1 LIKE X...

QM Commands 211

2.6-6

CT VOC

This command sequence would display each X type record from the VOC.

CT READERS 2
READERS 2
1: Cartwright, D
2: 7 Spring GroveyNottingham
3: 1-1y3-1

The above command displays the record with id 2 from the READERS file. The y in the final line
is a terminal dependent representation of the value mark character.

See also: DUMP

OpenQM212

2.6-6

4.40 DATA

The DATA command supplies data to be used by an associated verb or QMBasic program which
would normally take input from the keyboard. It may only be used in paragraphs.

Format

DATA {text}

where

text is the data to be used by the verb or program.

The DATA command must immediately follow the verb to which it is to apply. Multiple DATA
commands may be used to supply data to be processed consecutively by the associated verb or
program. Any intervening blank lines or comments in a sequence of DATA commands will be
ignored except for processing of inline prompts.

When the verb or program executes an INPUT statement, the data from the DATA command(s)
will be used. If all stored data has been used, keyboard input proceeds as normal.

Data stored by the DATA command or the QMBasic DATA statement is cleared on return to the
command prompt. Thus unused data where, for example, a program terminates at an error, will not
be carried forward to a later command. The CLEAR.DATA command can be used to clear the
data queue within a paragraph.

The DATA command cannot be used to provide text for inline prompts.

Example

PA
* <<History>>
LOOP
 IF <<A,Record name>> = "" THEN GO DONE
 ED BP <<Record name>>
 DATA I * <<History>>
 DATA FI
REPEAT
DONE:

This paragraph inserts a history comment at the top of QMBasic programs. The editor commands
to insert the text are provided using DATA commands. Note how the history text, which is only
required once as it is common to all files edited, is obtained first using an inline prompt in a
comment. The names of the records to be edited are then obtained in a loop which is terminated
when a null name is entered.

QM Commands 213

2.6-6

4.41 DATE

The DATE command displays the current date and time.

Format

DATE {date}

DATE INTERNAL

where

date is an internal or external format date.

If no date is specified, the date and time are reported in the form

Tuesday, March 8, 1994 10:30 AM

See TIME for an alternative format date and time report.

If date is specified, the converted form of this date (internal to external or vice versa) is reported.

The DATE INTERNAL form shows the internal day number for the current date.

Examples

DATE
Tuesday, February 15, 2000 00:12:50 PM

DATE 10012
Tuesday, May 30, 1995

DATE 1 Oct 99
11597

DATE INTERNAL
14447

OpenQM214

2.6-6

4.42 DATE.FORMAT

The DATE.FORMAT command selects the date format to be used by default or displays this
setting.

Format

DATE.FORMAT OFF

DATE.FORMAT { ON }

DATE.FORMAT DISPLAY

DATE.FORMAT INFORM

DATE.FORMAT conv.code

DATE.FORMAT OFF selects American date format (month, day, year) as the default for date
conversions.

DATE.FORMAT ON or DATE.FORMAT with no qualifying information selects European date
format (day, month, year) as the default for date conversions.

DATE.FORMAT DISPLAY displays the current setting of the date format mode. If a non-default
conversion code has been set, this is also displayed. @SYSTEM.RETURN.CODE is set to 0 for
American date format or 1 for European date format.

DATE.FORMAT INFORM sets @SYSTEM.RETURN.CODE as described above but does not
display the date setting.

DATE.FORMAT conv.code sets the default conversion code that will be used for date conversions
that specify a code of D with no qualifying options. The conv.code must be a valid date conversion
code. Specifying conv.code as D reverts to the standard default setting.

Examples

DATE.FORMAT ON
DATE.FORMAT DISPLAY
European date format is on

The above commands set European date format and then confirm this selection.

QM Commands 215

2.6-6

4.43 DEBUG

The DEBUG command enters the QMBasic program debugger.

Format

DEBUG {file.name} record.name {LPTR} {NO.PAGE}

where

file.name is the name of the directory file holding the program to be run. If omitted, this
defaults to BP. The .OUT suffix for the output file is supplied automatically.

record.name is the name of the compiled program.

LPTR causes output to logical print unit 0 to be directed to the printer. This is
identical in effect to a PRINTER ON statement being performed within the
program.

NO.PAGE suppresses pagination of output to the terminal.

The DEBUG command enables detailed tracing of the operation of a QMBasic program to aid
development and maintenance.

OpenQM216

2.6-6

4.44 DELETE

The DELETE command deletes specified records from a file.

Format

DELETE {DICT} file.name {record.name ...}

DELETE {DICT} file.name {NO.QUERY} To use a select list

DELETE {DICT} file.name ALL {NO.QUERY}

where

DICT indicates that the records are to be deleted from the dictionary portion of
the named file.

file.name is the name of the file holding the records to be deleted.

record.name is the name of the record to be deleted. Multiple record names may be
specified in a single DELETE command.

ALL causes all records to be deleted.

NO.QUERY suppresses the confirmation prompt when using a select list.

If no record names are specified and the default select list is active, this list is used to determine the
names of the records to be deleted. A confirmation prompt is issued before deletion commences
unless the NO.QUERY option is used.

The DELETE command reports the number of records deleted on completion.

@SYSTEM.RETURN.CODE is returned as the number of records deleted unless the delete fails in
which case it contains the error code.

Examples

SELECT STOCK WITH PART.NO < 10000
DELETE STOCK
71 records deleted

This example selects all records from the STOCK file with PART.NO less than 10000 and deletes
them.

DELETE PARTS.FILE A12745 A84543 C36590
Record A84543 not found
2 records deleted

This example attempts to delete three specific records from PARTS.FILE. One of the records does

QM Commands 217

2.6-6

not exist.

OpenQM218

2.6-6

4.45 DELETE.ACCOUNT

The DELETE.ACCOUNT command deletes a QM account.

Format

DELETE.ACCOUNT acc.name

where

acc.name is the name of the account to be deleted. This name must be registered in the
ACCOUNTS file in the QMSYS account (visible to all accounts as
QM.ACCOUNTS).

The DELETE.ACCOUNT command deletes the named account and its entry in the accounts
register. The user will be prompted to confirm whether the account directory is to be deleted.

Before deleting the account, QM checks whether any files in the account are referenced from other
accounts and, if so, displays a list of these files.

Example

DELETE.ACCOUNT SALES

This command deletes the account named SALES.

See also:
CREATE.ACCOUNT, UPDATE.ACCOUNT

QM Commands 219

2.6-6

4.46 DELETE.CATALOGUE

The DELETE.CATALOGUE command (synonym DELETE.CATALOG) removes an entry
from the system catalogue.

Format

DELETE.CATALOGUE {name...} {GLOBAL | LOCAL}

where

name is a list of the catalogue call names of the programs or subroutines to be
deleted. If the default select list is active, this will be used to identify the
catalogue entries to be deleted and the name should be omitted.

GLOBAL indicates that a globally catalogued version of this subroutine is to be removed.

LOCAL indicates that a locally catalogued version of this subroutine is to be removed.

If neither the GLOBAL nor the LOCAL keyword is present, the DELETE.CATALOGUE
command deletes entries from the private catalogue unless name has a prefix character that
identifies a globally catalogued item.

The private catalogue is normally a subdirectory, cat, under the account directory but can be moved
by creating an X-type VOC entry named $PRIVATE.CATALOGUE in which field 2 contains the
pathname of the alternative private catalogue directory. This only takes effect when QM is
re-entered or on use of the LOGTO command. This feature is particularly useful where two or
more accounts are to share a common private catalogue.

See also:
BASIC, CATALOGUE, MAP

OpenQM220

2.6-6

4.47 DELETE.COMMON

The DELETE.COMMON command deletes one or all named common blocks.

Format

DELETE.COMMON name

DELETE.COMMON ALL

where

name is the name of the common block to be deleted. The keyword ALL causes all
named common blocks to be deleted.

The DELETE.COMMON command deletes the named common block. It is particularly useful
when debugging programs.

Common blocks can only be deleted if there is no active program referencing them. When the ALL
keyword is used, blocks that cannot be deleted are ignored and no error is reported. When deleting a
specific common block, a non-fatal error occurs if the block is in use.

Examples

DELETE.COMMON COM1

This command deletes common block COM1.

DELETE.COMMON ALL

This command deletes all named common blocks.

See also:
LIST.COMMON

QM Commands 221

2.6-6

4.48 DELETE.FILE

The DELETE.FILE command deletes one or both portions of a file.

Format

DELETE.FILE {DATA | DICT} file.name {, subfile} {options}

where

file.name is the VOC name of the file to be deleted. The DATA prefix may be used to delete
only the data portion of the file. The DICT prefix may be used to delete only the
dictionary portion of the file.

subfile is the subfile to be deleted from a multifile. If omitted and file.name refers to a
multifile, the entire multifile will be deleted. Use of a subfile name implies use of
the DATA keyword, leaving the dictionary in place.

options are chosen from the following:

FORCE is used to delete files with non-default names.

NO.QUERY suppresses the confirmation prompt when using a select list.

If no file name is specified and the default select list is active, the DELETE.FILE command will
use this list to determine the files to be deleted.

Deleting the data portion of a file deletes the associated operating system directory and clears field 2
of the VOC record describing the file. Deleting the dictionary portion of a file deletes the directory
representing the dictionary and clears field 3 of the VOC record.

If the DELETE.FILE command results in a VOC record with fields 2 and 3 both null, the VOC
record is also deleted. Thus deleting both portions of a file, the data portion of a file which had no
dictionary or the dictionary portion of a file which had no data portion would also delete the VOC
record.

Where the operating system name of the file recorded in the VOC entry is not the default name for
the file (file.name for the data portion, file.name.DIC for the dictionary portion), the
DELETE.FILE command prompts for confirmation unless the FORCE option is used. This traps
accidental deletion of files which are remote to the account or for which file.name is not the primary
VOC reference.

Example

DELETE.FILE DICT INVENTORY

This command deletes the dictionary part of the file named INVENTORY.

See also:
CREATE.FILE, LISTF, LISTFL, LISTFR

OpenQM222

2.6-6

4.49 DELETE.INDEX

The DELETE.INDEX command deletes an alternate key index.

Format

DELETE.INDEX file.name field(s) to delete specific indices

DELETE.INDEX file.name ALL to delete all indices

where

file.name is the VOC name of the file holding the indices.

field(s) are the names of indexed fields to be deleted.

The DELETE.INDEX command deletes the named indices. It requires exclusive access to the file
to do this. Once an index has been deleted, any queries against the named field(s) may require
processing of the entire file to locate records.

Example

DELETE.INDEX ORDERS DATE

This command deletes the index on the DATE field of the ORDERS file.

See also:
BUILD.INDEX, CREATE.INDEX, LIST.INDEX, MAKE.INDEX

QM Commands 223

2.6-6

4.50 DELETE.KEY

The DELETE.KEY command deletes a data encryption key. This command can only be executed
by users with administrator rights in the QMSYS account.

Format

DELETE.KEY {keyname}

where

keyname is the name of the encryption key to be deleted. This is case insensitive.

The command prompts for the key name if it is not supplied on the command line.

The DELETE.KEY command deletes an entry in the key vault defining the encryption algorithm
and actual key string. The user will be asked to enter the master key unless it has already been
entered during this session.

Any data in data files encrypted using this key will become inaccessible.

Example

DELETE.KEY CARDNO

The above command deletes the encryption key named CARDNO.

See also:
Data encryption, CREATE.FILE, CREATE.KEY, ENCRYPT.FILE, GRANT.KEY,
LIST.KEYS, RESET.MASTER.KEY, REVOKE.KEY, SET.ENCRYPTION.KEY.NAME

OpenQM224

2.6-6

4.51 DELETE.LIST

The DELETE.LIST command deletes a previously saved select list.

Format

DELETE.LIST list.name

where

list.name is the name of the record in $SAVEDLISTS that is to be deleted.

The DELETE.LIST command deletes a previously saved select list from the $SAVEDLISTS file.
It has no effect on any active select lists.

Example

DELETE.LIST INVENTORY
Deleted saved list 'INVENTORY'.

This example deletes a select list saved as INVENTORY.

See also:
COPY.LIST, EDIT.LIST, GET.LIST, SAVE.LIST

QM Commands 225

2.6-6

4.52 DELETE.USER

The DELETE.USER command deletes a user name from the register of users for network security
checks.

User management is not applicable to the PDA version of QM.

Format

DELETE.USER {username}

where

username is the name of the user to be deleted. If omitted, a prompt is displayed for the
user name.

The named user is deleted from the user name register. It is possible to delete a user who is logged
in.

See the ADMIN.USER command for a more powerful method of managing user names.

On Windows NT onwards and on all non-Windows platforms, this command does not affect the
underlying operating system user name database, however, users who do not appear in the register
will not be able to connect directly to QM over a network if QM's internal security system is
enabled.

See also:
ADMIN.USER, CREATE.USER, LIST.USERS, PASSWORD, SECURITY

OpenQM226

2.6-6

4.53 DISPLAY

The DISPLAY command displays text at the user's terminal.

Format

DISPLAY text {:}

DISPLAY @(col,row)text {:}

The optional colon at the end of the line suppresses the normal newline after the text is displayed.

The second format positions the cursor to the given column and row (both numbered from zero)
before displaying the text. There must be no spaces in the cursor position element. Any spaces
following the close bracket are treated as part of the text. The QMBasic @() function variants with
a negative value for the first (or only) argument are also supported.

The @SYSTEM.RETURN.CODE variable is not affected by this command.

Example

A paragraph containing

DISPLAY Hello :
DISPLAY world

would display

Hello world

QM Commands 227

2.6-6

4.54 DUMP

The DUMP command displays the content of record(s) from a file in hexadecimal and character
format.

Format

DUMP {DICT} filename {record ... | *} {options}

where

filename is the name of the file to be processed. The DICT keyword indicates that the
dictionary portion of filename is to be used.

record is the name of the record to be displayed. Multiple record names may be given in a
single command. If the default select list (list 0) is active, this list is used as the
source of record names. . If the default select list (list 0) is active, this list is used
as the source of record names. Specifying a record name of an asterisk (*) displays
all records in the file. If no record name is given and the default select list is active,
this list will be used to determine which records are reported.

options are chosen from the following:

LPTR n Redirects the output to printer n. If n is omitted, the default
printer is used.

NO.QUERY When using a select list, the confirmation prompt is omitted.

The DUMP command displays the specified records from file. Each record is preceded by the file
and record names.

The record is treated as binary data in which field marks are simply part of the data. It is shown in
both hexadecimal and character format, 16 bytes per line. Non-printing characters are displayed as
dots (.) except for the field mark, value mark and subvalue mark which as shown as ^,] and \. Each
line is prefixed by the byte offset (from zero) of the first byte on the line.

When using the default select list as the source of record ids to be processed, a confirmation prompt
is issued prior to commencing the display. This can be suppressed using the NO.QUERY option.

The DUMP command is equivalent to use of CT with the BINARY option.

Example

DUMP READERS 2
READERS 2
00000000: 43 61 72 74 77 72 69 67 68 74 2C 20 44 FE 37 20 |
Cartwright, D^7
00000010: 53 70 72 69 6E 67 20 47 72 6F 76 65 FD 4E 6F 74 |
Spring Grove]Not
00000020: 74 69 6E 67 68 61 6D FE 31 2D 31 FD 33 2D 31 |
tingham^1-1]3-1

OpenQM228

2.6-6

The above command dumps the record with id 2 from the READERS file.

See also: CT

QM Commands 229

2.6-6

4.55 ECHO

The ECHO command suspends or enables echoing of keyboard input.

Format

ECHO OFF Disable echoing of keyboard input

ECHO ON Enable echoing of keyboard input

ECHO Toggle echo status

The ECHO command allows temporary suspension of keyboard input echo. Echoing is
automatically resumed in the event of an abort.

The @SYSTEM.RETURN.CODE variable is not affected by this command.

OpenQM230

2.6-6

4.56 ED

The ED command enters the QM line editor. The synonym EDIT can be used.

Format

ED {DICT} file.name {record.id} {NO.QUERY}

where

DICT indicates that records from the dictionary portion of the file are to be edited.

file.name is the name of the file holding the record(s) to be edited.

record.id is the name of the record to be edited. Multiple record ids may be given in
which case each record is edited in turn.

NO.QUERY suppresses the confirmation prompt if a select list is used.

If no record.id is specified and the default select list is active, this list is used to identify the records
to be edited. If no record.id is specified and the default select list is not active, the ED command
prompts for the record.id.

A record.id of * either on the command line or as the first record.id entered in response to the
prompt will cause ED to select all records of the file and edit each in turn.

The editor maintains an update lock on the record that is being edited.

Overview

The editor takes its commands from the keyboard or the DATA queue. Each command line contains
one editor command. Commands are retained in a stack similar to the command processor stack and
can be repeated without complete retyping. Commands that take arguments specifying their exact
function can be repeated by entering just the command name.

ED normally rejects commands and input text that contain non-printing characters. Where a
non-printing character is to be entered, it can be typed as ^nnn where nnn is the decimal value of
the character. Alternatively, the NPRINT command can be used to enable entry of non-printing
characters.

The editor operates in two modes; edit and input. In edit mode, commands affect the current line
(field). In input mode, new data is entered into the record. The editor numbers lines from one and
the line number is displayed as a four digit number followed by a colon whenever lines are
displayed or during input. The editor command prompt is four hyphens followed by a colon.

Positioning Commands

The commands listed below alter the position of the current line. In addition, entering a blank line at
the command prompt advances the current position by one line, displaying the newly selected line.

QM Commands 231

2.6-6

n
Entering a number at the command prompt positions the current line to line n.

+n
Moves the current line position forward by n lines.

-n
Moves the current line position backward by n lines.

B
The B (bottom) command moves to the last line of the record.

F{n} {string}
The F (find) command moves forward to the next line containing string starting at column
position n (from one). If n is omitted, string must occur at the start of the line.

The string must be preceded by a single space or a delimiter chosen from

! " # $ % & () * + , - . / : = @ [] \ _ ` ' { } |

All characters after the delimiter will be treated as part of the string to be located. The string is
case sensitive by default but the CASE command can be used to select case insensitive
searches. See the W command for a description of wildcards.

If string is omitted, the string used by the most recent F command is used. If no F command
has been executed, the editor moves forward by one line.

Gn
The Gn (go to) command moves to line n. This is identical to the n command described above.

G<
The G< command moves to the first line of the currently defined block.

G>
The G> command moves to the last line of the currently defined block.

L{n} {string}
The L (locate) command moves forward to the next line containing string which must be
preceded by a single space or a delimiter chosen from

! " # $ % & () * + , - . / : = @ [] \ _ ` ' { } |

All characters after the delimiter will be treated as part of the string to be located. The string is
case sensitive by default but the CASE command can be used to select case insensitive
searches. See the W command for a description of wildcards.

The optional line count, n, limits the search to n lines from the current position. If n is present,
all occurrences of string in the region to be searched are displayed and the current position is
left at the end of the search region.

If string is omitted, the string used by the most recent L command is used. If no L command
has been executed, the editor moves forward by one line.

M {pattern}
The M (match) command moves forward to the next line matching pattern. The pattern

OpenQM232

2.6-6

argument is any valid pattern as used for the query processor LIKE operator. There must be a
space before pattern.

If pattern is omitted, the string used by the most recent M command is used. If no M command
has been executed, the editor moves forward by one line.

POn
The POn (position) command moves to line n. This is identical to the n command described
above.

T
The T (top) command moves to before line 1. There is no current line after this action.

Displaying Text

Ln
The Ln (list) command displays n lines, moving the current line forward to the final displayed
line. It is similar to the P command except that n must be included. Omitting n results in
execution of a locate command as described above.

P{n}
The P (print) command displays n lines starting at the current line, moving the current line
forward to the final displayed line. The value of n defaults to 23 on first use of the P command
and to the value of n for the most recently executed P command thereafter. There must be no
space between P and n.

PL{{-}n}
The PL (print lines) command displays n lines relative to the current line position. Negative
values of n print lines before the current line. The value of n defaults to 23 on first use of the
PL command and to the value of n for the most recently executed PL command thereafter.
There must be no space between PL and n. The current line position is not changed by this
command.

PP{n}
The PP (print position) command displays n lines surrounding the current line position. The
value of n defaults to 23 on first use of the PP command and to the value of n for the most
recently executed PP command thereafter. There must be no space between PP and n.

Inserting Text

I {text}
The I (insert) command inserts text after the current line, making this the current line. There
must be a single space before text. Any additional spaces are treated as part of the inserted text.
To insert a blank line type I followed by a single space.

If the I command is entered with no text and no space after the I, the editor enters input mode.
It will prompt for successive lines until a blank line is entered at which point it returns to edit
mode. Entering a line containing just a single space inserts a blank line.

IB {text}
The IB (insert before) command is similar to the I command described above except that text is

QM Commands 233

2.6-6

inserted before the current line.

LOAD {{filename} record.id}
The LOAD command inserts part or all of the specified record into the record being edited after
the current line position. If filename is omitted, it defaults to the file associated with the current
record. After the operation is complete, the current line is the first line of the newly inserted
text.

The editor prompts for the start and end line numbers to be inserted. These default to the first
and last lines respectively.

Deleting Lines

D{n}
The Dn (delete) command deletes n lines starting at the current line position. If n is not
specified, only the current line is deleted. The line after the last line deleted becomes current.

DE{n}
Same as Dn described above.

Commands that Edit the Current Line

A {string}
The A (append) command appends string to the current line. A single space must separate
string from the command. Any further spaces are treated as part of the inserted text.

If string is omitted, the most recent A command is repeated.

B string
The B (break) command splits the current line into two after string. The string argument must
be present and is preceded by a single space. Any additional spaces are treated as part of string.

C/old.string/new.string/{n}{G}{B}
The C (change) command changes old.string to new.string in the current line. The delimiter
around the strings may be any of

! " # $ % & () * + , - . / : = @ [] \ _ ` ' { } |

The optional n component specifies that n lines starting at the current line are to be changed.

G causes all occurrences of old.string to be replaced. Without G only the first occurrence on
the line is changed.

B applies the change to the currently defined block rather than the current line. B and n may not
be used together.

The n, G, and B, qualifiers can be placed before the first string delimiter as an alternative to the
syntax shown above.

Entering C with no strings repeats the last substitution.

Searches for old.string are case sensitive by default. See the CASE command for a way to

OpenQM234

2.6-6

select case insensitive searches. See the W command for a description of wildcards.

CAT {string}
The CAT command concatenates the current line, string and the following line to form a single
line. Omitting string merges the lines with no intervening characters. There must be a single
space between the command and the string. Any additional spaces are treated as part of string.

DUP {n}
The DUP command duplicates the current line n times. The value of n defaults to one. The first
line added by DUP becomes the current line.

R/old.string/new.string/{n}{G}{B}
Identical to C described above.

R {text}
The R (replace) command replaces the current line with the specified text. There must be a
single space before text. Any additional spaces are treated as part of the replacement text. To
replace a line by a blank line, type R with no text. The space may be omitted in this case.

Working with Multivalued Data

EV
The EV (edit values) command enters a mode where each value of the current line becomes a
line of its own in a new editable item. To edit subvalues, use the EV command when already in
EV mode. Used with a dictionary I-type entry, the EV command breaks compound I-types into
separate lines to simplify editing.

QV
Exits from EV mode and returns to the previous edit text, discarding any changes made while in
EV mode.

SV
Exits from EV mode and returns to the previous edit text, saving any changes made while in EV
mode.
The Dn (delete) command deletes n lines starting at the current line position. If n is not
specified, only the current line is deleted. The line after the last line deleted becomes current.

Block Edit Commands

Blocks are defined by two pointers; the start and end line. Block operations enable the entire block
to be deleted, moved or copied.

<
Sets the current line to be the start line of the block. When used at the top of the record, the <
command clears the block pointers.

>
Sets the current line to be the end line of the block.

<>
Sets the block to be just the current line.

QM Commands 235

2.6-6

BLOCK
Toggles block verification mode. When enabled, COPY, DROP and MOVE commands cause
a prompt for confirmation prior to performing the operation. Block verification mode is enabled
by default.

COPY
Copies the currently defined block to immediately after the current line position without
affecting the original block.

DROP
Deletes the currently defined block.

MOVE
Copies the currently defined block to immediately after the current line position and deletes the
original block.

PB
The PB (print block) command displays the currently defined block.

File Handling Commands and Leaving the Editor

DELETE
FD

Prompts for confirmation and then deletes the entire record from the file.

After the record has been deleted, the editor either terminates, continues with the next record
from a select list or prompts for a new record id depending on the way in which it was entered.

The confirmation prompt can be suppressed using the ED.NO.QUERY.FD mode of the
OPTION command.

FILE {{DICT} {filename} record.id}
If no arguments are included, the FILE command (which may be abbreviated to FI) writes the
record being edited back to its file.

If record.id is specified, the modified record is saved under the new name. A confirmation
prompt will be issued if a record of this name already exists.

If both filename and record.id are given, the record is saved to the specified file and record.
Again, a confirmation prompt will be issued if a record of this name already exists.

After the record has been saved, the editor either terminates, continues with the next record
from a select list or prompts for a new record id depending on the way in which it was entered.

Two extended forms of the FI command are available for use when editing QMBasic programs:

FIB {{filename} record.id} Files the record and then runs the QMBasic compiler.

FIBR {{filename} record.id} Files the record, runs the QMBasic compiler and, if the
compilation is successful, runs the compiled program.

N
When using a select list, the N command moves to the next record in the list. A confirmation

OpenQM236

2.6-6

prompt is issued if there are unsaved changes.

QUIT
EX

The QUIT command (which may be abbreviated to Q) and its synonym EX terminates editing
of the current record. A confirmation prompt is issued if there are unsaved changes.

If a select list is in use, the editor will move on to the next record. Use the X command
described below to terminate the entire edit in this case.

SAVE {{DICT} {filename} record.id}
If no arguments are included, the SAVE command writes the record being edited back to its
file.

If record.id is specified, the modified record is saved under the new name. A confirmation
prompt will be issued if a record of this name already exists.

If both filename and record.id are given, the record is saved to the specified file and record.
Again, a confirmation prompt will be issued if a record of this name already exists.

Unlike the FILE command, editing continues after saving the record. The SAVE command
does not change the names associated with the record being edited. A subsequent SAVE or
FILE with the file and record names omitted will use the original names, not those of an
intermediate SAVE command.

UNLOAD {{{DICT} filename} record.id}
The UNLOAD command saves part or all of the record being edited into the named file and
record. If filename is omitted, it defaults to the file associated with the current record.

The editor prompts for the start and end line numbers to be saved. These default to the first and
last lines respectively.

X
The X command aborts an edit when a select list is in use without saving any changes made to
the record. A confirmation prompt is issued if there are unsaved changes. Any further entries in
the select list are discarded and the editor terminates.

Miscellaneous Commands

?
The ? command displays status information about the editor and the record being edited. This
includes

The file name and record id
The current line number
Block start and end line positions
The command, if any, which will be reverted by OOPS.
Non-printing character expansion mode status (^)
Non-printing character entry mode status (NPRINT)
Block verify mode status (BLOCK)
The setting of search case sensitivity (CASE)

^
Toggles non-printing character expansion mode. When this mode is enabled, non-printing

QM Commands 237

2.6-6

characters are displayed as ^nnn where nnn is the decimal character number.

CASE OFF
Sets case insensitive mode for the C, F and L commands.

CASE ON

Sets case sensitive mode for the C, F and L commands. This is the default mode of the editor.

COL
Displays a column number ruler to aid alignment of inserted text

HELP {topic}
The HELP command displays a short description associated with the command identified by
topic. If topic is omitted, this command enters the full help system. If topic is present but not
recognised, ED tries to find a help page on this topic from the full help system.

NPRINT
Toggles non-printing character entry mode. When this mode is enabled, non-printing characters
may be included in commands and input text. When disabled, non-printing characters are
rejected but may still be entered using the ̂ nnn notation where nnn is the decimal character
number.

OOPS
The OOPS command undoes the most recent function that modified the record. It cannot be
used to forget positioning functions.

STAMP
The STAMP command inserts a single comment line below the current line indicating the
account name, user name, date and time of the modification.

SPOOL
The SPOOL command prints a copy of the record on the default printer. If changes have been
made but not yet written to the file, the printed version includes these changes. The optional
lines qualifier specifies the number of lines to be printed starting at the current line. If this is
omitted, the entire record is printed.

W{char}
Specifies a wildcard character that may be used in the C and R text replacement commands or
the F and L search commands. Use of char within the search string of these commands will
match against any single character. The wildcard character may not be a letter or the caret
symbol (^). Use of the W command with no char qualifier turns off the wildcard.

XEQ {command}
The XEQ command executes the specified command which may be any command valid at the
command prompt. The command may include any of the following items to substitute text into
the command:

@FILE The file name
@ID The record id
@LINE The text of the current line
@FM A field mark (to separate multiple commands)
@VM A value mark
@SM A subvalue mark

OpenQM238

2.6-6

Pre-Stored Edit Commands

Frequently used sequences of editor commands may be saved in a file and subsequently executed by
entering just one command. Pre-stored command sequences can also include loops to repeat a series
of commands.

Command sequences are saved using the .S command. This has several different syntaxes:

.S item Save the most recent command

.Sn item Save command n

.S item n,m Save commands n to m

.S item n m Save commands n to m

In each case, item may be given as either a record id to be created in the default $ED file or as a file
name and record id separated by a space. The values n and m may be given in either order. The
commands are always saved in the same sequence as they appear on the editor command stack. The
first line in the saved item has a type code of E as its first character followed by text describing
when it was created.

The $ED file will be created automatically first time that the .S command is used to save commands
in this file.

Multi-line inserts cannot be repeated from a saved command sequence, will cause the .S command
to fail and, if edited into the pre-stored sequence manually, will be cause a warning message to be
displayed when the command sequence is executed.

Alternatively, a user can create a $ED pre-stored item by using the editor:

ED $ED item.name

The first field of the item must contain E as its first character. Subsequent fields contain one editor
instruction in the sequence that the user requires the operations to be performed.

A saved command sequence is executed by a command of the form

.X item

where item is either a record id in $ED or a file name and record id separated by a space. Unlike
other command stack operations, .X item command is added to the command stack so that .X n can
be used to repeat the pre-stored sequence.

Other useful command stack extensions for use with stored edit commands are:

.D item Delete the specified item

.L item List the item. If the record id is given as an asterisk, a list of stored edit
sequences in the file is displayed.

.R item Recall a previously saved set of commands to the stack.

A stored edit sequence may include the PAUSE command. Execution stops and the user may decide
whether to continue by entering .XR or to terminate the sequence by entering .XK. Other editing
commands may be executed before either of these responses is entered.

QM Commands 239

2.6-6

The LOOP command can be used to repeat a series of steps in the stored commands. The format is

LOOP lineno count

The edit continues with the command on lineno. Note that the first edit command in the pre-stored
sequence is on line 2 as line 1 holds the type code and description. The LOOP will be performed
count times before dropping through to the next command. Both lineno and count default to 1 if
omitted.

Note that a sequence such as
001 I xyz
002 LOOP 1 3

executes the insert command four times because the LOOP jumps back three times.

A loop may validly include use of the FI command to file the record. When processing records from
a select list, the pre-stored sequence continues execution from one record to the next.

Editor Command Stack

The following commands manipulate the editor command stack. Unless otherwise stated, the stack
position argument, n, defaults to one.

.A{n} string

Append string to entry n of the editor command stack.

.C{n}/old.string/new.string/
Change old.string to new.string in line n of the editor command stack.

.D{n}
Delete line n of the editor command stack.

.I{n} string
Insert string as entry n of the editor command stack.

.L{n}
List n lines of the editor command stack. The value of n defaults to nine.

.R{n}
Recall line n of the editor command stack to the top of the stack.

.X{n}
Execute line n of the editor command stack.

See also ED Pre-Stored Commands above for additional command stack features.

Setting Default Modes

On entry, ED looks for an X-type VOC record named $ED.OPTIONS and, if this exists, examines
fields 2 onwards of this record for options that set the default modes for the editor. These may be:

BLOCK {ON | OFF} Turn on/off prompting for confirmation on COPY, DROP and
MOVE. Default is ON.

OpenQM240

2.6-6

CASE {ON | OFF} Turn on/off case sensitivity for searches (C, F, L). Default is ON.

NPRINT {ON | OFF} Turn on/off acceptance of non-printing characters on input.
Default is OFF.

Unrecognised options or qualifiers are ignored.

QM Commands 241

2.6-6

4.57 EDIT.LIST

The EDIT.LIST command invokes the ED line editor to edit a saved select list in the
$SAVEDLISTS file.

Format

EDIT.LIST list.name

where

list.name is the name of the saved select list to be edited. If omitted, a prompt is output.

The EDIT.LIST command enters ED to edit the named saved select list. All editing functions are
available and care should be taken to ensure that the record remains a valid select list.

See also:
COPY.LIST, DELETE.LIST, GET.LIST, SAVE.LIST

OpenQM242

2.6-6

4.58 ENCRYPT.FILE

The ENCRYPT.FILE command sets the data encryption key for specific fields or the entire
record.

Format

ENCRYPT.FILE filename field, keyname ...

ENCRYPT.FILE filename keyname

where

filename is the name of the file to which encryption is to be applied.

field is the name or field number of the field to which encryption is to be applied.

keyname is the name of the encryption key to be used. This is case insensitive.

The first form of the ENCRYPT.FILE command sets the encryption key for one or more fields
within a file that uses field level encryption. Encryption cannot be applied to a field that is used for
an alternate key index.

The second form of the ENCRYPT.FILE command sets the encryption key for record level
encryption. Alternate key indices can be defined in files that use record level encryption but,
because the index itself is not encrypted, the indexed fields have reduced security.

If the file contains data records when this command is used, the file is processed to apply the
encryption. A system failure or other process abort during this update will leave the file in a
partially encrypted state and hence render it unusable. Always back up a file before using this
command if the file contains data.

Examples

ENCRYPT.FILE CUSTOMERS CCARD,CARDNO

The above command encrypts the CCARD field of the CUSTOMERS file using the CARDNO
encryption key.

ENCRYPT.FILE CUSTOMERS CKEY

The above command encrypts the CUSTOMERS file using the CKEY encryption key for record
level encryption.

See also:
Data encryption, CREATE.FILE, CREATE.KEY, DELETE.KEY, GRANT.KEY,
LIST.KEYS, RESET.MASTER.KEY, REVOKE.KEY, SET.ENCRYPTION.KEY.NAME

QM Commands 243

2.6-6

4.59 FILE.SAVE

The FILE.SAVE command creates a Pick style FILE-SAVE tape.

Format

FILE.SAVE {account.list} {options}

where

account.list is a list of the names of the accounts to be saved. If omitted and the default
select list is active, this list is used to determine the accounts to be saved.
Otherwise, all accounts referenced in the QMSYS ACCOUNTS file are saved.

options specifies options processing features:

BINARY suppresses translation of newlines to field
marks when saving directory files. Use
this option when saving binary data.

DET.SUP suppresses display of the names of files
saved.

EXCLUDE.REMOTE causes remote files to be omitted as
described below.

INCLUDE.REMOTE causes remote files to be saved as
described below.

NO.QUERY suppresses the confirmation prompt when
using a select list..

The FILE.SAVE command creates a Pick style "compatible mode" tape and saves one or more
QM accounts to it.

The tape to be created must first be opened to the process using the SET.DEVICE command.

The command reports its progress by displaying the name of each file as it is saved unless the
DET.SUP option is used.

FILE.SAVE normally saves all files referenced by F-type records in the VOC of the account being
saved. There is a three level mechanism by which files can be excluded:

1. Field 5 of the F-type VOC entry can contain
D Save the dictionary but omit the data element
E Exclude this file from an ACCOUNT.SAVE or FILE.SAVE
I Include this file in an ACCOUNT.SAVE or FILE.SAVE

2. If field 5 of the VOC record does not specify any of the above flags, the
EXCLUDE.REMOTE and INCLUDE.REMOTE options are used to determine whether
remote files (those with a directory delimiter in their pathnames) are to be saved.

OpenQM244

2.6-6

3. If neither of the above methods of file selection is used, the value of the EXCLREM
configuration parameter is used to determine whether remote files are to be saved.

By use of a combination of the above methods, it should be possible to achieve total control of what
is included in a save.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FIND.ACCOUNT, RESTORE.ACCOUNTS,
SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.LOAD, T.xxx

QM Commands 245

2.6-6

4.60 FIND.ACCOUNT

The FIND.ACCOUNT command locates an account on a Pick style FILE.SAVE tape.

Format

FIND.ACCOUNT account.name

where

account.name is the name of the account to be located.

The FIND.ACCOUNT command can be used to position a multi-account FILE.SAVE tape to a
specified account. The account can then be restored using the ACCOUNT.RESTORE command
with the POSITIONED option.

The tape to be restored must first be opened to the process using the SET.DEVICE command.

Use of FIND.ACCOUNT with an account name that is not present on the tape can be used display
a list of accounts that are on the tape.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, RESTORE.ACCOUNTS,
SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.LOAD, T.xxx

OpenQM246

2.6-6

4.61 FORMAT

The FORMAT command reformats QMBasic source programs to aid readability.

Format

FORMAT {file.name} {record.name} {CASE}

where

file.name is the name of the directory file holding the QMBasic source program. If
omitted, the filename defaults to BP.

record.name is the name of the record within the file.

If the record.name is omitted and select list 0 is active, this is used as the source of record names to
be formatted. Entries in this select list with a .H suffix are ignored. Thus the command

SELECT BP

is adequate to construct the select list.

The FORMAT command reformats a QMBasic program to comply with a conventional indentation
standard. Programs may be entered with no regard to indentation and subsequently tidied up using
FORMAT.

FORMAT will not move line breaks. Statements must be correctly delimited. The format actions
performed are:

The PROGRAM, FUNCTION or SUBROUTINE statement and compiler directives are
adjusted to start at the leftmost column.

Statements inside conditional blocks (THEN, ELSE, ON ERROR, LOCKED, CASE, etc.)
are indented by three columns.

WHILE and UNTIL statements are aligned with their corresponding LOOP or FOR
statement.

Multiple spaces between language elements are reduced to a single space.

Spaces before commas in statements or argument lists are removed. A single space will follow
such a comma.

Labels are aligned to the left margin and any further text except comments is moved to the next
line.

A comment on the same line as a statement is not moved unless not to do so would place it over
the statement or with less than one space before the semicolon.

Lines holding left aligned comments are not changed.

QM Commands 247

2.6-6

Comment lines which commence with spaces are moved to the alignment of the surrounding
code except where the preceding line was a comment (excluding trailing comments) in which
case the line is aligned with the preceding line.

EQUate and $DEFINE lines are unchanged to preserve possible user defined column
alignment.

The CASE option converts all language elements, labels and data names to lowercase. Names
corresponding to EQUate or $DEFINEd tokens retain the casing of the definition.

Where a $INCLUDE directive is encountered, the include record is read to establish any
EQUATE or $DEFINE tokens in it. All references to these tokens in the record being
formatted are converted to upper case. The include record itself is not changed.

If FORMAT fails because of faulty syntax such as unmatched THEN and END statements, the
source record remains unchanged. Diagnostic messages to aid location of such errors are displayed.

Example

 1 2 3 4 5
12345678901234567890123456789012345678901234567890123456789
SUBROUTINE GET.DATE(PROMPT.TEXT, VALUE)
LOOP
DISPLAY PROMPT.TEXT:;* Prompt for date
INPUT NEW.DATE
VALUE = ICONV(NEW.DATE,"DDMY");* Convert the date
WHILE STATUS()
REPEAT
END

A program initially entered as above, after formatting becomes

 1 2 3 4 5
12345678901234567890123456789012345678901234567890123456789
SUBROUTINE GET.DATE(PROMPT.TEXT, VALUE)
 LOOP
 DISPLAY PROMPT.TEXT : ;* Prompt for date
 INPUT NEW.DATE
 VALUE = ICONV(NEW.DATE, "DDMY") ;* Convert the date
 WHILE STATUS()
 REPEAT
END

With the CASE option this becomes

 1 2 3 4 5
12345678901234567890123456789012345678901234567890123456789
subroutine get.date(prompt.text, value)
 loop
 display prompt.text : ;* Prompt for date
 input new.date
 value = iconv(new.date, "DDMY") ;* Convert the date

OpenQM248

2.6-6

 while status()
 repeat
end

QM Commands 249

2.6-6

4.62 FORM.LIST

The FORM.LIST command creates an active select list from a list of record keys in a file.

Format

FORM.LIST {DICT} file.name record.id

where

file.name is the name of the file holding the list of record keys to be used to form the
select list. The DICT qualifier specifies that the dictionary of the file is to be
processed.

record.id is the name of the record in file.name holding the list of record keys to be used
to form the select list.

The FORM.LIST command reads the named record and uses it to form active select list zero. Any
previously active select list zero is discarded. Typically, the list of record keys has been generated
by a user written program.

Example

FORM.LIST INVENT.LISTS INVENTORY
92 records selected.

In this example, a record named INVENTORY in file INVENT.LISTS is restored to become active
select list zero.

OpenQM250

2.6-6

4.63 FSTAT

The FSTAT command collects and report file access statistics.

Format

FSTAT ON file.name... Enable statistic collection
FSTAT file.name... {LPTR} Report statistics
FSTAT OFF file.name... Disable statistics collection

FSTAT GLOBAL {LPTR} Report global system statistics
FSTAT RESET Clear global statistics counters
FSTAT Periodic global statistics display

where

file.name is the name of the file to be processed. Multiple file names may be included in a
single command. Alternatively, if no file.name is specified and the default select
list is active, this list will be used to determine the files to be processed.

LPTR directs the report to the default printer. When reporting for multiple files, each file's
data appears on a separate page.

The FSTAT command controls collection and reporting of file access statistics for dynamic files
and any associated alternate key indices. Directory files cannot be used with this command but are
included in the global statistics.

Use of FSTAT with the ON keyword clears the statistics counters associated with the file and
enables collection of statistics. The overhead for data collection is extremely low except that a file
that is opened to read only a few records will require a write to update the counters on disk when
the file is closed. The LISTF, LISTFL and LISTFR commands can be used to determine which
files have file statistics enabled.

The second form of FSTAT displays or prints a report of the file access statistics. Data collection
must be enabled when this mode is used. When using a select list, entries that do not correspond to
dynamic files for which statistics are enabled will be ignored.

Use of FSTAT with the OFF keyword disables collection of statistics.

The GLOBAL keyword displays a report of statistics accumulated across all files regardless of
whether statistics collection is enabled for the individual files. The global counters are reset when
QM is started. On Windows NT and later, this occurs automatically when the last user leaves QM
unless QMSvc has been configured to maintain a persistent shared memory image. The counters
can be reset manually by use of the RESET keyword.

Use of the FSTAT command with no arguments displays a periodic display of the global statistics,
updated once per second. This shows four columns; the overall data since the counts were last reset,
the data since FSTAT was entered, the data for the last second and average per-second values
since FSTAT was entered.

QM Commands 251

2.6-6

The figures displayed by FSTAT are:

Opens The number of times the file has been opened.

Reads The number of read operations performed. This covers all types of read action
(e.g. READ, READU, READL, MATREAD, MATREADU, MATREADL,
etc). Reads that fail because a lock is held by another user are not counted.

Writes The number of write operations performed.

Deletes The number of delete operations performed. This includes deletes attempted for
records that did not exist.

Clears The number of times the file was cleared.

Selects The number of QMBasic style SELECT operations performed.

Splits The number of dynamic file split actions.

Merges The number of dynamic file merge actions.

AK Reads The number of records read from alternate key indices. This includes both
application level reads (e.g. SELECTINDEX) and internal reads performed
when updating an AK.

AK Writes The number of records written to alternate key indices.

AK Deletes The number of records deleted from alternate key indices.

Example

 GLOBAL FILE STATISTICS
12:02:33

 System Total Average
 Total ..this run ...Per sec ...per sec
Period 00:17:05 00:00:34
Opens 124 0 0 0.0
Reads 273161 143505 4228 4220.7
Writes 258086 134876 3958 3966.9
Deletes 13901 8628 269 253.8
Clears 0 0 0 0.0
Selects 0 0 0 0.0
Splits 4937 10 0 0.3
Merges 0 0 0 0.0
AK Reads 501091 269179 7924 7917.0
AK Writes 344094 178509 5221 5250.3
AK Deletes 156997 90670 2705 2666.8

OpenQM252

2.6-6

4.64 GENERATE

The GENERATE command generates a QMBasic include record from a dictionary.

Format

GENERATE file.name

where

file.name is the name of the file to be processed.

Well structured QMBasic programs should not reference fields by field number but should instead
use names defined using EQUATE tokens. The GENERATE command processes the dictionary
of a named file and constructs an include record with an entry for each field. Optionally, it can also
produce tokens for conversion codes associated with fields.

The generation process is controlled by an X-type record named $INCLUDE in the dictionary. The
fields of this record are:

1 X

2 Target file name for include record. Defaults to BP.

3 Record name to be produced for dynamic array style tokens. Defaults to file.name with .H
suffix.

4 Token prefix for dynamic array style tokens. Each token produced is constructed from the
field name with this prefix. The prefix is separated from the field name by a dot.

5 Text to be inserted into copyright line.

6 "S" if only a single entry is to be included for any field. This is the default. "M" if multiple
D-type records for the same field location should produce separate include tokens.

7 Include conversion code tokens? "N" omits conversion tokens. "Y" generates tokens for
fields that have conversion codes. "A" generates tokens for all fields including those with a
null conversion code.

8 Type to create: D for dynamic array tokens (default), M for matrix tokens. Both may be
used together.

9 Record name to be produced for matrix style tokens. Defaults to file.name with .MAT.H
suffix.

10 Matrix name for matrix style tokens. Defaults to file.name.

11 Token prefix for matrix style tokens. Each token produced is constructed from the field
name with this prefix. The prefix is separated from the field name by a dot.

If the $INCLUDE record does not exist, it will be created when GENERATE is first run for the
file. A prompt will be issued for the type of tokens to be generated (field 8) and the prefix character
to be inserted into fields 4 and/or 11. All other fields will be left empty except for field 1 (X).

When creating the matrix style include record for use with MATREAD, the matrix is dimensioned
to have one more element than the highest field number referenced in the dictionary. This allows for

QM Commands 253

2.6-6

the different ways in which normal and Pick style matrices handle unexpected fields.

OpenQM254

2.6-6

4.65 GET.LIST

The GET.LIST command is used to restore a previously saved select list.

Format

GET.LIST list.name { TO list.no }

where

list.name is the name of the record in $SAVEDLISTS that is to be restored.

list.no is the select list number in the range 0 to 10 to which list.name is to be
restored. If omitted, select list zero is used.

The GET.LIST command retrieves a previously saved select list from $SAVEDLISTS. If the
target list list.no was already active, the retrieved list replaces the previous list.

Examples

GET.LIST OVERDUE.INVOICES
57 records selected.

This example restores the default select list from a list named OVERDUE.INVOICES in the
$SAVEDLISTS file.

GET.LIST INVENTORY TO 3
91 records selected.

This example restores a select list saved as INVENTORY to select list 3.

See also:
COPY.LIST, DELETE.LIST, EDIT.LIST, SAVE.LIST

QM Commands 255

2.6-6

4.66 GET.STACK

The GET.STACK command restores a previously saved command stack.

Format

GET.STACK {stack.name}

where

stack.name is the name of the saved command stack. A prompt is issued if this name is
omitted.

The GET.STACK command replaces the current command stack with the record named
stack.name from the $SAVEDLISTS file. The previous content of the command stack is discarded.

Example

GET.STACK <<@LOGNAME>>
Command stack restored from 'jsmith'

This command restores the command stack from a record with id as the user's login name in the
$SAVEDLISTS file.

See also:
CLEAR.STACK, SAVE.STACK

OpenQM256

2.6-6

4.67 GO

The GO command is used within paragraphs to jump to a labelled line.

Format

GO label{:}

Any number of lines in a paragraph may be labelled. A label name consists of any sequence of
characters except for spaces and mark characters. The label must be terminated with a colon and, if
there is a command on the same line as the label, there must be at least one space after the colon.

The label name in the GO command may be followed by an optional colon with no intervening
spaces.

The command processor scans forwards through the current paragraph for a line with the given
label. An error is reported if the label is not found and the paragraph is aborted. It is valid for a
paragraph to contain multiple instances of the same label name though this is not recommended as it
can make maintenance more difficult.

It is not possible to jump backwards within a paragraph or from a GO command in one paragraph
to a label in another paragraph.

Example

A paragraph containing the sequence

DISPLAY Line 1
GO SKIP
DISPLAY Line 2
DISPLAY Line 3
SKIP: DISPLAY Line 4
DISPLAY Line 5

would display

Line 1
Line 4
Line 5

QM Commands 257

2.6-6

4.68 GRANT.KEY

The GRANT.KEY command grants access to a specific data encryption key. This command can
only be executed by users with administrator rights in the QMSYS account.

Format

GRANT.KEY keyname {GROUP} name ...

where

keyname is the name of the encryption key. This is case insensitive

name ... is a list if usernames for users to be granted access. If prefixed by the GROUP
keyword, this is a list of user groups. On Windows systems, user and group names
are stored as entered but treated as case insensitive internally. On other platforms,
user and group names are case sensitive.

The GRANT.KEY command grants access to an encryption key to one or more users or user
groups. The user will be asked to enter the master key unless it has already been entered during this
session.

No error occurs if the user or group specified already has access to the key.

Example

GRANT.KEY CARDNO jsmith bjones

The above command grants access to the encryption key named CARDNO for users jsmith and
bjones.

See also:
Data encryption, CREATE.FILE, CREATE.KEY, DELETE.KEY, ENCRYPT.FILE,
LIST.KEYS, RESET.MASTER.KEY, REVOKE.KEY, SET.ENCRYPTION.KEY.NAME

OpenQM258

2.6-6

4.69 HELP

The HELP command provides help on a wide variety of topics. This command is not available on
the PDA version of QM.

Format

HELP {topic}

where

topic is the initial topic to display. This may be the name of a verb or a topic category. If
omitted, an initial menu covering major product areas is displayed.

The HELP command invokes the Windows help system in the same way as selection of the help
option from the QM program group. The help system is not available for users connecting from
non-Windows clients though there is a browser based HTML help package available by download.

The operation of this system depends on the way in which the user has entered QM:

· For QM Console users on a Windows server, the help system is invoked on the server for
the specified topic.

· For QMTerm users, a command is sent to the QMTerm session to cause it to open a help
window on the client system. The qm.hlp file must be installed in the QMSYS directory of
the client system.

· For other network users, QM checks the definition of the terminal type in use and, if the u8
(asynchronous command) entry is defined, executes the winhlp32 program on the client
system. The qm.hlp file must be installed in the default location (c:\qmsys\qm.hlp).

· For terminals where the u8 code is not defined, the help system must be run from the QM
program group.

QM Commands 259

2.6-6

4.70 HSM

The HSM command controls the Hot Spot Monitor performance monitoring tool. This command is
not available on the PDA version of QM.

Format

HSM ON {USER n} Start monitoring, clearing the counters

HSM OFF Stop monitoring

HSM {DISPLAY}{USER n} Display performance data

The Hot Spot Monitor records the number of times each program module is called and the
processor time in seconds spent in that module.

The HSM ON command clears any old data and starts monitoring.

The HSM OFF command terminates monitoring.

The HSM DISPLAY command displays the collected data. It may be used while monitoring is
active or after it has been switched off. The DISPLAY keyword can be omitted.

The USER n option causes the command to affect the specified user and is useful in monitoring
processes that do not display a command prompt.

Example

HSM ON
... processing ...
HSM DISPLAY
Calls.. CP time... Program
 1 0.000 !SCREEN
 13 0.060 $CPROC
 18 0.000 !PARSER
 1 0.000 PRINT.DEFERED
 4 0.010 $SETPTR
 1 0.000 CHARGE.TOTAL
 19 0.034 CALC.INVOICE.VALUE
 24 0.000 ADD.MONTH
 3 0.000 REVERSE
 1 0.000 C:\QM\BP.OUT\PROC
 6 17.040 C:\QM\BP.OUT\FINANCE
 19 14.010 C:\QM\BP.OUT\INVOICE
 1 0.800 C:\QM\BP.OUT\CHECK_EX
 1 0.000 $HSM

OpenQM260

2.6-6

4.71 HUSH

The HUSH command suspends or enables output to the display.

Format

HUSH ON Suspend display output

HUSH OFF Resume display output

HUSH Toggle hush status

The HUSH command allows temporary suspension of display output. Output is automatically
resumed in the event of an abort.

Example

HUSH ON
SELECT STOCK WITH QTY < REORDER.LEVEL
HUSH OFF

This sequence selects records from the STOCK file but suppresses any terminal output from the
SELECT command. Use of the COUNT.SUP option to SELECT might be a better alternative in
this example.

QM Commands 261

2.6-6

4.72 IF

The IF command allows conditional execution of sentences within paragraphs.

Format

IF value.1 rel.op value.2 THEN sentence

where

value.1, value.2 are two items to be compared. These may be inline prompts, constants
or @variables as described below.

rel.op is the relational operator to be applied to the two values.

sentence is the sentence to be executed if the condition is true.

The IF command compares two values using a specified relational operator. The values may be
inline prompts, constants or @-variables. Null strings or string constants which include spaces
should be enclosed in single or double quotation marks. The value.1 and value.2 items need to be
quoted if they may evaluate to strings with embedded spaces or to reserved words such as the
relational operators.

Note that because inline prompts are evaluated as the first stage of processing a command, an inline
prompt in the sentence component of an IF statement will be evaluated before determining whether
the condition is true. To avoid this problem, a statement such as

IF @SYSTEM.RETURN.CODE = 1 THEN LIST <<Filename>>

must be written as

IF @SYSTEM.RETURN.CODE # 1 THEN GO SKIP
 LIST <<Filename>>
SKIP:

The relational operator may be any of:

< LT BEFORE LESS

<= LE =<

= EQ EQUAL

>= GE =>

> GT AFTER GREATER

NE <> >< NOT

LIKE MATCHES MATCHING

UNLIKE NOT.MATCHES

~ SAID SPOKEN

OpenQM262

2.6-6

The function of each relational operator as applied to values of different types is the same as its
QMBasic equivalent

Multiple conditions may be linked by the keywords AND and OR. These operators are of equal
priority and are evaluated left to right. Use of brackets to alter the order of interpretation is not
supported in the IF command.

Example

PA
BASIC <<Program name>>
IF @SYSTEM.RETURN.CODE = 1 THEN CATALOGUE <<Program name>>

This paragraph compiles a QMBasic program (the record name of which it obtains using an inline
prompt) and, if successful, adds the program to the system catalogue. In this example, use of the
inline prompt in the conditioned statement is not a problem as the prompt was displayed as part of
processing of the previous line.

QM Commands 263

2.6-6

4.73 LIST.COMMON

The LIST.COMMON command lists named common blocks.

Format

LIST.COMMON

The LIST.COMMON command displays a list of all currently created QMBasic named common
blocks for the process in which the command is executed.

Example

LIST.COMMON
SYS.FILES
SCREEN.DATA

See also:
DELETE.COMMON

OpenQM264

2.6-6

4.74 LIST.DIFF

The LIST.DIFF command creates a new named select list from the entries that appear in one
named list but not in another named list.

Format

LIST.DIFF list1 {list2 {tgt.list}} {COUNT.SUP}

where

list1, list2 identify the select lists to be merged. These must correspond to the names
of records in the $SAVEDLISTS file. If list2 is omitted, a prompt is
displayed for the name.

tgt.list is the name of the new list to be created in $SAVEDLISTS. It is valid for
tgt.list to be the same as one of the source lists. if tgt.list is omitted, a
prompt is displayed for this name.

COUNT.SUP indicates that display of the record count in the merged list is to be
suppressed.

The LIST.DIFF command allows construction of one select list from two others. The resultant list
will contain all of the items that are in list1 but not in list2.

The result list will replace any existing list with the name tgt.list. The ordering of tgt.list is
undefined.

@SYSTEM.RETURN.CODE is set to the number of items in the new list or a negative error code.

Example

LIST.DIFF FRANCE.CUSTOMERS MAJOR.CUSTOMERS MERGED.CUSTOMERS
41 records selected.

This example merges two previously saved select lists, one holding keys for customers in France,
the other for major customers to form a new list containing non-major French customers.

See also:
LIST.INTER, LIST.UNION, MERGE.LIST

QM Commands 265

2.6-6

4.75 LIST.FILES

The LIST.FILES command displays details of open files.

Format

LIST.FILES {DETAIL}

The LIST.FILES command displays the number of files currently open, the peak number of files
open and the limit on the number of open files as set by the NUMFILES configuration parameter.

The DETAIL option extends the report to show a list of open file pathnames.

The NUMFILES configuration parameter is a hard limit on the number of files that may be open at
one time by all QM users. A file opened by multiple users only counts as one file. Attempting to
exceed this limit will cause the application to fail. The displayed peak open count is useful in
determining whether the value of NUMFILES is large enough.

Example

LIST.FILES DETAIL
Number of files open = 4. Peak = 16. Limit (NUMFILES) = 40.

C:\QM\VOC
C:\QMSYS\$IPC
C:\QM\BP
C:\QM\&SED.EXTENSIONS&

OpenQM266

2.6-6

4.76 LIST.INDEX

The LIST.INDEX command reports details of one or more alternate key indices.

Format

LIST.INDEX filename field(s) {STATISTICS} {DETAIL}

The LIST.INDEX command displays information about alternate key indices for the named
field(s). The keyword ALL can be used to report all indices on the file.

The basic report appears as below.

Alternate key indices for file ORDERS
Number of indices = 1

Index name...... En Type Nulls S/M Fmt Field/Expression
DATE Y D Yes S R 17

The columns following the index name show:

En Y if the index is enabled (built and active). N if it requires building.

Type A, C, D, I or S corresponding to the dictionary entry type use to define the
index.

Nulls Yes or No depending whether records with null values of the indexed field
are included in the index.

S/M S or M corresponding to the single/multi-valued nature of the indexed data.

Fmt L or R corresponding to left or right alignment of the indexed data.

Field/Expression The field number or evaluated expression.

Use of the STATISTICS (short form STATS) keyword extends the report to include statistical
information about the index showing the number of index entries (different field values) and the
minimum, average and maximum number of records per index entry.

Use of the DETAIL keyword shows the statistics and also shows up to 63 characters of each key
value and the number of records for that key value.

See also:
BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, MAKE.INDEX

QM Commands 267

2.6-6

4.77 LIST.INTER

The LIST.INTER command creates a new named select list from the entries that appear in both of
two other named lists.

Format

LIST.INTER list1 {list2 {tgt.list}} {COUNT.SUP}

where

list1, list2 identify the select lists to be merged. These must correspond to the names
of records in the $SAVEDLISTS file. If list2 is omitted, a prompt is
displayed for the name.

tgt.list is the name of the new list to be created in $SAVEDLISTS. It is valid for
tgt.list to be the same as one of the source lists. if tgt.list is omitted, a
prompt is displayed for this name.

COUNT.SUP indicates that display of the record count in the merged list is to be
suppressed.

The LIST.INTER command allows construction of one select list from two others. The resultant
list will contain all of the items that are in both list1 and list2.

The result list will replace any existing list with the name tgt.list. The ordering of tgt.list is
undefined.

@SYSTEM.RETURN.CODE is set to the number of items in the new list or a negative error code.

Example

LIST.INTER FRANCE.CUSTOMERS MAJOR.CUSTOMERS MERGED.CUSTOMERS
41 records selected.

This example merges two previously saved select lists, one holding keys for customers in France,
the other for major customers to form a new list containing the major customers in France.

See also:
LIST.DIFF, LIST.UNION, MERGE.LIST

OpenQM268

2.6-6

4.78 LIST.KEYS

The LIST.KEYS command lists details of encryption keys.

Format

LIST.KEYS {LPTR {unit}}

LIST.KEYS filename {LPTR {unit}}

where

filename is the name of the file to be reported.

The first form of the LIST.KEYS command is available only to users with administrator rights in
the QMSYS account. It produces a report of the encryption key names defined in the key vault,
showing the encryption algorithm name and the users who have access to the key. The actual
encryption key is not reported. The user will be asked to enter the master key unless it has already
been entered during this session.

The second form of the LIST.KEYS command is available to all users and produces a report of the
encryption keys used by the named file.

In either form, the LPTR keyword can be used to direct the output to a printer. If the print unit
number is omitted, the default printer (unit 0) is used.

Examples

LIST.KEYS
 Key.............. Algorithm Users..............
Groups.............
 CARDNO AES128 jsmith
 bjones
 RHKEY AES256 jsmart

The above example shows the report from the first format of the LIST.KEYS command. There are
two encryption keys defined on this system.

LIST.KEYS CLIENTS
Filename: CLIENTS
Pathname: /usr/sales/CLIENTS

Field 7, CARDNO
Field 22, RHKEY

The above example shows the report from the second format of the LIST.KEYS command. The
CLIENTS file uses field level encryption with a different key for each encrypted field.

See also:

QM Commands 269

2.6-6

Data encryption, CREATE.FILE, CREATE.KEY, DELETE.KEY, ENCRYPT.FILE,
GRANT.KEY, RESET.MASTER.KEY, REVOKE.KEY, SET.ENCRYPTION.KEY.NAME

OpenQM270

2.6-6

4.79 LIST.LOCKS

The LIST.LOCKS command reports the state of the 64 system wide task locks.

Format

LIST.LOCKS

The LIST.LOCKS command displays a table of locks showing the user number of the process
holding each of the 64 task locks where appropriate. The displayed user number is followed by an
asterisk if it is the process from which the LIST.LOCKS command was executed.

Examples

LIST.LOCKS
 0: 1: 2: 3: 4: 5: 6: 7: 1*
 8: 9: 10: 11: 12: 13: 14: 15:
16: 17: 18: 19: 3 20: 21: 22: 23:
24: 25: 26: 27: 28: 29: 30: 31:
32: 33: 34: 35: 36: 37: 38: 39:
40: 41: 42: 43: 44: 45: 46: 47:
48: 49: 50: 51: 52: 53: 54: 55:
56: 57: 58: 59: 60: 61: 62: 63:

This example shows the display when task locks 7 and 19 are in use. Lock 7 is held by user 1 who
also issued the LIST.LOCKS command. Lock 19 is held by user 3.

LIST.LOCKS
No task locks reserved by any user

In this example, there are no task locks in use.

See also:
CLEAR.LOCKS, LOCK

QM Commands 271

2.6-6

4.80 LIST.READU

The LIST.READU command displays details of file and record locks.

Format

LIST.READU {user} {DETAIL} {NO.PAGE} {LPTR {n}} {WAIT}

where

user is the user number for which the locks are to be reported. If omitted, all locks
are displayed.

DETAIL includes the limit, current count and peak number of record locks.

NO.PAGE suppresses display pagination.

LPTR {n} directs output to logical print unit n. If n is omitted, it defaults to zero, the
default print unit.

WAIT includes details of users waiting for locks held by other users.

The LIST.READU command displays or prints details of file, read and update locks held by one or
all users.

Example

Record lock limit = 400, Current = 3, Peak = 73
User File Path......................... Type
Id............................
 1 2 D:\SALES\STOCK RU P-174-43
 1 2 D:\SALES\STOCK RU P-967-47
 5 2 D:\SALES\STOCK RU P-954-55
 2 4 D:\SALES\INVOICES FX
 3 4 D:\SALES\INVOICES WAIT 17565

In the above report, users 1 and 5 hold record update locks in file 2 (D:\SALES\STOCK) and user
2 has a file lock on file 4 (D:\SALES\INVOICES). User 3 is waiting to lock record 17565 in file 4
but is blocked by user 2. Details of users waiting for locks are only shown if the WAIT keyword is
used.

The first line of the above report is only shown if the DETAIL keyword is used. Note that the
counts are for active record locks only. The file lock and the user waiting for a lock in this example
do not contribute to these numbers. The peak number of locks is useful in determining a good value
for the NUMLOCKS configuration parameter.

The file number is an internal reference to the file and is also needed for the UNLOCK command.

The lock type is shown as RL for shareable record locks, RU for record update locks and FX for

OpenQM272

2.6-6

file locks. A type code of WAIT is shown for users waiting for locks.

QM Commands 273

2.6-6

4.81 LIST.UNION

The LIST.UNION command creates a new named select list from the entries that appear in either
of two other named lists. Items that appear in both lists are not duplicated.

Format

LIST.UNION list1 {list2 {tgt.list}} {COUNT.SUP}

where

list1, list2 identify the select lists to be merged. These must correspond to the names
of records in the $SAVEDLISTS file. If list2 is omitted, a prompt is
displayed for the name.

tgt.list is the name of the new list to be created in $SAVEDLISTS. It is valid for
tgt.list to be the same as one of the source lists. if tgt.list is omitted, a
prompt is displayed for this name.

COUNT.SUP indicates that display of the record count in the merged list is to be
suppressed.

The LIST.UNION command allows construction of one select list from two others. The resultant
list will contain all of the items that are in list1 plus all of the items in list2 that are not also in list1.

The result list will replace any existing list with the name tgt.list. The ordering of tgt.list is
undefined.

@SYSTEM.RETURN.CODE is set to the number of items in the new list or a negative error code.

Example

LIST.INTER FRANCE.CUSTOMERS MAJOR.CUSTOMERS MERGED.CUSTOMERS
41 records selected.

This example merges two previously saved select lists, one holding keys for customers in France,
the other for major customers to form a new list containing the major customers in France.

See also:
LIST.DIFF, LIST.INTER, MERGE.LIST

OpenQM274

2.6-6

4.82 LIST.USERS

The LIST.USERS command lists users from the register of users for network security checks.

User management is not applicable to the PDA version of QM.

Format

LIST.USERS

The LIST.USERS command lists the names of all entries in the user name register. This will
include an entry for Console, the pseudo name used for QMConsole connections.

The report shows the user name, the login account (if set), the date and time of last login and
whether the user has administrator rights.

Example

LIST.USERS
User name....................... Login account... Last
login..... Admin
ADMINISTRATOR 22 Oct 06
17:27 Yes
BERT QMTEST 04 Nov 02
10:40 No
Console 03 Nov 06
13:49 Yes
GEORGE SALES 03 Nov 06
09:03 No
MARTIN 01 Nov 06
17:23 No

See also:
ADMIN.USER, CREATE.USER, DELETE.USER, PASSWORD, SECURITY

QM Commands 275

2.6-6

4.83 LIST.VARS

The LIST.VARS command displays user @-variables.

Format

LIST.VARS {ALL}

The LIST.VARS command displays the values of user defined @-variables. The optional ALL
keyword extend the display to include the standard @USER.RETURN.CODE and @USER0 to
@USER4 variables.

Example

LIST.VARS
LOOP.CT : 7
LAST.LOG: 41926

See also:
SET

OpenQM276

2.6-6

4.84 LISTF

The LISTF command lists all files defined in the VOC.

Format

LISTF {LPTR}

The LISTF command is a sentence to list all F type VOC entries. The listing shows the VOC name
of the file, the file type, the description (field 1 of the VOC entry), the data portion pathname (field
2) and the dictionary pathname (field 3). The report is sorted by file name.

The file type column shows:

DH for a dynamic hash file. This type code will be followed by
E the file uses encryption
I the file has alternate key indices
S file statistics are enabled
T the file has a trigger function defined

Dir for a directory file

Mult for a multifile

Err if the file cannot be opened

The column is blank for a VOC entry with no data pathname.

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

See also:
CREATE.FILE, DELETE.FILE, LISTFL, LISTFR

QM Commands 277

2.6-6

4.85 LISTFL

The LISTFL command lists all files defined in the VOC that are local to the account.

Format

LISTFL {LPTR}

The LISTFL command is a sentence to list all F type VOC entries referencing files that are local to
the account. Selection is performed by reporting only those records for which the data portion
pathname does not contain a back slash. It is thus possible to defeat this selection process by using
absolute pathnames for local files. The CREATE.FILE command always uses the file name only
for a local file.

The listing shows the VOC name of the file, the file type, the description (field 1 of the VOC entry),
the data portion pathname (field 2) and the dictionary pathname (field 3). The report is sorted by
file name.

The file type column shows:

DH for a dynamic hash file. This type code will be followed by
E the file uses encryption
I the file has alternate key indices
S file statistics are enabled
T the file has a trigger function defined

Dir for a directory file

Mult for a multifile

Err if the file cannot be opened

The column is blank for a VOC entry with no data pathname.

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

See also:
CREATE.FILE, DELETE.FILE, LISTF, LISTFR

OpenQM278

2.6-6

4.86 LISTFR

The LISTFR command lists all files defined in the VOC that are remote to the account.

Format

LISTFR {LPTR}

The LISTFR command is a sentence to list all F type VOC entries referencing files that are remote
to the account. Selection is performed by reporting only those records for which the data portion
pathname contains a back slash. It is thus possible to defeat this selection process by using absolute
pathnames for local files. The CREATE.FILE command always uses the file name only for a local
file.

The listing shows the VOC name of the file, the file type, the description (field 1 of the VOC entry),
the data portion pathname (field 2) and the dictionary pathname (field 3). The report is sorted by
file name.

The file type column shows:

DH for a dynamic hash file. This type code will be followed by
E the file uses encryption
I the file has alternate key indices
S file statistics are enabled
T the file has a trigger function defined

Dir for a directory file

Mult for a multifile

Err if the file cannot be opened

The column is blank for a VOC entry with no data pathname.

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

See also:
CREATE.FILE, DELETE.FILE, LISTF, LISTFL

QM Commands 279

2.6-6

4.87 LISTK

The LISTK command lists all keywords defined in the VOC.

Format

LISTK {LPTR}

The LISTK command is a sentence to list all K type VOC entries defining keywords.

The listing shows the keyword, the description (field 1 of the VOC entry) and the keyword value.
The report is sorted by keyword value.

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

OpenQM280

2.6-6

4.88 LISTM

The LISTM command lists all menus defined in the VOC.

Format

LISTM {LPTR}

The LISTM command is a sentence to list all M type VOC entries.

The listing shows the VOC name of the menu and its title line.

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

QM Commands 281

2.6-6

4.89 LISTPA

The LISTPA command lists all paragraphs defined in the VOC.

Format

LISTPA {LPTR}

The LISTPA command is a sentence to list all PA type VOC entries.

The listing shows the VOC name of the paragraph, the description (field 1 of the VOC entry) and
the first command in the paragraph (field 2).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

OpenQM282

2.6-6

4.90 LISTPH

The LISTPH command lists all phrases defined in the VOC.

Format

LISTPH {LPTR}

The LISTPH command is a sentence to list all PH type VOC entries.

The listing shows the VOC name of the phrase, the description (field 1 of the VOC entry) and the
phrase expansion (field 2).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

QM Commands 283

2.6-6

4.91 LISTPQ

The LISTPQ command lists all PROCs defined in the VOC.

Format

LISTPQ {LPTR}

The LISTPQ command is a sentence to list all PQ type VOC entries.

The listing shows the VOC name of the PROC, the description (field 1 of the VOC entry) and the
first command in the PROC (field 2).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

OpenQM284

2.6-6

4.92 LISTQ

The LISTQ command lists all indirect file references defined in the VOC.

Format

LISTQ {LPTR}

The LISTQ command is a sentence to list all Q type VOC entries.

The listing shows the VOC name of the item, the description (field 1 of the VOC entry), target
account(field 2) and target file (field 3).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

QM Commands 285

2.6-6

4.93 LISTR

The LISTR command lists all remote items defined in the VOC.

Format

LISTR {LPTR}

The LISTR command is a sentence to list all R type VOC entries.

The listing shows the VOC name of the item, the description (field 1 of the VOC entry), the target
file (field 2) and the target record id (field 3).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

OpenQM286

2.6-6

4.94 LISTS

The LISTS command lists all sentences defined in the VOC.

Format

LISTS {LPTR}

The LISTS command is a sentence to list all S type VOC entries.

The listing shows the VOC name of the sentence, the description (field 1 of the VOC entry) and the
sentence expansion (field 2).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

QM Commands 287

2.6-6

4.95 LISTU

The LISTU command lists the users currently in QM. This command is not available on the PDA
version of QM.

Format

LISTU

The LISTU command displays a list of users in QM. For each user, it shows their QM user
number, the corresponding operating system process id and their network address or device name
and user name. The network address is shown as "Console" for console users (sessions running QM
directly rather than a network connection) or "Phantom" for a background process. The user
executing the LISTU command is marked by an asterisk at the left edge of the displayed report. For
phantom users, the parent user number is shown unless the original parent process has logged out.

Example

LISTU
 User Pid Puid Login time Origin : User name
* 1 156 15 Apr 11:48 Console: ADMINISTRATOR
 2 186 15 Apr 11:21 193.118.13.10: JSMITH
 4 196 2 15 Apr 12:02 Phantom: ADMINISTRATOR

OpenQM288

2.6-6

4.96 LISTV

The LISTV command lists all verbs defined in the VOC.

Format

LISTV {LPTR}

The LISTV command is a sentence to list all V type VOC entries.

The listing shows the VOC name of the verb, the description (field 1 of the VOC entry), the verb
type (field 2) and the processing function or internal dispatch code (field 3).

The LPTR keyword will direct the output to the printer. Other query processor keywords can be
appended to the command.

QM Commands 289

2.6-6

4.97 LOCK

The LOCK command sets a task lock.

Format

LOCK lock.number {NO.WAIT}

where

lock.number is the number of the task lock (0 to 63) to be set.

NO.WAIT specifies that the process is not to wait if the lock is not available.

The LOCK command sets one of the 64 system wide task locks. Four situations exist:

If the lock is available, the process acquires the lock and continues. @SYSTEM.RETURN.CODE
will be set to lock.number.

If the lock is already owned by this process, a warning message is displayed and execution
continues. @SYSTEM.RETURN.CODE will be set to lock.number.

If the lock is owned by another process and the NO.WAIT option has been used, a message is
displayed indicating the unavailability of the lock and the process continues. The value of
@SYSTEM.RETURN.CODE will be negative (-ER$LCK) and can be tested to check for this
situation in paragraphs.

If the lock is owned by another process and the NO.WAIT option has not been used, a message is
displayed indicating that the process is waiting and execution is suspended until the lock becomes
available. The break key may be used to interrupt this wait.

Examples

LOCK 5
Set task lock 5

In this example, task lock 5 was available when the LOCK command was executed.

LOCK 5
Waiting for task lock to become available

In this example, task lock 5 held by another process when the LOCK command was executed. The
process waits for the lock to become available.

LOCK 5 NO.WAIT
Task lock is already in use

As in the previous example, task lock 5 was held by another process when the LOCK command

OpenQM290

2.6-6

was executed. In this case, the NO.WAIT option causes the process to continue without waiting for
the lock to become available.

See also:
CLEAR.LOCKS, LIST.LOCKS

QM Commands 291

2.6-6

4.98 LOGIN.PORT

The LOGIN.PORT command logs in a serial port from within another QM session. This command
is currently only available on Windows systems.

Format

LOGIN.PORT port {account} {params}

where

port is the serial port name (e.g. COM1).

account is the QM account in which the user is to run. If omitted, the new process runs in
the same account as the user issuing the command.

params is any combination of the following serial communications parameters:
BAUD rate Sets the data rate (default 9600).
BITS n Sets the number of bits per character (default 8).
PARITY mode Sets the parity mode: NONE (default), ODD or EVEN.
STOP.BITS n Sets the number of stop bits (default 1).

The LOGIN.PORT command creates a new QM process that uses the named serial port as its
terminal device. This process will run with the same user name as the process performing the
command.

The new process will execute the MASTER.LOGIN and LOGIN paragraphs in the same way as
any other QM process. The LOGIN paragraph could be used, for example, to start a program that
monitors the named port for activity.

OpenQM292

2.6-6

4.99 LOGMSG

The LOGMSG command adds a line to the system error log. This statement has no effect on the
PDA version of QM.

Format

LOGMSG text

where

text is the message to be logged.

This command is identical in effect to use of the LOGMSG statement in a QMBasic program.

QM includes the option to maintain a log of system error messages in a file named errlog in the
QMSYS account. The LOGMSG command can be used to write messages into this file. If the
error log is disabled, the LOGMSG command will be ignored.

QM Commands 293

2.6-6

4.100 LOGOUT

The LOGOUT command terminates a QM process.

Format

LOGOUT {user}
LOGOUT ALL

where

user is the user number of the process to terminate. Multiple user numbers may be
given.

The LOGOUT command aborts the specified process. The process is terminated without execution
of the ON.EXIT paragraph.

If user is omitted, the LOGOUT command terminates the user's own session. A user who does not
have administrator rights can only log out processes running under the same user name.

The LOGOUT ALL form of the command, available only in the QMSYS account to users with
administrator rights, logs out all QM processes except the one from which it is issued.

Example

LOGOUT 2
Phantom 2 : forced logout

This example shows forced termination of phantom user 2.

OpenQM294

2.6-6

4.101 LOGTO

The LOGTO command moves to an alternative account directory without leaving QM.

Format

LOGTO name {RESET}

where

name is the name of the target account. This may be an account name as in the
ACCOUNTS register of the QMSYS account or the pathname of the new account
directory.

RESET causes the command processor to discard all active paragraphs, menus, etc.

Multiple accounts are useful where there are several distinct projects. They can also be used to
separate development and production versions of an application.

The LOGTO command closes the current VOC, moves to the account directory specified by name
and opens the VOC of the new directory. If the RESET keyword is present, any active programs,
menus, etc at the current command processor level are discarded. This is particularly useful when
using LOGTO in a menu.

If the VOC of the current account contains an executable item named ON.LOGTO, usually a
paragraph, this will be executed before moving to the new account.

If the VOC of the new account contains an executable item named LOGIN, this will be executed on
arrival in the new account.

If the LOGTO action is successful, the account name as reported by the WHO command or
returned as the value of the @WHO system variable is set to the new account.

LOGTO will fail if name cannot be found or is not a valid account.

The QUIT command to leave QM will return to the original account directory before exiting.

QM Commands 295

2.6-6

4.102 LOOP / REPEAT

The LOOP and REPEAT commands define the top and bottom of a group of sentences to be
repeated within a paragraph.

Format

LOOP
 sentence(s)
REPEAT

where

sentence(s) are the sentence(s) to be executed within the loop.

The LOOP and REPEAT statements surround one or more sentences to be repeated. The loop
continues until the paragraph terminates by use of STOP or ABORT, something run by the
paragraph causes an abort event, or a GO statement is used to leave the loop.

Loops may be nested to any depth. Each REPEAT statement is paired with a corresponding
LOOP statement and is equivalent to a GO statement that allows backward jumps to a label at the
position of the LOOP statement. The behaviour of paragraphs that branch into or out of loops can
be determined by this label and GO equivalent.

The keywords LOOP and REPEAT are recognised by the paragraph pre-processor and not via the
VOC and hence cannot be replaced by alternative words.

Example

PA
LOOP
 IF <<A,File to delete>> = "" THEN GO DONE
 DELETE.FILE <<File to delete>>
REPEAT
DONE:

This paragraph prompts for names of files to delete until a blank line is entered. Note the need for
the A control option on the first inline prompt in the loop so that the prompt is repeated on each
cycle.

Because the DONE label is at the end of the paragraph, the above example could alternatively be
written as

PA
LOOP
 IF <<A,File to delete>> = "" THEN STOP
 DELETE.FILE <<File to delete>>
REPEAT

OpenQM296

2.6-6

4.103 MAKE.INDEX

The MAKE.INDEX command creates and builds an alternate key index. It is equivalent to use of
CREATE.INDEX followed by BUILD.INDEX.

Format

MAKE.INDEX filename field(s) {NO.NULLS} {PATHNAME index.path}

where

filename is the name of the file for which the index is to be built.

field(s) is one or more field names for which indices are to be created.

The MAKE.INDEX command creates the file structures to hold an alternate key index and then
builds the index.

The field(s) referenced in the command must correspond to D, I, A, S or C-type dictionary items.
The dictionary items can be deleted once the index has been constructed as all details of the indexed
field are stored in the index file but this is not recommended. The value to be indexed must not
exceed 255 characters. Values longer than this will not be included in the index.

Indices constructed on I or C-type dictionary items or on A or S-type items that use correlative
expressions should be such that they always produce the same result when executed for the same
data record. Examples of possibly invalid I-type expressions would be those that use the date or
time and those that use the TRANS() function to access other files.

The NO.NULLS specifies that no entry is to be added to the index for records where the indexed
field is null.

Normally, the indices are stored as subfiles in the directory that represents the data file. The
PATHNAME option allows the indices to be stored in an alternative location. This might be
useful, for example, to balance loads across multiple disks or to exclude indices from backups as
they can always be recreated.

All indices for a single data file must be stored together. The PATHNAME option can be used
when creating the first index and specifies the pathname of a new directory that will be created at
the same time as the index. If this option is included when creating subsequent indices the
index.path must be the same as for the first index. It is suggested that the pathname should be based
on the data file name for ease of recognition.

Index subfiles can be moved using the operating system level qmidx program.

The MAKE.INDEX command requires exclusive access to the file during the build phase.

Data Encryption

Alternate key indices may be applied to files that use record level data encryption but developers
should be aware that the index itself is not encrypted and hence weakens the security of the indexed

QM Commands 297

2.6-6

fields.

Files using field level encryption cannot have indices on encrypted fields. Also, indices constructed
from calculated values such as I-types that use encrypted fields will fail if the record is updated by
a user that does not have access to the relevant encryption key.

Example

MAKE.INDEX ORDERS DATE

The above command creates and builds an index on the DATE field of the ORDERS file.

See also:
BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, LIST.INDEX, MAKE.INDEX

OpenQM298

2.6-6

4.104 MAP

The MAP command produces a map of the system catalogue.

Format

MAP {ALL} {LPTR {n}} {FILE {file.name}}

where

ALL indicates that system entries are to be included in the map.

LPTR specifies that the output is to be sent to a print unit. The print unit number, n,
defaults to 0 if omitted.

FILE specifies that the output is to be sent to a file. If file.name is omitted, the $MAP
file is used by default.

The MAP command produces a combined list of the contents of the global and private catalogues.
Without the FILE keyword, the map shows the name of each catalogued item with its date and time
of compilation and its size, separating the object code and cross-reference tables. Items from the
global catalogue have an asterisk in the leftmost column of the report. The report ends with a line
giving the total size of all reported items.

The file produced with the FILE keyword can be listed using the query processor.

The private catalogue is normally a subdirectory, cat, under the account directory but can be moved
by creating an X-type VOC entry named $PRIVATE.CATALOGUE in which field 2 contains the
pathname of the alternative private catalogue directory. This only takes effect when QM is
re-entered or on use of the LOGTO command. This feature is particularly useful where two or
more accounts are to share a common private catalogue.

Example

MAP ALL LPTR

The above command prints a map of the catalogue, including system items.

See also:
BASIC, CATALOGUE, DELETE.CATALOGUE

QM Commands 299

2.6-6

4.105 MED

The MED command creates or modifies a menu definition.

Format

MED {file.name {menu.name}}

where

file.name identifies the file holding the menu.

menu.name is the name of the menu record to be processed. Menu names are case
sensitive.

If the file or menu names are omitted from the command line, MED prompts for these. When
prompting for menu names, MED will edit the given menu and then prompt for a further name.
This is repeated until a null menu name is entered.

Menus are normally stored in the VOC file but can be stored in any file of the application designer's
choice if an R-type (remote) VOC record is used to point to the menu record in the other file.

If the menu does not exist, MED prompts for confirmation that it is to be created.

The display of a typical menu might appear as shown below:

Title :ORDER PROCESSING SYSTEM : MAIN MENU
Subr :OPS.MENU.VALIDATE
Prompt:
Exits :
Stops :
--
Text 1:Customer Maintenance
Action:CUST.MENU
Help :Enter customer maintenance menu
Access:CUST
Hide :
--
Text 2:Order Entry
Action:RUN BP ORDER.ENTRY
Help :Runs the order entry system
Access:ORDERS
Hide :
--
Text 3:Invoice Management
Action:INV.MENU
Help :Enter invoice management menu
Access:INVOICES
Hide :

VOC ORDERS F1=Help
Access control subroutine key for this option

OpenQM300

2.6-6

MED uses a subset of the SED full screen editor default key bindings to allow the user to move
around within the display and enter or modify text. These are:

Ctrl-A Home Move to start of line
Ctrl-B Cursor left Move left one character
Ctrl-D Del char Delete character
Ctrl-E End Move to end of line
Ctrl-F Cursor right Move right one character
Ctrl-G Cancel
Ctrl-K Kill line
Ctrl-L Refresh screen
Ctrl-N Cursor down Move down one line
Ctrl-O Insert Toggle overlay mode
Ctrl-P Cursor up Move up one line
Ctrl-V Page down Move down one page
Ctrl-X C Ctrl-X Ctrl-C Exit
Ctrl-X S Ctrl-X Ctrl-S Save
Ctrl-Y Esc-Y Paste
Esc-V Page up Move up one page
Esc-< Ctrl-Home Move to top
Esc-> Ctrl-End Move to bottom
Backspace Backspace
F1 Help
F4 Show menu

The leftmost few characters of each line display a line type key. The remainder of the line is
editable and the line on which the cursor is positioned will pan if required to allow text data wider
than the display device.

The bottom line of the screen displays a single line help prompt at all times. Pressing F1 will
display a help page appropriate to the line on which the cursor is positioned. Pressing F1 again
while this help text is displayed will display help on the key bindings.

The first section of the menu data displayed by MED contains information that relates to the entire
menu:

The menu title line

The access control subroutine name

The prompt text

Exit codes

Stop codes

The remainder of the displayed data is a set of sections corresponding to the menu options in the
order in which they will appear on the menu. Each section contains:

The option text

The action sentence. Terminate with a semicolon for an automatic "Press return to continue"
prompt

Help text for the option

QM Commands 301

2.6-6

The access subroutine key

A flag indicating whether the option is to be hidden if it is unavailable

The separator line between each section has some special features. Pressing the return key while on
this line inserts a new menu option entry under the line. Use of the kill line function (Ctrl-K) on this
line deletes the menu option under the line, placing it in the kill buffer. Repeated use of the kill line
function places all of the deleted menu options in the kill buffer.

When the kill buffer contains one or more complete menu options, use of the paste function (Ctrl-Y)
inserts the kill buffer content under the current option. Use of kill and paste can be used to move
options within the menu.

When on a text line, the kill line function deletes all text after the cursor, placing it in the kill buffer.
The paste function can be used to paste this text into another line.

See VOC M-type records for more details of menu definitions.

OpenQM302

2.6-6

4.106 MERGE.LIST

The MERGE.LIST command creates a new active select list by merging two other lists according
to one of three relational operators.

Format

MERGE.LIST list1 rel.op list2 {TO tgt.list} {COUNT.SUP}

where

list1, list2 identify the select lists to be merged. These must be select list numbers
in the range 0 to 10. They may not reference the same list.

rel.op is the relational operator and is one of

INTERSECTION Create a new list containing only those record
keys that appear in both list1 and list2. The
keyword may be abbreviated to
INTERSECT.

UNION Create a new list containing all record keys
from both list1 and list2. Keys appearing in
both lists appear only once in the resultant
list.

DIFFERENCE Create a new list containing all record keys
from list1 except those that are also in list2.
The keyword may be abbreviated to DIFF.

tgt.list is the number of the select list (0 to 10) to receive the result. If omitted,
select list zero is used. It is valid for tgt.list to reference one of the
source lists.

COUNT.SUP indicates that display of the record count in the merged list is to be
suppressed.

The MERGE.LIST command allows construction of one select list from two others. Use of
MERGE.LIST can be significantly faster than a full select of the file to create the new list.

If either source list has already been partially processed before the MERGE.LIST command is
executed, only the remaining unprocessed items are used. The resultant list will replace any already
active tgt.list. The source lists are cleared after the new list has been set up. The ordering of tgt.list
is undefined.

@SYSTEM.RETURN.CODE is set to the number of items in the new list or a negative error code.

Example

GET.LIST FRANCE.CUSTOMERS TO 1

QM Commands 303

2.6-6

27 records selected.
GET.LIST GERMANY.CUSTOMERS TO 2
31 records selected.
MERGE.LIST 1 UNION 2 TO 3
58 records selected.

This example restores two saved select lists, one holding keys for customers in France, the other for
customers in Germany and merges these to form select list 3 as a list of customers in either of these
countries.

See also:
LIST.DIFF, LIST.INTER, LIST.UNION

OpenQM304

2.6-6

4.107 MESSAGE

The MESSAGE command sends a message to selected other users. This command is not available
on the PDA version of QM.

Format

MESSAGE user {IMMEDIATE} {message.text}

MESSAGE OFF

MESSAGE ON

where

user identifies the user(s) to receive the message. This may be a user number, a
case insensitive user name, or the keyword ALL. Messages cannot be sent
to phantom or QMClient processes.

IMMEDIATE causes immediate display of the message as described below.

message.text is the text of the message to be sent. If omitted from the command line, the
user is prompted to enter the text. With the IMMEDIATE keyword,
messages that are wider than the screen are truncated on terminals that
support immediate message display.

Where a specific user number is given, the MESSAGE command checks that this user is logged in
and is not a phantom process. The ALL keyword sends the message to all non-phantom users
(except the user sending the message).

Messages are normally displayed when the user next arrives at the command prompt. If the
IMMEDIATE keyword is used and the destination process is using a terminal that supports screen
save and restore (QMConsole on Windows, QMTerm, AccuTerm), the message is displayed
immediately and the screen is restored when the user acknowledges the message.

The MESSAGE OFF command disables receipt of messages. Messages sent while message
reception is disabled are not queued for later display and will never be seen. Use of the MESSAGE
command with a user number will report an error if the target user has message reception disabled.

The MESSAGE ON command enables receipt of messages. This is the default state.

@SYSTEM.RETURN.CODE is set to zero for success or to a negative error code.

QM Commands 305

2.6-6

4.108 MODIFY

The MODIFY command enters the QM record modification processor.

Format

MODIFY {DICT} file.name { field list } { id.list }

where

DICT indicates that the dictionary portion of the file is to be modified.

file.name is the name of the file to be modified.

field.list is the list of field(s) to be modified. Each entry must correspond to a D-type
dictionary entry. These name may alternatively be a PH (phrase) type entry
which will be expanded and all fields referenced by the phrase will be modified.
If no fields are specified on the command line, MODIFY looks for a phrase
named @MODIFY and, if found, uses this as the source of field names. If no
@MODIFY phrase exists, MODIFY will use the @ phrase or, if this also
does not exist, a default list of fields is constructed from the dictionary.

Items appearing on the command line or in the @MODIFY or @ phrase which
are not D-type dictionary entries or phrases are ignored.

Field names may be followed by "VERIFY filename". In this case, MODIFY
will check that data entered into the named field is a record id in the named file.

id.list is the list of records to be modified. An item is assumed to be a record id if it is
not a field name defined in either the dictionary or the VOC, or if it is enclosed
in quotes. If no id.list is specified, MODIFY uses the default select list or, if
that is inactive, prompts for record ids.

The MODIFY command provides a data editor which uses the dictionary associated with a file to
determine the format in which data is displayed or entered and to provide prompts in terms which
relate to the data. It is useful for making changes to existing records or entering new data.
MODIFY is particularly suited to entry of dictionary records where the prompts remove the need to
remember the meaning of each field.

MODIFY prompts for a record id or uses the next item from id.list or the default select list. Entry
of a question mark (?) at the id prompt will display a pick list of record ids.

If the record already exists, a list of modifiable fields is displayed. This list contains one entry for
each single valued field followed by an entry for each multi-valued field or associated set of fields.

The prompt displayed with the list allows the following responses:

item no Entry of an item number from the list selects that field or association for
modification. Data may be entered or modified in a panning input area at the
bottom of the screen. The edit keys available are:

OpenQM306

2.6-6

Ctrl-A or Home Position cursor at the start of the data

Ctrl-E or End Position cursor at the start of the data

Ctrl-B or Left Move the cursor left one character

Ctrl-F or Right Move the cursor right one character

Ctrl-D or Del Delete the character under the cursor

Backspace Delete the character to the left of the cursor

Ctrl-K Delete all characters from the cursor position onwards

Ctrl-O or Ins Toggle overlay / insertion mode

Ctrl-Q Quote character. The next character is inserted
without interpretation as a command. If the character
is V, S or T, a value, subvalue or text mark is
inserted.

Return Accept the entered data

Ctrl-X Abort entry, returning to the field list

F1 Display help screen

Non-printing characters can be inserted using the Ctrl-Q prefix shown above or
by typing ^nnn where nnn is the ASCII character number of the character to
be inserted.

As fields are modified, their values are inserted into the displayed list of fields.

FI Writes the modified record to the file and prompts for a new record id. If the record
was a dictionary I-type or C-type, MODIFY will compile it.

Q Quits from the record, discarding any changes and prompts for a new record id.

N Displays the next page of fields available for modification.

P Displays the previous page of fields available for modification.

? Displays a brief expansion of the available options.

Selecting a multi-valued field or an association enters a separate display screen showing one line for
each value in the field(s).

The prompt displayed with the list allows the following responses:

line no Entry of a line number from the list selects that value set for modification. Data
may be entered or modified for each field in the association in turn in a panning
input area at the bottom of the screen. The edit keys available are as above.

Dn Deletes the value set at line n.

In Inserts a new value set at line n.

E Extends the values, repeatedly accepting new data until either a null entry is made

QM Commands 307

2.6-6

in the first field of the association or the exit key (Ctrl-X) is used.

N Displays the next page of values available for modification.

P Displays the previous page of values available for modification.

? Displays a brief expansion of the available options.

Where the record does not already exist, MODIFY prompts for data for each field in turn and then
allows changes as for an existing record.

When editing a dictionary, MODIFY automatically chooses the editable fields based on the record
type.

OpenQM308

2.6-6

4.109 NLS

The NLS command sets or reports national language support settings.

Format

NLS Report all settings

NLS { DEFAULT } Set defaults

NLS { key } Report setting for given parameter

NLS { key value } Set value for given parameter

where

key identifies the parameter to be set or reported.

value is the new value for the parameter.

The NLS command sets or reports national language parameter values. The available parameters
and their default values are:

Parameter Default Notes

CURRENCY $ Maximum 8 characters

THOUSANDS , Thousands separator character

DECIMAL . Decimal separator character

QM Commands 309

2.6-6

4.110 NSELECT

The NSELECT command refines a select list by removing items that are in a named file.

Format

NSELECT { DICT } file { FROM from.list } { TO to.list }

where

DICT indicates that the dictionary portion of the file is to be used.

file identifies the file to be processed.

from.list is the select list to be used as the source of record ids to be checked against file. If
omitted, the default list (list 0) is used.

to.list is the select list to be receive the modified list. If omitted, the default list (list 0) is
used.

The NSELECT command refines the source select list by removing from it any items that
correspond to record ids present in the named file.

Example

SELECT VOC
NSELECT NEWVOC
LIST VOC

The above sequence of commands builds a list of all records in the VOC file, removes from this list
all items present in NEWVOC and then lists the remaining VOC records. The effect is to show
those VOC records added since the account was created.

OpenQM310

2.6-6

4.111 OPTION

The OPTION command sets, clears or displays configurable options.

To ease application portability, options that are not meaningful on a particular QM platform are
ignored.

Format

OPTION {option.name {ON | OFF | DISPLAY | LPTR {unit}} }
OPTION ALL OFF

The OPTION command, normally only used in the LOGIN or MASTER.LOGIN paragraphs, sets
options that determine how the system behaves for that user session.

The ON keyword is used to set an option and is the default action if no keyword is present. The
OFF keyword is used to clear an option. The DISPLAY keyword is used to display the current
setting of an option.

The OPTION command with no qualifying information displays the settings of all options. The
LPTR keyword directs this report to the specified print unit, printer zero if unit is omitted.

The OPTION ALL OFF syntax turns off all options. It is useful in LOGIN paragraphs to ensure
that all options are off before turning on those that are required in applications that may use
LOGTO to move between accounts.

Option settings are not automatically inherited by phantom processes.

The available options are:

AMPM.UPCASE Causes the am/pm suffix displayed by some time conversions
to appear in uppercase instead of the default lowercase.

ASSOC.UNASSOC.MV Treats all multivalued fields for which no association is
defined in the dictionary as being associated together. This
provides close compatibility with Pick style systems but may
lead to unintentional association of unrelated fields.

CHAIN.KEEP.COMMON Retains the unnamed common block and command processor
level on use of CHAIN.

CRDB.UPCASE Causes the cr/db suffix displayed by some decimal
conversions to appear in uppercase instead of the default
lowercase.

DEBUG.REBIND.KEYS Causes the QMBasic debugger to rebind the function keys on
entry, replacing any user defined bindings with those specified
in the terminfo entry for the current terminal type.

DIV.ZERO.WARNING Attempts to divide by zero in QMBasic programs should
report a warning rather than a fatal error. The division will
return a zero result. This option should only be used during
application development as it may cause faulty applications to

QM Commands 311

2.6-6

appear to work correctly.

DUMP.ON.ERROR Causes generation of a process dump file at a process abort
such as a run time fatal error.

ED.NO.QUERY.FD Suppresses the confirmation prompt in the ED editor when
using the FD command or its synonym DELETE.

INHERIT Phantom processes will inherit the option settings of the parent
process. Use of an OPTION command in the
MASTER.LOGIN or LOGIN paragraphs of the phantom
process may modify these settings.

LOCK.BEEP Emits a beep at the terminal once per second while waiting for
a record or file lock.

NO.DATE.WRAPPING Suppresses rolling of dates with overlarge day numbers into
the following month on input conversion.

NO.SEL.LIST.QUERY Suppresses display of the confirmation prompt in commands
that take an optional select list of records to process. This is
equivalent to use of the NO.QUERY option to those
commands.

NO.USER.ABORTS Suppresses all options that allow a user to generate an abort
event. These are: the "Press return to continue" prompt, the
pagination prompt when using the SCROLL keyword of the
query processor, and the break key options.

NON.NUMERIC.WARNING QMBasic programs attempting to use a non-numeric value
where a number is required should use zero and report a
warning rather than a fatal error. The operation will return a
zero result. This option should only be used during application
development as it may cause faulty applications to appear to
work correctly.

PICK.BREAKPOINT Causes the query processor to recognise Pick style syntax for
the BREAK.ON and BREAK.SUP keywords where the
optional text qualifier follows the field name rather than
appearing before it.

PICK.BREAKPOINT.U Causes the query processor to handle the U breakpoint option
differently. See the BREAK.ON and BREAK.SUP
keywords for further details.

PICK.EXPLODE When using BY.EXP, if an associated field has only one
value, do not explode this field.

PICK.IMPLIED.EQ Causes the query processor to handle a selection clause that
has no operator between the field name and a literal value
enclosed in double quotes as though there was an EQ operator.

PICK.GRAND.TOTAL Causes the query processor to display the text of the
GRAND.TOTAL keyword on the same line as the total
values.

PICK.NULL Causes the ML and MR conversion codes and format
expressions that use options applicable to numeric data to
return a null string for null data instead of zero.

PICK.WILDCARD Causes the query processor to recognise Pick style wildcards

OpenQM312

2.6-6

in equality tests as an alternative to the LIKE operator.

PROC.A Causes the Proc A(n,m) command not to terminate copying
data at the end of the field.

QUALIFIED.DISPLAY Causes the query processor to recognise Pick style qualified
display clauses.

QUERY.NO.CASE Causes the query processor to perform selection operations
and sorting in a case insensitive manner.

QUERY.PRIORITY.AND Causes the AND operator to take priority over the OR
operator in query processor commands. This does not affect
the behaviour of these operators in QMBasic programs.

RUN.NO.PAGE Causes the RUN and DEBUG commands to start the
program with screen pagination disabled. This is equivalent to
use of the NO.PAGE option. This option also affects user
catalogued programs.

SELECT.KEEP.CASE Causes QM to preserve the case of record ids when building a
select list from a directory file on an operating system that
uses case insensitive file names. This currently only affects
Windows systems.

SHOW.STACK.ON.ERROR Displays the call stack at a fatal program error, showing the
program name, line number (where available), and object code
address.

SPACE.MCT Modifies the behaviour of the MCT conversion code such that
only the first character and letters immediately after a space
are converted to uppercase.

SUPPRESS.ABORT.MSG Suppresses display of program location diagnostic information
when a QMBasic ABORT statement is executed.

UNASS.WARNING Unassigned variables in QMBasic programs should report a
warning rather than a fatal error. This option should only be
used during application development as it may cause faulty
applications to appear to work correctly.

WITH.IMPLIES.OR In a query containing multiple WITH clauses, there is an
implied OR rather than the default implied AND between
these clauses.

Special short form options:

PICK This option sets ASSOC.UNASSOC.MV,
PICK.BREAKPOINT, PICK.BREAKPOINT.U,
PICK.EXPLODE, PICK.GRAND.TOTAL, PICK.NULL,
PICK.WILDCARD, QUALIFIED.DISPLAY and
WITH.IMPLIES.OR options. It cannot be used with ON,
OFF or DISPLAY. Note that this option brings QM closer to
the Pick database model but does not provide complete
compatibility.

QMBASIC.WARNINGS This option sets DIV.ZERO.WARNING,
NON.NUMERIC.WARNING and UNASS.WARNING
options. It cannot be used with ON, OFF or DISPLAY.

QM Commands 313

2.6-6

OpenQM314

2.6-6

4.112 PASSWORD

The PASSWORD command changes the password for a QM user on Windows 98/ME.

User management is not applicable to the PDA version of QM.

Format

PASSWORD {username}

The PASSWORD command prompts for the existing password of the user and then prompts twice
for the new password. Terminal echo is suppressed during password entry.

The username argument may only be used by users with administrator rights and allows changes to
the password of a user other than that executing the command.

See also:
ADMIN.USER, CREATE.USER, DELETE.USER, LIST.USERS, SECURITY

QM Commands 315

2.6-6

4.113 PAUSE

The PAUSE command displays a "Press return to continue" prompt.

Format

PAUSE

The PAUSE command, intended for use in paragraphs, pauses processing and displays a prompt
for user input before continuing. By default, this prompt offers two special responses; A to abort
and Q to quit. If the NO.USER.ABORTS mode of the OPTION command is active, the A option
is not offered.

OpenQM316

2.6-6

4.114 PDEBUG

The PDEBUG command runs the phantom debugger. This command is not available on the PDA
version of QM.

Format

PDEBUG {command}

where

command is the command to be executed by the phantom process.

The PDEBUG command allows debugging of a QMBasic program in a phantom or QMClient
process using the same debugger interface as for foreground processes.

The PDEBUG command waits for a phantom or QMClient process running in the same account
and as the same user name to attempt to enter the debugger. At that point, the process executing the
PDEBUG command will enter the QMBasic debugger and can use this in the usual way except that
it is not possible to view the application screen because a phantom process is not associated with a
terminal device.

The phantom process to be debugged may be started separately or by use of the command option to
the PDEBUG command.

QM Commands 317

2.6-6

4.115 PDUMP

The PDUMP command generates a process dump file for a named QM process.

Format

PDUMP userno

where

userno is the QM user number of the process to dump.

The PDUMP command forces generation of a process dump file for the user identified by userno.

Because use of the PDUMP command can weaken system security by allowing a user to see data
inside another user's program, the PDUMP configuration parameter may be used select a mode
where only system administrators can dump processes running under other user names. For
alternative security rules, add a security subroutine to the relevant VOC entry.

OpenQM318

2.6-6

4.116 PHANTOM

The PHANTOM command starts execution of a verb, sentence or paragraph as a background
process. This command is not available on the PDA version of QM.

Format

PHANTOM command

A new background process is started to execute the command which must be a valid verb, sentence
or paragraph. The process from which the PHANTOM command was performed continues without
waiting for command to be completed. A message is displayed indicating the user number
associated with the phantom. The user number is also returned in @SYSTEM.RETURN.CODE. If
the phantom process cannot be started, @SYSTEM.RETURN.CODE holds the negative error
code.

When the background process terminates a message is queued for display immediately before the
next command prompt. This message is

Phantom n : Normal termination.

where n is the user number if the process completed successfully or

Phantom n : Abnormal termination.

if the process aborted.

The phantom process will automatically create a COMO file named PHn_date_time exactly as
though it had commenced with the command

COMO ON PHn_date_time

Output that would normally be directed to the display is suppressed except for recording in the
COMO file. The COMO file may be switched off or redirected as desired.

Any attempt to read data from the keyboard will cause the process to abort. DATA statements may
be used in the phantom to supply input that would normally be read from the keyboard.

Phantom processes may not be started within a transaction.

All QM processes, including phantoms, execute the VOC LOGIN paragraph, if it exists. To exit
from the LOGIN paragraph for a phantom process, insert a line

IF @TTY = 'phantom' THEN STOP

at the relevant point in the paragraph. See @TTY for more details.

Example

PHANTOM BASIC BP INVOICE

QM Commands 319

2.6-6

This command starts a phantom process to compile the QMBasic program in record INVOICE of
the BP file.

OpenQM320

2.6-6

4.117 PRINTER

The PRINTER command provides control for print units.

Format

PRINTER {print.unit} action

The print.unit argument identifies the print unit on which the action is to occur and must be in the
range -1 to 255. If omitted, print unit zero is used.

The action may be any of the following. Multiple actions may be specified in a single PRINTER
command and will be performed in the order in which they occur on the command line.

AT printer.name Output is directed to the named printer

BOTTOM.MARGIN n Sets the bottom margin size.

CLOSE The print unit is closed.

FILE filename recordname Selects the destination for printed output.

LEFT.MARGIN n Sets the left margin size.

LINES n Sets the number of lines per page.

KEEP.OPEN Keeps the printer open to merge successive printer output.

QUERY Reports the current settings

RESET Resets to the default parameter values.

TOP.MARGIN n Sets the top margin size.

WIDTH n Sets the number of characters per line.

The PRINTER command sets or reports the settings of printer control parameters. The action of
each keyword is described in detail below.

PRINTER print.unit AT printer.name
Subsequent output is directed to the named printer. The printer.name must be a printer defined in
Windows.

PRINTER print.unit BOTTOM.MARGIN n
Sets the bottom margin size. On reaching the foot of the page, n blank lines will be output to reach
the start of the next page. This value defaults to 0 and is reset on closing a print unit.

PRINTER print.unit CLOSE

QM Commands 321

2.6-6

The print unit is closed. This action overrides any previous use of the KEEP.OPEN option. If this
print unit was directed to a spool file, the data will be printed. Any heading and footing text or file
name associated with the printer is discarded and further use of this print unit by a program or
command will start a new file.

PRINTER print.unit FILE filename recordname
Selects the destination for printed output. Output to print units 1 to 255 is normally directed to a
hold file. This command associates a record of a directory file with the print unit. The record is not
created until the first output is directed to the print unit.

PRINTER print.unit KEEP.OPEN
Allows merging of successive printer output into a single print job. Any request from a program to
close the print unit clears the heading and footing but leaves the print job open to receive further
output. The print unit is finally closed, and the job printed, by using the CLOSE option to this
command. On Windows systems it may be important that the Print Manager option to start printing
while a print job is being created is disabled as this could result in the printer being assigned to an
incomplete job.

PRINTER print.unit LEFT.MARGIN n
Sets the left margin size. Each line will be indented by n spaces. This value defaults to 0 and is reset
on closing a print unit.

PRINTER print.unit LINES n
Sets the number of lines per page. No validation of the value of n is performed. The effect of
specifying a number of lines per page greater than that of the physical device on which the data is
subsequently printed is undefined. This value defaults to 66 and is reset on closing a print unit.

PRINTER print.unit QUERY
Reports the current settings of the width, lines per page, top margin, bottom margin and left margin

PRINTER print.unit RESET
Resets to the default values for width, lines per page, top margin, bottom margin and left margin.
This function does not affect any file association.

PRINTER print.unit TOP.MARGIN n
Sets the top margin size. Each page of output will commence with n blank lines. This value defaults
to 0 and is reset on closing a print unit.

PRINTER print.unit WIDTH n
Sets the number of characters per line. No validation of the value of n is performed. The effect of
specifying a width greater than that of the physical device on which the data is subsequently printed
is undefined. This value defaults to 80 and is reset on closing a print unit.

See also:
SETPTR

OpenQM322

2.6-6

4.118 PSTAT

The PSTAT command displays the status of one or all QM processes. This command is not
available on the PDA version of QM.

Format

PSTAT { USER userno } { LEVEL level }

where

userno is the QM user number of the process to report.

level is the reporting level.

The PSTAT command displays diagnostic status information about the process with user number
userno or, if the USER option is omitted, all QM processes.

For each process reported, PSTAT shows the account name, the last command executed and the
current execution point (program name, line number and execution address).

The level parameter specifies extended report features and is formed by adding together the
following components:

1 Report each program and subroutine in the call stack. If not included, only the currently
active program is reported.

2 Report internal subroutine calls within each reported program and subroutine. If not
included, only external subroutine calls are reported.

Examples

PSTAT USER 2 LEVEL 3
User Detail
 2 Account: SALES
 Command: RUN INVOICES
 !SCREEN 953 (14E6)
 750 (118E)
 450 (08F3)
 323 (061B)
 D:\LBS\QM\BP.OUT\INVOICES 105 (01BE)
 Command processor
 D:\LBS\QM\BP.OUT\PROC 104 (05B8)
 Command processor

In this example, the most recent command executed by user 2 was RUN INVOICES. It is currently
executing the !SCREEN subroutine at line 953, address 14E6. Because the LEVEL parameter
includes level 2, internal subroutine calls are also shown. The !SCREEN subroutine was called
from The INVOICES program at line 105 (address 01BE). This program was started from the
command processor which was itself started from line 104 of program PROC which was itself
started from the command processor.

QM Commands 323

2.6-6

The same process could be reported in less detail using other values of the LEVEL option as shown
below:

Level 2 (Internal subroutine stack but exclude external calls)

PSTAT USER 2 LEVEL 2
User Detail
 2 Command: RUN INVOICES
 !SCREEN 953 (14E6)
 750 (118E)
 450 (08F3)
 323 (061B)

Level 1 (External subroutine stack but exclude internal calls)

PSTAT USER 2 LEVEL 1
User Detail
 2 Command: RUN INVOICES
 !SCREEN 953 (14E6)
 D:\LBS\QM\BP.OUT\INVOICES 105 (01BE)
 Command processor
 D:\LBS\QM\BP.OUT\PROC 104 (05B8)
 Command processor

Level 0 (Current location only)

PSTAT USER 2
User Detail
 2 Command: RUN INVOICES
 !SCREEN 953 (14E6)

OpenQM324

2.6-6

4.119 PTERM

The PTERM command sets or displays terminal characteristics.

Format

PTERM BINARY { ON | OFF }

PTERM BREAK { ON | OFF }

PTERM BREAK { n | ^c }

PTERM CASE { INVERT | NOINVERT }

PTERM NEWLINE { CR | LF | CRLF }

PTERM PROMPT "string1" { "string2" }

PTERM RESET string

PTERM RETURN { CR | LF }

PTERM DISPLAY

PTERM LPTR

Multiple options from the above may be included in a single command.

The PTERM BINARY ON or OFF command determines whether terminal input/output is
processed by QM to handle special character transformation rules appropriate to a telnet
connection. When binary mode is enabled, all data is passed in.out without any modification.

The PTERM BREAK ON or OFF command determines whether use of the break key is
considered to be a break or a data character. If set on, the break key will interrupt processing. If set
off, the break key is treated as a normal data character. The setting of this mode does not affect
interpretation of the telnet break command.

The PTERM BREAK n or ^c command sets the character to be used as the break key. The first
form takes the character number (1 - 31); the second form takes the printable character associated
with the control key (A - Z, [, \,], ^, _). The default break character is ctrl-C (character 3). Note
that some terminal emulators send a telnet negotiation parameter instead of the break character
itself and may require changes to the emulator configuration to use an alternative character.

The PTERM CASE command determines whether the case of alphabetic characters is inverted on
entry at the keyboard. Running with case inversion enabled may be more natural as, for historic
reasons, the QM command set is all in upper case. In QMBasic programs, case inversion affects
INPUT statements, the KEYCODE() and KEYINC() functions but not the KEYIN() function.

The PTERM NEWLINE command determines whether QM sends CR, LF or a CR/LF pair as the
newline sequence on terminal output. The default mode is CRLF.

The PTERM PROMPT command changes the command prompt from the default colon to string1.
The optional string2 changes the alternative prompt displayed when the default select list is active.
The prompt strings must be quoted and may be from 1 to 10 characters in length.

QM Commands 325

2.6-6

The PTERM RESET command sets a control string to be sent to the terminal device on return to
the command prompt. This can be used, for example, to ensure that the terminal reverts to a chosen
foreground/background colour scheme regardless of how the application left it set. The string may
include use of the QMBasic style @() function to insert device dependent control codes or any of
the following special codes:

\B Backspace
\E Escape
\F Form feed
\N Newline
\R Carriage return
\T Tab
\^ ^
\\ \
^x Ctrl-x

The PTERM RETURN command determines whether KEYIN() and related QMBasic functions
return 10 (LF) or 13 (CR) when the return key is pressed. The actual effect of this mode setting is
to replace incoming carriage returns with the given character unless the session is operating over a
binary mode telnet connection. The default mode is CR.

The PTERM DISPLAY command reports the current settings of the terminal. PTERM LPTR
directs the same report to the default printer.

OpenQM326

2.6-6

4.120 QSELECT

The QSELECT command constructs a select list from the content of selected records.

Format

QSELECT {DICT} file.name {id... | * | FROM list} {TO list} {SAVING field}

where

id... is a list of records to be processed.

* specifies that all records are to be processed.

FROM list specifies a select list of records to be processed.

TO list specifies the list to be created. If omitted, the default list (list 0) is created.

SAVING field identifies the field from which items are to be taken. If omitted, all fields in the
record are processed. The field item may be a field number or a field name.

The QSELECT command reads selected records from the given file and constructs a select list
from the content of the named field or all fields. Multivalued fields are expanded to give a separate
list entry for each value or subvalue.

If the default select list is active and there are no record ids or FROM clause on the command line,
this list is used to control processing.

QM Commands 327

2.6-6

4.121 QUIT

The QUIT command terminates the current QM session. The synonym OFF can be used.

Format

QUIT

The QUIT command terminates the QM session. If the account has the command stack recording
option active, the current command stack is written to the VOC.

The ON.EXIT paragraph, if present, is executed before final return to the operating system.

OpenQM328

2.6-6

4.122 RELEASE

The RELEASE command releases record or file locks..

Format

RELEASE filename id...

RELEASE FILELOCK filename

In the first form, RELEASE releases locks on the specified record id(s) in the named file. The
second form releases the file lock on the named file.

RELEASE can only release locks held by the process in which the command is issued. System
administrators can use the UNLOCK command to release locks held by other users.

Locks are released automatically when a file is closed. Applications can store file variables in a
named common block so that the files remains open when the program terminates. In this case,
locks left in place when the program ends will not be released automatically.

QM Commands 329

2.6-6

4.123 REPORT.SRC

The REPORT.SRC command turns on or off display of the @SYSTEM.RETURN.CODE
variable on return to the command prompt. It is particularly useful when testing applications.

Format

REPORT.SRC OFF To turn off display of @SYSTEM.RETURN.CODE

REPORT.SRC ON To turn on display of @SYSTEM.RETURN.CODE

REPORT.SRC To toggle display of @SYSTEM.RETURN.CODE

When reporting is enabled, the value of @SYSTEM.RETURN.CODE is displayed on return to the
command prompt.

OpenQM330

2.6-6

4.124 REPORT.STYLE

The REPORT.STYLE command sets the default query processor report style.

Format

REPORT.STYLE name To set the default report style

REPORT.STYLE To display the current setting

REPORT.STYLE OFF To disable the default report style

The query processor can highlight selected components of a report using colour on a displayed
report or font weights on a report directed to a PCL printer. The REPORT.STYLE command sets
the default style to be used for all reports unless overridden by an alternative setting using
SETPTR, the QMBasic SETPU statement, or the STYLE option to the query processor.

See the query processor STYLE option for full details of report styles.

QM Commands 331

2.6-6

4.125 RESET.MASTER.KEY

The RESET.MASTER.KEY command resets the encryption master key. This command can only
be executed by users with administrator rights in the QMSYS account.

Format

RESET.MASTER.KEY

The command prompts for the key string.

The RESET.MASTER.KEY command is intended for use after moving the encryption key vault
from another system or after application of a new licence.

The key string entered must be the same as when the key vault was created. The master key cannot
be changed unless the key vault is cleared and rebuilt.

See also:
Data encryption, CREATE.FILE, CREATE.KEY, DELETE.KEY, ENCRYPT.FILE,
GRANT.KEY, LIST.KEYS, REVOKE.KEY, SET.ENCRYPTION.KEY.NAME

OpenQM332

2.6-6

4.126 RESTORE.ACCOUNTS

The RESTORE.ACCOUNTS command restores all accounts from a Pick style FILE.SAVE tape.

Format

RESTORE.ACCOUNTS target {options}

where

target is the parent directory under which the restored accounts are to be placed. If
omitted, the pathname specified in the $ACCOUNT.ROOT.DIR VOC entry is
used or, if this record does not exist, the user is prompted for the directory
pathname.

options is any combination of the following:

BINARY Suppresses translation of field marks to newlines when
restoring directory files. Use this option when restoring
binary data.

DET.SUP Suppresses display of the name of each file as it is
restored.

NO.CASE Causes new files to be created with case insensitive record
ids. Existing files are not reconfigured.

NO.INDEX Do not create alternate key indices.

NO.OBJECT Omits restore of object code. This is particularly useful
when migrating to QM from other environments.

POSITIONED Assumes that the tape is already positioned at the start of
the data to be restored.

The RESTORE.ACCOUNTS command processes a Pick style FILE.SAVE tape or pseudo tape
and restores data from it into a QM system. It can also restore from a tape containing multiple
ACCOUNT.SAVEs.

The tape to be restored must first be opened to the process using the SET.DEVICE command.

All accounts found on the tape are restored unless there is already an account of the same name or
the target account directory already exists. In these cases, the account is skipped.

For more details of the tape processing applied during restore, see the ACCOUNT.RESTORE
command.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT,
SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.LOAD, T.xxx

QM Commands 333

2.6-6

4.127 REVOKE.KEY

The REVOKE.KEY command removes access to a specific data encryption key. This command
can only be executed by users with administrator rights in the QMSYS account.

Format

REVOKE.KEY keyname {GROUP} name ...

where

keyname is the name of the encryption key. This is case insensitive

name ... is a list if usernames for users to be denied access. If prefixed by the GROUP
keyword, this is a list of user groups. On Windows systems, user and group names
are treated as case insensitive.

The REVOKE.KEY command removes access to an encryption key to one or more users or user
groups. The user will be asked to enter the master key unless it has already been entered during this
session.

No error occurs if the user or group specified did not have access to the key.

Example

REVOKE.KEY CARDNO jsmith bjones

The above command removes access to the encryption key named CARDNO for users jsmith and
bjones.

See also:
Data encryption, CREATE.FILE, CREATE.KEY, DELETE.KEY, ENCRYPT.FILE,
GRANT.KEY, LIST.KEYS, RESET.MASTER.KEY, SET.ENCRYPTION.KEY.NAME

OpenQM334

2.6-6

4.128 RUN

The RUN command initiates execution of a compiled QMBasic program. It can also be used to
execute VOC style items that are stored in alternative files.

Format

RUN {file.name} record.name {LPTR} {NO.PAGE}

where

file.name is the name of the directory file holding the program to be run. If omitted,
this defaults to BP. The .OUT suffix for the compiler output file is
supplied automatically when using the command to execute a QMBasic
program.

record.name is the name of the compiled program.

LPTR causes output to logical print unit 0 to be directed to the printer. This is
identical in effect to a PRINTER ON statement being performed within
the program.

NO.PAGE suppresses pagination of output to the terminal.

The rules regarding location of the item to be executed are:

1. If only one name is provided, BP is assumed as the file name.

2. If a file with the .OUT suffix added to the name is defined in the VOC and can be opened,
record.name is assumed to be the name of a compiled QMBasic program.

3. If the file is not defined in the VOC or cannot be opened for any reason, record.name is
assumed to be the name of a VOC style item (sentence, paragraph, menu, etc) in the named
file without the .OUT suffix.

4. If the item identified by the above steps cannot be found, an error is reported.

QM Commands 335

2.6-6

4.129 SAVE.LIST

The SAVE.LIST command is used to save an active select list for future use.

Format

SAVE.LIST list.name {FROM list.no}

where

list.name is the name of the record to be created in $SAVEDLISTS to hold the saved
select list.

list.no identifies the select list (0 to 10) to be saved. If omitted, select list zero is used.

The SAVE.LIST command copies an active select list to the $SAVEDLISTS file. This file will be
created if it does not already exist.

If the active list has already been partially processed, only the remaining items are saved. The active
select list is cleared after it has been saved.

@SYSTEM.RETURN.CODE is set to the number of items in the saved list. In the event of an
error, the value is a negative error code.

Example

SAVE.LIST INVENTORY FROM 3
Saved list 'INVENTORY' in $SAVEDLISTS.

This example saves active select list 3 as INVENTORY.

See also:
COPY.LIST, DELETE.LIST, EDIT.LIST, GET.LIST

OpenQM336

2.6-6

4.130 SAVE.STACK

The SAVE.STACK command saves the current command stack.

Format

SAVE.STACK {stack.name}

where

stack.name is the name to be given to the saved command stack. A prompt is issued if this
name is omitted.

The SAVE.STACK command copies the current command stack to the $SAVEDLISTS file as a
record named stack.name. The file will be created if it does not already exist. Any existing record of
the same name will be overwritten.

Example

SAVE.STACK <<@LOGNAME>>
Command stack 'jsmith' saved in $SAVEDLISTS

This command saves the current command stack to a record with id as the user's login name in the
$SAVEDLISTS file.

See also:
CLEAR.STACK, GET.STACK

QM Commands 337

2.6-6

4.131 SCRB

The SCRB command runs the screen builder to create or modify a screen definition for use by the
QMBasic !SCREEN() subroutine.

Format

SCRB {screen.file} {screen.name}

where

screen.file is the name of the file holding the screen definition.

screen.name is the screen definition record name. If neither a screen.file nor a
screen.name is given, SCRB will check for an active select list before
prompting for a screen name.

The QMBasic !SCREEN() subroutine uses screen definitions which are created and maintained
using SCRB. The name of the account’s default screen definition file is stored in field 2 of an
X-type VOC record named $SCRB.FILE and will be used if no file name is given in the SCRB
command line. If this record does not exist, SCRB uses the $SCREENS file which is common to all
accounts. The $SCREENS file may also contain screen definitions which are part of the QM
product. These have a dollar sign in their name and should not be modified or removed.

A screen consists of a number of steps, each of which may have a fixed text display, output of data
from a data record, input of data into a data record. Data may be converted or formatted on output
and input. Steps that include data input may perform validation within the screen driver subroutine
and may also have user defined help and error messages. Programs can undertake all aspects of
managing the flow from one step to another themselves, pass this task to the screen driver using a
variety of conditional flow control options or use a mixture of the two modes.

The screen builder can automatically generate an include record identifying the screen steps by
name for use in programs that use the screen. This include record will be placed in a nominated file
with the same name as the screen with a .SCR suffix.

On entry to SCRB, the user is invited to enter a screen name unless this has been provided on the
command line. SCRB will look for this in the form entered and, if not found, in uppercase. If
neither exists, a new screen is created.

The user can then select from the following options

D Delete the screen definition

F File the screen definition

H Amend the screen header line

I Select the file to store the generated include record

L List the screen steps

P Paint the screen

LPTR Print the screen definition

OpenQM338

2.6-6

Sn Show / edit step n

X Exit without filing

Amending the Screen Header Line

Selecting the H option allows entry/modification of the screen header line. It is useful to include the
screen name in the header, perhaps at the left margin. All the normal input editing keys are
available. Pressing the return key will end the header update.

Listing Screen Steps

The L option displays a list of screen steps. The information displayed is the step number and the
fixed text (if any) associated with the step. If the step has no fixed text, the display shows <<step
name>>. The escape key can be used to terminate the list before the last page is displayed.

Painting the Screen

The P option paints an image of the screen, showing the fixed text associated with steps except
those that are tagged as not to be included in a full screen paint. A prompt is issued allowing
selection of a step number to be executed. This allows easy debugging of the screen from within the
screen builder. Entering X at the action prompt exits from paint mode.

Printing the Screen

The LPTR option send the screen definition to the printer. Details of each step are printed followed
by a representation of the screen as it would be appear after the screen paint action of the
!SCREEN() subroutine.

Show / Edit a Screen Step

The Sn option displays the definition of screen step n. A further prompt allows selection of the
action to be taken

Cn Copy step n over the currently displayed step

Cscrn,n Copy step n of screen scrn over the currently displayed step

D Delete this step

I Insert a new step before this step

Mn Move currently displayed step to become step n

N Advance to the next step

P Move to the previous step

R Return to the top level screen

Sn Move to step n

n Edit step definition starting at item n

QM Commands 339

2.6-6

The items that make up a screen step are described below.

Name
Steps may optionally be given names. These must be unique within the screen definition and are
used in generating an include record of step names for use in QMBasic programs. The include
record tokens are formed by adding a prefix of SS. to the step name.

Type
The step type determines the way in which the screen driver will handle the step. The type may be
any of the following:

D A display step. Any data item referenced by the step will be displayed but no input
is permitted.

I An input step. The data is displayed as for a display step but input may also be
performed.

N A control step. Any data item referenced by the step is not displayed but
conditional flow control elements may still be included.

Gn A step group to be repeated n times. The display step field described below
contains a list of steps to be repeated. The repeat will terminate if the next step
determination of any repeated step evaluates to anything other than the default.
Step groups cannot be nested.

 The step type may also include the following qualifying codes:

B Sounds the terminal "bell".

C Clears the text and data of this step after the step is completed. Usually used with
the X display mode options described later, this feature is particularly useful for
clearing temporary prompt fields from the screen.

H Causes the screen header to be displayed as part of this step.

Rn This step is to be repeated n times. The repeat will terminate if the next step
evaluates to anything other than the default. Repeated steps may not appear inside
step groups.

X Excludes this step from the initial screen painting process. This should normally be
included on the elements of a repeating group (not a repeated step).

Clear
The clear item contains Y if the screen is to be cleared prior to displaying this step.

Display step (multi-valued)
This field lists steps by name or number which are to be displayed prior to displaying this step. For
repeating step group definitions it holds the steps to be repeated as described above.

A list may be entered in a multi-valued screen definition field by pressing F2.

Text
Text row

OpenQM340

2.6-6

Text col
Text mode
The text item contains a fixed text string which will be displayed on the screen at the position given
by the text row and text col values using the text mode display style. The mode may contain any
combination of H to display in half intensity, R to set reverse video (interchange foreground and
background colours) and X (omit from full screen paint).

Field
Value
Subvalue
These items determine the position of the data item to be displayed or input. The field may be
specified as a numeric position or as a filename and field name separated by a space. In the latter
case, the screen builder will look up the actual field position in the dictionary of the specified file
when the screen definition is being entered. Later changes to the dictionary will not cause the screen
definition to change. The value and subvalue fields may be left blank where the entire field or value
is to be displayed.

A value of zero for the field uses an internal temporary variable. This is of particular use in
confirmation prompts, for example, where the data input is used to determine flow through the
screen steps but is not part of the record being amended.

For a repeated step or the elements of a repeating group, the field, value or subvalue may be
specified as ‘1+’, for example, which will cause the screen to use successive items starting at the
given position.

Prompt char
This item may be used to specify a character to appear immediately to the left of the data field. It
will be ignored if the data is displayed at the left margin.

Fill char
The fill character is used to pad out short data items on the display. It is not entered into the stored
data.

Data row
Data col
Data mode
These items operate in the same way as their equivalents for the text area.

For a repeated step or the elements of a repeating group, the row may be specified as y+i where y is
the line on which the first item is to appear and i indicates the number of lines by which the position
is to advance for successive elements. The value of i defaults to 1.

Output len
The output length item specifies the length of the data item on the display. If the actual data is
longer than this, the display is truncated.

Output conv (multi-valued)
This item holds the conversion to be performed on the data prior to display. The same conversion
will be applied to redisplay input values when the step is completed. The conversion may be
multi-valued to perform successive conversions. Output conversions are:

Ffmt Apply FMT() using fmt as the format specifier.

Ifile,rec Execute the I-type named rec in the dictionary of file. against the data

QM Commands 341

2.6-6

record.

Sname Execute catalogued subroutine name, passing in the field value as
argument 2 and replacing it with the valued returned through argument 1.

Tfile,fld,code Apply TRANS() using the data item as the record id to access field fld of
file. The code determines the action if the record is not found. C returns the
record id, X returns a null string.

<f,v,s> Extract the given field, value or subvalue.

Other All other codes are passed to OCONV().

Justify
This item contains L for left justification or R for right justification.

End mark
This item may be used to specify a character to appear immediately to the right of the data field. It
will be ignored if the data field extends to the right margin.

Input len
The input length item specifies the permissible length of the data. If this value exceeds the output
length, the field is panned to allow entry of long data. Many of the screen definition items are
themselves panned in this way by SCRB.

Required
This item indicates whether the field may be left blank. It may contain:

Y The field may not be left blank.

N The field may be left blank.

F For a repeated step or element of a repeating group, the field must not be blank for
the first iteration of the repeat but may be blank for subsequent iterations.

<f>cond The field is required if field <n> (or <f,v> or <f,v,s>) meets the supplied condition.
The condition code is as described for the next step determinations described
below.

Input val 1 (multi-valued)
The first input validation is performed on the input data prior to input conversion. This item may be
multi-valued to perform multiple validations. The data is deemed acceptable if any of the validation
criteria are satisfied. Validation codes are:

m Numeric value m. This is a numeric comparison, leading zeros will be
ignored.

m-n A numeric value in the range m to n.

=x String equality with x. x may be a null string.

D A valid date.

OpenQM342

2.6-6

Ffilename A record named as the input data exists in filename.

Ffilename,n Similar to the simple F validation but, if the record is found, the input data
is replaced by the contents of field n of the record.

Mtemplate The input data matches the specified template.

Rfile,rec,fld,case,subst
Record rec is read from file. Field fld of this record is scanned for a match
with the input data. If case is X, this scan is case insensitive. If subst is
specified, the input data is replaced with the content of the corresponding
value of field subst of the record. Field fld may be broken down into
subvalues to specify alternative strings all of which are replaced by the
value (not subvalue) in subst.

@subrname Calls the named user supplied validation subroutine. This subroutine takes
three arguments; the return status (1 if ok, 0 if error), the data record
being processed and the input data field to be validated.

Xxxx Inverts the condition xxx. For example, XFINDEX would check that there
is no record named as the input data in file INDEX.

Input conv (multi-valued)
This item holds the conversion to be performed on the input data. The conversion may be
multi-valued to perform successive conversions. Input conversions are:

Ffmt Apply FMT() using fmt as the format specifier.

Nn If the data is numeric, extend it to be right justified in n digits.

Sname Execute catalogued subroutine name, passing in the field value as
argument 2 and replacing it with the valued returned through argument 1.

Tfile,fld,code Apply TRANS() using the data item as the record id to access field fld of
file. The code determines the action if the record is not found. C returns the
record id, X returns a null string.

<f,v,s> Extract the given field, value or subvalue.

Other All other codes are passed to ICONV().

Input val 2 (multi-valued)
The second input validation is performed on the input data after input conversion. This item may be
multi-valued to perform multiple validations. The data is deemed acceptable if any of the validation
criteria are satisfied. Validation codes are as for the first input validation.

Back step
The back step item determines whether the backtab key is allowed and may contain Y, N or blank
which is taken as N. If backtab is allowed, the screen driver will perform the action internally if it
has a step history. If there is no step history, the screen driver returns to the calling program with a
status indicating that the backstep key was used. The back step will correctly back-track through a
repeated step or repeating group.

QM Commands 343

2.6-6

Next step
The next step item defines the action to be taken after the step is completed. It may be multi-valued
with conditional elements. A null action simply increments the step number. All next step action
lists effectively end with a null element which would be executed if all previous elements were
conditional and not satisfied.

An action item comprises three parts; a field reference, a condition and an action. The action is
preceded by a colon.

The field reference identifies the field within the screen data which is to be used in the following
condition. This may be specified as <field>, <field,value> or <field,value,subvalue>. If omitted
entirely (as is usual), the data from the current step is used. If a field reference is included, the
condition must also be present.

The condition compares the selected data with a fixed string or numeric value. The generic form of
this is EQ'string', EQnumber or EQ<f,v,s>. The operator may be any of EQ, NE, LT, GT, LE
or GE. If the condition is omitted, the action is performed unconditionally.

The action may be null to advance to the next step, a step number, a step name or X to exit to the
calling program. Within a repeated step or a repeating group any non-null action terminates the
repeat.

Example: EQ'':X would exit if the field is empty.

Help msg
The help message item defines a message to be displayed if the F1 key is pressed. The message may
be split over multiple lines by using the F2 multi-value entry feature of SCRB.

Error msg
The error message item defines a message to be displayed if input validation fails in a similar
manner to the help message.

Exit key
The exit key item defines the action to be taken if the escape key is pressed. The format and
processing of this item is as for the next step item except that a null value causes an error message
indicating that the exit key is not allowed.

F2 action
The F2 key is used for extended pick-list based help. If this item is blank, F2 is treated the same as
other function keys as described below. There are three formats to this item:

filename, selection/sort clauses, field names
This format causes the screen driver to select records from the specified file using the selection
and sort clauses (as for the query processor). A pick list is displayed based on the specified
field names (which are space separated and may include I-types). The first field in this list is
used as the returned value from the selection. The pick list short cut system described below
uses the field name by default. An alternative field may be used by prefixing its name with a &
character. The short cut will only work correctly if the list is sorted in ascending order by the
short cut field.

#filename,record.name,sort.field,field.list
This format builds a pick list from given file, record, field. The sort.field and field.list reference
fields in the named record by number. Dictionary names cannot be used in this action.

OpenQM344

2.6-6

The data is sorted based on the value in the sort.field. The sort.field number may be followed
by R to perform a right justified sort. The field.list is a space separated list of fields to be
displayed. The sort.field must be explicitly referenced if it is to be displayed. The first field in
field.list contains the value to be returned by the selection process.

@subr
@subr(arglist)
Calls a user written subroutine subr to generate the list of items to display. This subroutine
returns the data to be displayed via its first argument, one field per pick list line each containing
a value mark delimited set of data values. The second argument should return the pick list
column number (from one) of the column to be used by the short cut system described below.
Up to four additional arguments may be passed into the subroutine from arglist which contains
literal values separated by commas. No string delimiters are required.

The pick list is displayed as a rolling window. The cursor up/down, page up/down, home and end
keys may be used to explore this window. Keys corresponding to printable characters cause a short
cut jump to a page displaying items starting at the first that commences with the entered character.
The return key will place the data displayed in the first column of the selected item into the screen
field. The escape key will exit from the pick list processing without entering data into the screen
field.

Func keys
The screen driver may accept or reject function keys. Entering Y in this item causes the screen
driver to return function keys to the calling program. Entering N or leaving it blank causes an error
message if function keys are used.

Key val
This field may contain the name of a validation subroutine that will be called after each input
keystroke in the field. The subroutine name is followed by a comma and the error message to be
displayed if validation fails.

The subroutine takes three arguments; the returned status (1 if ok, 0 if error), the data record being
processed and the input data for the field (not just the last keystroke).

Special keys

The screen driver uses the following keys for special purposes. The control key bindings shown
after some entries are provided for compatibility with other parts of QM.

F1 Help
F2 Pick list help
F3 Delete the contents of the current field
F4 Restore the contents of the current field after incorrect entry
Return Execute the next step action
Tab Treated identically to the return key
Ctrl-P Execute the back step action
Exit Execute the exit key action (Ctrl-X)
Home Mode to start of field (Ctrl-A)
End Move to end of field (Ctrl-E)
Cursor left Move left one character (Ctrl-B)
Cursor right Move right one character (Ctrl-F)
Delete Delete character under the cursor (Ctrl-D)

QM Commands 345

2.6-6

Ctrl-K Delete all to right of the cursor
Backspace Delete character before cursor
Insert Toggle overlay mode
Page up Scroll up in pick list display (Esc-V)
Page down Scroll down in pick list display (Ctrl-V)

Within SCRB itself, the F2 key is used to enter multi-valued items such as validation criteria. Input
prompts for successive items appear at the bottom of the screen until a null value is entered.

OpenQM346

2.6-6

4.132 SECURITY

The SECURITY command enables, disables or reports the state of QM's internal security system.

User management is not applicable to the PDA version of QM.

Format

SECURITY ON Enable security

SECURITY OFF Disable security

SECURITY Report the current security setting

The SECURITY command determines how users connecting directly to QM over a network are
handled. Users of QMConsole sessions, including users who have made a standard telnet connection
and entered QM from an operating system command prompt, are not affected by this command.

On Windows 98/ME, network users will be required to enter a valid username and password if
security is enabled. This username is private to the QM environment and is created using the
CREATE.USER or ADMIN.USER commands. If security is not enabled, network users can
connect directly to QM with no authentication.

On later versions of Windows, network users will always be required to enter a valid username and
password known to Windows. Furthermore, if security is enabled, this username must also be in
QM's own register of usernames. It is inserted into the register using the CREATE.USER or
ADMIN.USER commands. If security is not enabled, any user with a valid Windows username
will be able to make a direct network connection to QM.

On other platforms, network users will always be required to enter a valid username and password
known to the operating system. Furthermore, if security is enabled, this username must also be in
QM's own register of usernames. It is inserted into the register using the CREATE.USER or
ADMIN.USER commands. If security is not enabled, any user with a valid operating system
username will be able to make a direct network connection to QM.

Use of the SECURITY command is restricted to QMConsole users with administrator rights. If
security is disabled, all users are considered as administrators.

See also:
ADMIN.USER, CREATE.USER, DELETE.USER, LIST.USERS, PASSWORD

QM Commands 347

2.6-6

4.133 SED

The SED command is a screen based editor, particularly useful for editing QMBasic source
programs where many lines (fields) can be seen at once.

Format

SED {{DICT} file.name {record.id ...}}

where

DICT indicates that records from the dictionary portion of the file are to be edited.

file.name is the name of the file holding the record(s) to be edited.

record.id is the name of the record to be edited. Multiple record names may be specified.

If no file.name is specified, SED will prompt for this name. The response may include a prefix of
DICT to select the dictionary portion of the file.

If no record.id is specified and the default select list is active, this list is used to identify the records
to be edited. If no record.id is specified and the default select list is not active, SED prompts for
the record.id.

An asterisk (*) either on the command line or as the first record.id entered in response to the
prompt will cause SED to select all records of the file and edit each in turn.

A question mark (?) as the first record.id entered in response to the prompt (not on the command
line) causes direct entry in explore mode, displaying a list of records in the file. The ? character
may be followed by a single space and a selection template as described under the list records
function to produce a restricted list of records.

The editor maintains an update lock on the record(s) being edited.

When editing an I-type dictionary item, SED removes the compiled code thus forcing recompilation
when the modified I-type is first referenced.

SED Topics

Records, Buffers and Windows

Standard key bindings

Cursor movement functions

Data insertion

Copying, deleting and restoring data

Working with multivalued data

Functions that operate on a block of data

Changing text

OpenQM348

2.6-6

Macros

File Handling

Repeating functions

Miscellaneous functions

Commands

Setting up default modes

Source control

Dynamic key bindings

Extension programming

QM Commands 349

2.6-6

SED - Records, buffers and windows

A record to be edited is held in a buffer. Buffers may also hold records being created but not yet
written to disk or other data such as lists of records in a file. SED allows use of up to 20 buffers.

The editor displays a window in which a number of lines of the record being edited can be seen at
any one time. Where a line is wider than the display, the entire window pans from side to side to
maintain the cursor within the display area.

The bottom two lines of the screen display status information. The upper status line shows the file
and record names of the data being edited. If the data has been changed and hence does not match
what is stored in the file, an asterisk is displayed at the start of this line.

The lower status line displays several status fields. From left to right these show
the number of lines in the record
the current cursor position (line and column, both numbered from one)
the status of macro collection
the state of insertion overlay mode
the state of indentation mode
the search mode
the count for repeated functions and operations with a numeric prefix

The lower status line is also used by some editor functions to request qualifying information. A
limited set of editing functions can be used within this prompt area. These are forward char, back
char, start line, end line, delete char, backspace, kill line and insert kill buffer. The kill line
function used in this area deletes all characters after the cursor without affecting the kill buffer.
The insert kill buffer function will insert the first line from the kill buffer at the current cursor
position.

The display may optionally include line numbering. See the LNUM command for further details.

OpenQM350

2.6-6

SED - Standard key bindings

SED commands in the default key bindings consist of keystrokes which are

Control shift + key

ESCape followed by another key

Ctrl-X followed by another key

Ctrl-X followed by control shift + key

The table below summarises the standard editor function key bindings but these can be changed. All
other keystrokes except for unused control shift codes cause the character to be inserted into the
record text at the current cursor position.

Ctrl- Esc- Ctrl-X - Ctrl-X Ctrl-

A Start line

B Back char Back word Goto buffer *List buffers

C Repeat Capital init *Quit *Quit

D Delete char Delete word *List records Dive

E End line Run extension *Execute macro

F Forward char Forward word *Find record

G Cancel Goto line

H Backspace

I Tab Align text Import

J Newline

K Kill line Delete buffer

L Refresh Lowercase Lowercase region

M Newline CompRun

N Down line Next buffer Nudge down

O Overlay Toggle window

P Up line Previous buffer Nudge up

Q Quote char Quote char Query replace

R Reverse search Reverse search Replace

S Forward search Forward search Save record Save record

T Toggle chars

U Repeat Uppercase Up to parent Uppercase region

V Forward screen Back screen

W Delete region Copy region *Write record *Write record

QM Commands 351

2.6-6

X Ctrl-X prefix *Command *Export Swap mark

Y Insert kill buffer Insert kill buffer

Z Up line Nudge up

1 Unsplit window

2 Split window

(*Start macro

) *End macro

= *Expand char

. Set mark

< Top

> Bottom

Bkspc Backspace Back del word

Del Delete char

Space Close spaces

Functions marked with an asterisk cannot be included in a macro and cannot be repeated using the
repeat or repeat count functions.

Some functions are available using alternative key sequences. Such alternatives are shown in the
descriptions.

Most functions can be repeated multiple times by use of the repeat count prefix. Unless otherwise
specified, the repeat count defaults to one if not explicitly set. Some functions use the repeat counter
for different purposes.

When learning SED, the Quick Reference Chart summarises the more important commands.

OpenQM352

2.6-6

SED - Standard key bindings quick reference

Simple Cursor Movements "All the way" movements

 Ctrl-P (previous) Esc-<
 ^ ^
 | |
 | |
 | |
Ctrl-B <---- . ----> Ctrl-F Ctrl-A <---- . ---->
Ctrl-E
(backwards) | (forwards) |
(end)
 | |
 | |
 v v
 Ctrl-N (next) Esc->

Delete char Ctrl-D

Backspace Backspace key

Delete line Ctrl-K Alternates between deleting text and newline

Forward one screen Ctrl-V

Backward one screen Esc-V

Other Important Keys

Cancel Ctrl-G Terminates partly entered codes

Save changes Ctrl-X S

Close editor Ctrl-X C

Searching and Replacing

Forward search Esc-S Prompts for search string, defaulting to last

Reverse search Esc-R Prompts for search string, defaulting to last

Replace Ctrl-X R Prompts for search string and replacement

Query replace Ctrl-X Q Like Replace but queries each change

Other Movements

Forward word Esc-F

Backward word Esc-B

QM Commands 353

2.6-6

Cut and Paste

Set mark Esc-. Marks current cursor position

Copy region Esc-W Saves a copy of the text between the cursor and
the mark

Delete region Ctrl-W Deletes the text between the cursor and the mark,
saving it

Paste Ctrl-Y Inserts text saved by Esc-W, Ctrl-W or Ctrl-K

OpenQM354

2.6-6

SED - Cursor movement functions

Start line (Ctrl-A)
Moves the cursor to the start of the current line (column 1).

End line (Ctrl-E)
Moves the cursor to the position following the last character in the current line.

Top (Esc-<)
Moves to the start of line 1.

Bottom (Esc- >)
Moves to the start of the line immediately after the last line in the record.

Down line (Ctrl-N)
Moves the cursor vertically down one line. If this position is beyond the end of the data in the
new line, the cursor is displayed immediately to the right of the final character. The editor
remembers the column position from which the cursor was moved so that a further vertical
movement will continue to place the cursor at the lesser of its original column position and the
end of the current line.

Up line (Ctrl-P or Ctrl-Z)
Moves the cursor vertically up one line. The same process is used for determining the column
position as for the down line operation described above.

Forward char (Ctrl-F)
Moves the cursor right. Moving beyond the end of a line positions the cursor at the start of the
following line.

Back char (Ctrl-B)
Moves the cursor left. Moving beyond the start of a line positions the cursor at the end of the
previous line.

Forward word (Esc-F)
Moves the cursor to the first character after the next word. A word is defined as a continuous
sequence of letters or digits.

Back word (Esc-B)
Moves the cursor to the first character of the previous word. A word is defined as a continuous
sequence of letters or digits.

Forward screen (Ctrl-V)
Moves the cursor down by one screen or to the end of the buffer.

Back screen (Esc-V)
Moves the cursor up by one screen or to the start of the buffer.

Goto line (Esc-G)
Moves the cursor to the line number specified by the repeat counter. If no count has been
entered, a prompt for the line number is issued.

Tab (Tab or Ctrl-I)
Advances the cursor to the next horizontal tabulation position (columns 11, 21, 31, etc. by

QM Commands 355

2.6-6

default. See the TABS command). If this is beyond the end of the data in the current line,
spaces are inserted to extend the line to the required position. The tab function does not insert a
tab character. Use the quote character prefix to do this.

Forward search (Ctrl-S or Esc-S)
The forward search function prompts for a search string and advances to the next occurrence
of this string within the record. The prompt defaults to the same string as the previous search
function (if any). Searches may be performed in any of four modes:

Case sensitive: Data will only be found if it matches the search string exactly.
This is the default search mode.

Case insensitive: The case of both the search string and the data is ignored.

Word: Data is only considered to match where it is a whole word. A word
is a sequence of letters preceded and followed by a line break or a
character other than a letter. Searches performed in this mode are
case insensitive.

Basic word: Similar to word search mode but the characters valid in the
“word” are extended to cover acceptable syntax for a Basic
program variable name.

The default search mode may changed during initialisation or by commands entered at the SED
command prompt. Use of the up line and down line functions whilst entering the search string
can also be used to change the mode except when collecting functions for a macro.

When a search is included in a macro, the prompt for the search string only occurs when
collecting the macro. Subsequent executions use the same search string. Multiple search
functions in a macro may have different search strings.

Reverse search (Ctrl-R or Esc-R)
The reverse search function prompts for a search string and moves backwards to the previous
occurrence of this string within the record. The prompt defaults to the same string as the
previous search function (if any). Search modes are as described above.

Nudge down (Ctrl-X Ctrl-N)
This function moves the displayed window down the record by one line. The cursor remains in
the same position within the data unless it is on the top line of the screen in which case it will
move down by one line.

Nudge up (Ctrl-X Ctrl-P or Ctrl-X Ctrl-Z)
This function moves the displayed window up the record by one line. The cursor remains in the
same position within the data unless it is on the last line of the screen in which case it will move
up by one line.

Align text (Esc-tab)
This function aligns the data on the current line to align text with the preceding line.

OpenQM356

2.6-6

SED - Data insertion

Data is inserted at the current cursor position. If overlay mode is set the new data overwrites any
existing data at this position, otherwise it is inserted before the character under the cursor. Overlay
mode may be toggled using the overlay function (Ctrl-O) or the OVERLAY command.

The return key inserts a newline. If indent mode is active (see the INDENT command), the cursor
is indented to line up with the previous line.

Any character other than a field mark or item mark may be inserted. The quote character function
(Ctrl-Q or Esc-Q) allows insertion of non-printing characters. It may be used in four ways:

Followed by a number of up to three digits, it inserts the character with that decimal ASCII
sequence.

Followed by V, S or T, it inserts a value mark, subvalue mark or text mark respectively.

Followed by K, it waits for a key to be pressed and then inserts the key binding code required
for this key as described under Dynamic Key Bindings.

Followed by any other character, usually a non-printing character, it will insert that character.

QM Commands 357

2.6-6

SED - Copying, deleting and restoring data

Delete char (Ctrl-D)
The character at the current cursor position is deleted unless the cursor is positioned at the end
of the line in which case the following line is appended to the current line.

Backspace (Backspace or Ctrl-H)
The backspace function removes the character to the left of the cursor position unless the
cursor is already at the start of the line in which case the current line is appended to the
previous line.

Kill line (Ctrl-K)
The kill line function behaves in one of two ways depending on the cursor position.

If there is data at or beyond the cursor position on the current line, the line is truncated at the
cursor position.

If the cursor is beyond the last data character on the current line, the line break is removed,
bringing data up from the next line.

The data removed by consecutive uses of the kill line function is placed in the kill buffer (see
Functions that Operate on a Block of Data). Any other function will cause a later use of the kill
line function to reset the kill buffer.

The kill line function may also be used in an explore buffer to delete the record named on the
current line.

Delete word (Esc-D)
Text is deleted from the current cursor position to the end of the next word.

Back del word (Esc-Backspace)
Text is deleted backwards from the current cursor position to the start of the previous word.

OpenQM358

2.6-6

SED - Working with multivalued data

When in a normal data window, some edit functions normally associated with file handling actions
have special usage and allow entry to and exit from value edit mode.

Value edit mode takes the contents of a multivalued field and displays each value as a separate line
in much the same way as the EV command of the ED line editor. While value edit mode is active,
the original parent buffer becomes read only.

Used with a dictionary I-type entry, this mode breaks compound I-types into separate lines to
simplify editing.

Up to parent (Ctrl-X U)
Used in a value edit buffer, this function returns to the parent buffer, saving any changes into
the main buffer.

Dive (Ctrl-X Ctrl-D)
When not positioned on a $INCLUDE statement, this function enters edit value mode.

Delete buffer (Ctrl-X K)
When in a value edit buffer, this function returns to the parent buffer, discarding any changes.

QM Commands 359

2.6-6

SED - Functions that operate of a block of data

The editor maintains reference to two positions within the record; the cursor position and the mark.

Set mark (Esc-.)
The mark is set at the current cursor position.

Swap mark (Ctrl-X Ctrl-X)
The swap mark function interchanges the positions of the cursor and the mark. It has no effect
if the mark has not been set.

Copy region (Esc-W)
The text within the region bounded by the mark and the current cursor position (which may be
either way around) is copied to the kill buffer.

Delete region (Ctrl-W)
The text within the region bounded by the mark and the current cursor position (which may be
either way around) is copied to the kill buffer and deleted from the record.

Insert kill buffer (Ctrl-Y or Esc-Y)
The contents of the kill buffer are inserted at the current cursor position. The kill buffer retains
a copy of this text thus allowing multiple insertions.

Lowercase region (Ctrl-X Ctrl-L)
All words in the region between the mark and the cursor are converted to lowercase.

Uppercase region (Ctrl-X Ctrl-U)
All words in the region between the mark and the cursor are converted to uppercase.

OpenQM360

2.6-6

SED - Changing text

Replace (Ctrl-X R)
The replace function prompts for a search string and a replacement string. All occurrences of
the search string from the current cursor position to the end of the record are replaced by the
replacement string. Search modes are applied as described for the forward search function.

When a replace is included in a macro, the prompt for the search and replacement strings only
occurs when collecting the macro. Subsequent executions use the same strings. Multiple
replace functions in a macro may have different strings.

Query replace (Ctrl-X Q)
This function is like the replace function except that a prompt is issued for each possible
replacement. Entering a space causes replacement to occur, the return key causes no
replacement and Ctrl-G causes the function to be aborted. Search modes are applied as
described for the forward search function.

Capital init (Esc-C)
This function locates the next word in the record and converts it so that the first letter is in
uppercase and the remainder is in lowercase.

Lowercase (Esc-L)
This function locates the next word in the record and converts it to lowercase.

Uppercase (Esc-U)
This function locates the next word in the record and converts it to uppercase.

Toggle chars (Ctrl-T)
The character at the cursor position and the preceding character are interchanged. This function
has no effect if the cursor is at the start of the line or beyond the end of the line.

Close spaces (Esc-space)
All spaces surrounding the current cursor position are replaced by a single space.

QM Commands 361

2.6-6

SED - Macros

The editor allows multiple command sequences to be collected as a macro for subsequent
re-execution.

The functions marked with an asterisk in the table at the start of this description cannot be included
within a macro and will be rejected during collection of a macro.

Start macro (Ctrl-X open bracket)
Subsequent keystrokes are collected to form the macro. Each function is executed as it is
collected.

End macro (Ctrl-X close bracket)
Terminates collection of a macro.

Execute macro (Ctrl-X E)
Causes execution of the macro. The repeat counter may be used to execute the macro multiple
times.

Use of the repeat function after an execute macro function will repeat the macro. If the repeat
count is set for the repeat function, the macro is executed that number of times. Otherwise the
repeat count applied to the previous execution of the macro is used.

OpenQM362

2.6-6

SED - File handling

Save record (Ctrl-X S or Ctrl-X Ctrl-S)
The current record is saved, overwriting the previous version (if any).

Write record (Ctrl-X W or Ctrl-X Ctrl-W)
A prompt is issued for the file and record names under which the data is to be saved. The file
name may be prefixed by DICT to indicate that the dictionary portion is required.

After saving the data, the selected file and record names become current. A later use of the save
record function would replace this record not the record that was specified when editing began.

The update lock is transferred to the new record by this function.

Import (Ctrl-X I)
A prompt is issued for the file and record names for the data to be imported. The data is then
inserted at the current cursor position.

Export (Ctrl-X X)
The export function saves the contents of the region between the cursor and the mark to a file.
A prompt is issued for the file and record names under which the data is to be saved. The file
name may be prefixed by DICT to indicate that the dictionary portion is required.

Find record (Ctrl-X Ctrl-F)
The editor can handle multiple records simultaneously. The find record function prompts for
file and record names and reads the record for editing. The file name defaults to that of the
record in the current buffer. If the named record does not exist, a prompt is issued to confirm
that it is to be created. Multiple records are of particular use when copying data between
records.

The find record function will accept the record name on the same response line as the file name
as an alternative to entering the file and record names in response to separate prompts. This is
achieved by separating the file and record names by a single space. SED still attempts to open a
file with a name corresponding to the complete prompt response first to allow for the unlikely
situation of a file name which includes a space.

The find record function maintains a stack of the last 10 files referenced by this command.
The up line and down line functions can be used to restore previous file names from the stack
when the file name prompt is displayed.

List buffers (Ctrl-X Ctrl-B)
The list buffers function displays a list of all currently defined buffers, showing the buffer
number, and its corresponding file and record names. It is of use when multiple records have
been read. The colon normally following the buffer number is replaced by an asterisk if the
buffer has been modified or a hyphen if it is a read-only buffer.

A marker is displayed to the left of the buffer number of the current buffer. This marker can be
moved up and down using the up line and down line functions. Pressing return selects the
marked buffer. The cancel function will revert to the previous buffer.

Next buffer (Esc-N)

When multiple records are in use, this function selects the next buffer as the current buffer for
display and editing.

QM Commands 363

2.6-6

Previous buffer (Esc-P)
When multiple records are in use, this function selects the previous buffer as the current buffer
for display and editing.

Goto buffer (Ctrl-X B)

This function selects the buffer identified by the repeat counter value.

Delete buffer (Ctrl-X K)
The current buffer is deleted, freeing it for use by other records. A confirmation prompt is
displayed if the buffer has been modified.

List records (Ctrl-X D)
Displays a list of the records in a file allowing the user to explore the content of the file. The
editor prompts for the file name which defaults to that of the record in the current buffer.

The file name may be followed by a selection template separated from the file name by a single
space. If this template begins with the word LIKE or WITH the entire template is taken as a
selection clause for the internally executed SELECT command. If the template does not begin
with either of these words, it is assumed to be a pattern for matching with the SELECT
statement LIKE clause. Thus a template of

PRT...
is equivalent to

WITH @ID LIKE PRT...

Single or double quotes may be used as required to ensure correct parsing of the template.
Multiple conditions may be included exactly as in a SELECT statement. A template not starting
with LIKE or WITH may not include both single and double quotes.

The list of records is displayed in a buffer which is tagged with a pseudo-record name of
Explore. If an explore list already exists for this file, the list is rebuilt by this function, thus
showing any changes to the file content.

The normal editor functions may be used to move around this buffer but it cannot be updated.
The return key or the dive function (Ctrl-X Ctrl-D) will cause the editor to read and display
the record identified by the line of the explore list on which the cursor lies. If this record is
already loaded into a buffer, the existing buffer is selected.

The kill line function executed in an explore buffer deletes the record named on the current line.
A confirmation prompt is issued before the record is deleted. If this record is currently loaded
into a buffer, the buffer is also deleted. A second confirmation prompt is issued to confirm this
action.

Up to parent (Ctrl-X U)
Moves 'up' from the displayed record to an explore list for the file holding the record. If the
explore list already exists, the list is not rebuilt by this function.

Used in an explore buffer, this function moves up to a display of all files in the VOC. Diving
into a file from this list shows a list of records in the file. It does not dive into the VOC record
itself.

Used in a value edit buffer, this function returns to the parent buffer, saving any changes into
the main buffer.

OpenQM364

2.6-6

Dive (Ctrl-X Ctrl-D)
When positioned on a $INCLUDE statement of a QMBasic program, this function loads the
associated include record into a new buffer.

When not positioned on a $INCLUDE statement, this function enters edit value mode.

QM Commands 365

2.6-6

SED - Repeating functions

A function may be repeated multiple times by use of the repeat count prefix. This is performed by
use of the ESCape key followed by the number of times the command is to be repeated. The repeat
count is displayed on the status line. Functions for which a repeat count is irrelevant ignore it.

Functions within macro definitions may be repeated in this way and the execution of the macro
itself may also be repeated.

The repeat function (Ctrl-C or Ctrl-U) repeats the previously executed function. The repeat count
prefix can also be used with this function.

OpenQM366

2.6-6

SED - Miscellaneous functions

Cancel (Ctrl-G)
The cancel function aborts partially entered commands such as searches or repeat counts.

Refresh (Ctrl-L)
The refresh function rebuilds the screen display if it should be corrupted in any way. The
current line is placed at the centre of the screen if possible. Alternatively, the repeat counter
may be used to specify the screen line number on which the current line is to be placed.

Expand character (Ctrl-X =)
Certain control characters (e.g. tab, form feed) are represented on the screen by question marks.
The expand character function displays the character sequence number for the character at the
cursor position. It also shows the cursor position in terms of field, value and subvalue which is
useful when editing data files.

Split window (Ctrl-X 2)
The split window function divides the screen into two separate windows. These initially hold
two views of the same buffer but can be used to show different buffers.

Unsplit window (Ctrl-X 1)
The unsplit window function returns to single window mode from a split window view.

Toggle window (Ctrl-X O)
The toggle window function moves between the two windows of a split window display.

Quit (Ctrl-X Ctrl-C or Ctrl-X C)
The quit function terminates an editing session. If any records have been modified but not
written back to disk, SED will prompt for confirmation that this action is intended.

Where a select list is in use, SED will move to the next item from this list.

Where only a file name was specified on the command line, SED will prompt for a further
record name.

Run extension (Esc-E)
The run extension function prompts for an extension program name and executes that
extension.

CompRun (Ctrl-X M)
The CompRun function compiles the QMBasic program in the current window and, if the
compilation is successful, runs the program.

Command (Esc-X)
The command function is used to alter various long term states of the editor and to perform
other actions.

Click here for a list of commands.

QM Commands 367

2.6-6

SED - Commands

The command function is used to alter various long term states of the editor and to perform other
actions. After entering the command function (Esc-X), a prompt for the command name is issued.
The following commands are available:

BASIC Saves the current record and runs the Basic compiler. This command is similar
to COMPILE (described below) but it inserts marker lines into the source
program where error or warning messages have been produced by the compiler.

BWORD Sets Basic Word mode for search and replace functions as described for the
forward search function.

CASE_OFF Sets Case Insensitive mode for search and replace functions.

CASE_ON Sets Case Sensitive mode for search and replace functions.

COMPILE Saves the current record and runs the Basic compiler. For compatibility with
SED on other platforms, if this record includes a line

*$CATALOG catname
the compiled program will be catalogued automatically after successful
compilation. The actual cataloguing command issued is

CATALOG filename catname recordname
It is thus possible to perform either private or global cataloguing. The same
action can be performed on QM using the $CATALOG compiler directive.

EXPAND.TABS Expands tab characters in the record being edited to align data on the columns
determined by the current setting of the tab interval. The default tab columns
are 11, 21, 31, etc.

FORMAT Applies standard format rules to the layout of a QMBasic program.

FUNDAMENTAL Reverts to the default (fundamental mode) key bindings.

INDENT Toggles indent mode.

KEYS Displays the name of the active key binding record.

LNUM The LNUM command controls display of line numbering. Used alone, it
toggles the current state of numbering on the displayed buffer. It may also be
used with the following qualifiers:

OFF Turn off line numbering in the current buffer.
ON Turn on line numbering in the current buffer.
ALL Turn on line numbering in all buffers.
OFF ALL Turn off line numbering in all buffers.
ON ALL Synonym for ALL.

LOAD.KEYS Loads a named key binding record.

OVERLAY Toggles overlay mode. The OVERLAY function (Ctrl-O) has the same effect.

QUIT Ends editing of the current record in a similar way to the quit key sequence but
also aborts any select list.

OpenQM368

2.6-6

RELEASE Releases the update lock on the current record.

RUN Entering RUN with no qualifying details runs the program in the current buffer
(which must have been compiled).

SAVE.KEYS Saves the key bindings as described later.

SPOOL Spools the contents of the current buffer to print unit zero.

The SPOOL command has optional qualifiers which may be used together if
required. LNUM adds a line number prefix to each line printed. REGION
prints only the lines between the mark and the cursor (which may be in either
order). AT followed by a printer name selects the destination printer.

TABS Sets the tab interval to be used by the tab function and the EXPAND.TABS
command. The value given after TABS must be in the range 1 to 99.

WORD Sets Word mode for search and replace commands.

XEQ {cmnd} Executes QM command cmnd. The XEQ command prefix is only required
where cmnd is also an internal SED command. All commands not recognised
by SED are passed to the command processor for execution.

The command function maintains a stack of the last 100 commands executed. The up line and
down line functions can be used to restore commands from the stack when the command prompt is
displayed.

QM Commands 369

2.6-6

SED - Setting up default modes

On entry, SED looks for a record named &SED.OPTIONS& in the VOC file. This record may be
used to set up default configuration data.

Field 1 of the record should contain X, the record type code.

Field 2 may contain the following keywords separated by spaces:

BWORD Turn on Basic word search mode.

CASE_OFF Turn off search case sensitivity.

CASE_ON Turn on search case sensitivity.

INDENT Turn on indentation mode.

LNUM Line numbering is to be on in all windows by default.

OVERLAY Turn on overlay mode.

TABS n Sets the default tab interval to n columns.

WORD Turn on word search mode.

Fields 3 and 4 may contain the name of a key binding record.

Field 5 may be used to modify the default tab interval used by the tab function and by the
EXPAND.TABS command. The value in this field must be between 1 and 99.

The record should contain no other data. Other fields may be used by later revisions of SED.

OpenQM370

2.6-6

 SED - Source control

SED includes a mechanism that may be used to implement a source control system or other special
processing when updated records are written to disk.

Whenever a write is attempted using the save record or write record functions, SED checks for a
catalogued subroutine named SOURCE.CONTROL. If this is present, it is called to validate
whether data may be written to the file. The subroutine is defined as:

SUBROUTINE SOURCE.CONTROL(dict.flag, file.name,
 record.name, rec, caller,
 write.allowed, updated)

where

dict.flag is "DICT" if attempting to write to a dictionary, a null string otherwise.

file.name is the name of the file to be written.

record.name is the name of the record to be written.

rec is the record data.

caller is 1 to indicate a call from SED, 2 for a call from ED.

write.allowed should be returned by the subroutine as true (1) if the write may be
performed, false (0) if not. This argument is 1 on calling the subroutine.

updated should be set true if the subroutine has made any changes to the data in rec
. This argument is 0 on calling the subroutine.

The source control subroutine may be used in any way you wish. Typical uses are simple validation
of whether the record may be written or addition of edit history information prior to writing the
data. In the latter case, where changes are made to the data passed via the rec argument, the
updated flag should be set true so that SED rebuilds its working copy of the data on return.

The following simple example appends a history entry to the end of any record edited in BP or a file
with a name ending .BP but ignores dictionaries.

SUBROUTINE SOURCE.CONTROL(DICT.FLAG, FILE.NAME,
 RECORD.NAME, REC,
 FULL.SCREEN, WRITE.ALLOWED,
 UPDATED)

 IF LEN(DICT.FLAG) THEN RETURN ;* No interest in dictionary
 IF FILE.NAME # 'BP' AND FILE.NAME[3] # '.BP' THEN RETURN

 DISPLAY @(-1):
 DISPLAY SPACE(27) : "SOURCE CONTROL INFORMATION" : @(-4)
 DISPLAY "Change description:"
 PROMPT ""
 HDR = ""
 TAG = OCONV(DATE(), "D2EL")
 LOOP

QM Commands 371

2.6-6

 DISPLAY @(67) : "<" : @(0) :
 INPUT S, 66_
 WHILE LEN(S)
 HDR<-1> = "* " : TAG : " " : S[1, 66]
 TAG = SPACE(9)
 REPEAT

 REC<-1> = HDR
 UPDATED = @TRUE
 RETURN
END

OpenQM372

2.6-6

 SED - Dynamic key bindings

The key bindings used in the function descriptions in this manual are the defaults used by SED,
known as the fundamental mode bindings. The dynamic key binding system allows these to be
changed if desired.

On entry, SED looks for a file named &SED.BINDINGS&. In most cases where this exists, it
would be set up as a remote file pointer to a single file shared by all accounts. This file contains
records defining named sets of key bindings.

SED works through a sequence of steps in locating the binding record to be used. This sequence,
described below, is designed to allow almost any user or terminal specific precedence rules to be
created.

Try the (optional) name in field 3 of the &SED.OPTIONS& VOC record.

Try a name constructed from loginname-termtype where both the login name and the terminal
type are mapped to upper case.

Try USER.loginname where the login name is mapped to upper case.

Try termtype where the terminal type is mapped to upper case.

Try the (optional) name in field 4 of the &SED.OPTIONS& VOC record.

Try DEFAULT.

Revert to the fundamental mode bindings.

If there is no &SED.BINDINGS& file, SED uses the fundamental mode key bindings.

Key bindings can be changed at run time by use of the LOAD.KEYS command. This takes the
name of a key binding record as its argument and the bindings defined in that record will be loaded.

Fundamental mode can be restored by use of the FUNDAMENTAL command.

The SAVE.KEYS command saves the current key bindings into a record named in the command
argument (e.g. SAVE.KEYS DEFAULT to generate the DEFAULT bindings record).

Key binding records consist of a series of lines (fields), each of which defines one or more bindings
for the function associated with that line separated by value marks. Control characters are
represented by @A, @B, etc. for Ctrl-A, Ctrl-B, etc. Thus escape is @[. The @ character can be
included in a binding as @@. All characters before the first @ are ignored thus allowing comments
to be included. The SAVE.KEYS command inserts the function name as a comment in each
binding.

One way to create new bindings is to use SAVE.KEYS to create a template which is then edited to
make any desired modifications. The quote char function followed by K inserts the key binding
expansion of the next key pressed and can be used while editing a key binding record. This function
simply inserts the characters sent by the next key pressed. It does not validate the modified binding
record for duplicate or ambiguous key sequences.

Used in this way, quote char waits for the first character to arrive and then sleeps for one second. It
then inserts the codes for all characters waiting to be processed. This ensures that the entire
sequence sent by, for example, a function key is processed. You should wait until the character
sequence appears on the screen before typing any further characters.

QM Commands 373

2.6-6

 SED - Extension Programming

The extension programming feature allows users to add new functions to the editor. These may
range from simple insertion or modification of text with a single keystroke to complex programs
that manipulate the data to achieve tasks that are specific to your own editor usage.

Extensions may be stored in any QM file. Ideally, this should be a dynamic hashed file and SED
uses &SED.EXTENSIONS& by default. The editor looks for and executes an extension named
START.UP on loading the first data record. Extension names must be upper case and consist only
of letters, digits, periods (.) and dollar signs.

Extensions must be compiled before use. This is performed using SED’s COMPILE command
which recognises extension programs as distinct from QMBasic programs. The compiled version is
stored in the same file as the source but with a suffix of -EXT added to the record name.

An extension is executed by the SED run extension function which is normally bound as Esc-E.
Extensions may also be bound directly to user defined key sequences or made available via the
command function. Typically this would be performed by the optional START.UP extension.

All those Brackets...

The extension programming language is based on the LISP language. This yields programs with
very simple, though somewhat strange looking, structure.

Extension programs come in two types; procedures perform some operation whereas functions
also return a value. The outermost structure of a procedure is

PROC
(
 ...operations...
)

and for a function it is

FUNC
(
 ...operations...
)

where ...operations... is a sequence of steps that makes up the program.

A function returns a value using the return operation at any point in its execution. There is an
implicit return of a zero value at the end of the function text.

Each of these operations is also a procedure or a function in that they perform some operation on
the editing environment and/or they return information that can be used by other operations.

Each complete operation and any data items on which it works are enclosed in a further layer of
brackets. Since the language allows functions to be nested to a high degree, a typical program at
first appears to contain a large number of brackets. By applying some thought to the layout of the
program, the actual structure can be made very clear to the reader. The language has no built-in
format rules except that no token (individual word, constant, variable name, etc.) can span lines.

OpenQM374

2.6-6

For example, a simple program to provide the equivalent of the STAMP command of ED could be
written as:

PROC
(
 (goto.col 1)
 (insert ‘*Last updated by ‘ @who ‘ (‘ @logname ‘)’
 ‘ at ‘ (oconv @time ‘MTS’)
 ‘ on ‘ (oconv @date ‘D4/’))
 (newline 1)
)

The screen is not updated during execution of an extension program except by functions that are
documented as doing so. This allows the extension program to perform complex data movements
without the screen continually tracking the internal workings of the extension. The screen is updated
when the extension terminates.

For detailed information follow the links below:

Variables, constants and functions

Standard variables and functions

Argument passing

Local procedures and functions

An example of a complex extension

SED Extensions - Variables, constants and functions

All extension program source text is case insensitive except for literal strings.

Local Variables

These are names commencing with a letter and containing only letters, digits, periods (.) and dollar
signs. A procedure or function can use at most 250 local variables. Local variables are private to
the procedure or function and the same name used in another procedure refers to a different local
variable.

Global Variables

These are names commencing with a dollar sign and containing only letters, digits, periods (.) and
dollar signs. Global variables are common to all extensions and retain their values until the user
leaves SED.

Global variables beginning with two dollar signs are reserved. Current usage of these names is:

$$EXTENSION.FILES Contains a space separated list of the files to be searched for
extension programs. By default, this variable contains
&SED.EXTENSIONS& but it may be modified at any time by
user written extension programs. File names are used left to right.
Once an extension program has been loaded on first use, it remains

QM Commands 375

2.6-6

loaded unless it is specifically unloaded by use of unload or by
recompilation by the user who has it loaded.

Constants

Numeric constants are written as a sequence of digits, optionally prefixed by a sign or including a
decimal point. A numeric constant with an absolute value of less than one must be written with a
leading zero (e.g. 0.5).

A string constant may be enclosed in either single or double quotes. It may contain any character
except the mark characters (which are available using the tokens shown below) and ASCII
character 0 (nul).

The logical values are represented as 0 for false and 1 for true. In general, use of any value other
than zero is treated as true by operations that expect logical values as their arguments.

Key Tokens

The get.key function returns a code that relates to an internal function number. Each function has a
corresponding symbolic name. These all begin with a period (.) and are the same as the comment
inserted at the start of each line of a key binding record with spaces replaced by period. The names
are:

.newline .start.line .end.line .back.char

.fwd.char .up.line .down.line .top

.bottom .page.up .page.down .del.char

.backspace .kill.line .save.record .quit

.overlay .tab .goto.line .toggle.chars

.fwd.search .replace .query.replace .swap.mark

.execute.macro .nudge.down .nudge.up .set.mark

.delete.region .copy.region .insert.killed .forward.word

.delete.word .import .reverse.srch .lowercase

.uppercase .capital.init .back.word .del.back.word

.close.spaces .next.buffer .prev.buffer .goto.buffer

.delete.buffer .up.to.list .repeat .refresh

.quote.char .list.buffers .find.record .write.record

.start.macro .end.macro .expand.char .list.records

.export .command .cancel .run

.insert .align.text

System Variables

Extension programs may examine the current state of many editor features by use of system
variables. These all begin with a percent sign (%) and are read only (i.e. they cannot be used in a set
function).

OpenQM376

2.6-6

The following system variables may also be referenced in extensions:

@IM @FM @VM @SM

@TM @LOGNAME @CRTHIGH @CRTWIDE

@DATE @TIME @PATH @SENTENCE

@WHO @TTY @USERNO

Comments

A comment is introduced by an asterisk (*) and extends to the end of the line.

Erroneous Programs

Extension programs may test whether the buffer being processed is read only. Attempts to change
such a buffer are ignored. No error is displayed.

Variables are type variant in the same way as for QMBasic programs and they follow the same
rules. In most cases, attempts to use a non-numeric value where a number is required result in use
of a default.

SED Extensions - Standard variables and functions

Variables are type variant in the same way as for QMBasic programs and they follow the same
rules. In most cases, attempts to use a non-numeric value where a number is required result in use
of a default.

Buffer Information

%file Returns file name for current buffer. This is prefixed by “DICT “ if the
buffer is from the dictionary part of the file.

%id Returns the record id for the current buffer. For an explore buffer or a file
list buffer it returns a pseudo id value.

%buffer.type Returns a type code for the current buffer:
1 : data buffer
2 : explore buffer
3 : file list buffer

%read.only Returns a logical value indicating whether the current buffer is read only.

(set.read.only n) Sets the read only status of the current buffer. If n is non-zero, the buffer
is marked as read only, otherwise modifications are allowed. This function
is of particular use with scratch buffers. It is ignored for buffers
containing explore record lists or file lists.

%changed Returns a logical value indicating whether the current buffer is marked as
having been changed since it was last saved.

(set.changed n) Sets the status of the buffer changed flag. If n is zero, the buffer is marked
as unchanged, otherwise it is marked as changed. Use this operation with
care as it can result in data not being saved on leaving the editor. It is of
particular use with scratch buffers.

%overlay Returns a logical value indicating whether the current buffer is operating in
overlay mode.

QM Commands 377

2.6-6

(set.overlay n) Sets the overlay status of the current buffer. If n is zero, overlay is turned
off, otherwise it is turned on.

%buffer.no Returns the current buffer number.

(prev.buffer n) Select the buffer with buffer number n less than the current one. This
operation cycles to the highest numbered buffer if necessary.

(next.buffer n) Select the buffer with buffer number n greater than the current one. This
operation cycles to the lowest numbered buffer if necessary.

(goto.buffer n) Select buffer number n.

(delete.buffer) Deletes the current buffer. Unlike the SED delete.buffer keyboard
function, this operation allows deletion of modified buffers without any
confirmation checks.

%current.line Returns text of current line.

%current.char Returns character under cursor.

%line.len Returns length of current line.

%line Returns current line number.

%col Returns current column number.

%lines Returns number of lines in current record.

%mark.line Returns the line number of the mark position, zero if no mark set.

%mark.col Returns the column number of the mark position, zero if no mark set.

%scroll Returns current scroll position. This is the line number of the data
displayed on the first line of the screen.

(set.scroll n) Sets the current scroll position to n. The value of n must be greater than
zero and must not be greater than the number of lines in the current buffer.
The next screen update (paint or implicit from some other function) will
move the scroll position if the current line is not in the displayed region of
the buffer.

%pan Returns the current pan position. This is the column number (from one) of
the leftmost displayed column of the current buffer.

(set.pan n) Set the current pan position to n. The value of n must be greater than zero.
The next screen update (paint or implicit from some other function) will
move the pan position if the current cursor position is not in the displayed
region of the buffer.

%tab.interval Returns the current setting of the tab interval.

(set.tab.interval n) Sets the tab interval to n. The value of n must be in the range 1 to 99.

%width Returns the width of the screen display.

%height Returns the number of lines on the screen display excluding the two editor
status lines.

%kill.buffer Returns the content of the kill buffer.

(make.buffer name) Makes a new scratch buffer named name. Scratch buffers may be used for
internal purposes of the extension program or as the place to create data
which will later be written to disk. Use of %file with a scratch buffer
returns a null string. %id returns name. This function returns true if
successful, false if not. If a scratch buffer of the given name already exists,
it makes that buffer current and returns true.

(find.buffer file rec) Returns the internal number of the buffer holding data from the given file
and record. Use of a null string as file allows location of a scratch buffer.
This function returns zero if no such buffer exists.

OpenQM378

2.6-6

(find.record file rec) Reads record rec from file into a newly created buffer. If the record is
already loaded, it simply switches to that buffer. This function returns true
if successful, false if not.

(save.record) Saves the current buffer. It has no effect on a scratch buffer or if the
current buffer is read only. The normal source control actions are
performed if this editor feature is in use.

(write.record file rec) Writes the current buffer to record rec in file. This operation may result in
the current buffer being renamed. The normal source control actions are
performed if this editor feature is in use. The write.record operation is
ignored if the target record is locked by another user.

Moving the Cursor, Insertion and Deletion

(top) Move to the start of line 1.

(bottom) Move to after the final line of the buffer.

(start.line) Move to the start of the current line.

(home) Synonym for start.line.

(end.line) Move to the end of the current line.

(end) Synonym for end.line.

(back.char n) Move cursor left n columns.

(left n) Synonym for back.char.

(fwd.char n) Move cursor right n columns.

(right n) Synonym for fwd.char.

(up.line n) Move cursor up n lines.

(up n) Synonym for up.line.

(down.line n) Move cursor down n lines.

(down n) Synonym for down.line.

(page.up n) Move cursor up by n display pages.

(page.down n) Move cursor down by n display pages.

(fsearch mode str) Search forwards for string str. The mode indicates the style of search:
0 : Use the current search mode setting
1 : Case sensitive
2 : Case insensitive
3 : Word search, case insensitive

This function returns a logical value indicating whether the search was
successful. An unsuccessful search does not move the current position.

(rsearch mode str) Search backwards for string str. The mode indicates the style of search:
0 : Use the current search mode setting
1 : Case sensitive
2 : Case insensitive
3 : Word search, case insensitive

This function returns a logical value indicating whether the search was
successful. An unsuccessful search does not move the current position.

(del.char n) Delete n characters.

(backspace n) Backspace n characters.

(insert s) Insert string s at current cursor position. Any field marks in the text are
treated as newlines. The insert function can take more than one argument,

QM Commands 379

2.6-6

each of which is inserted in turn.

(newline rpt) Insert rpt newlines at the current cursor position.

(tab rpt) Advances the cursor to the next tab position as determined by the current
setting of the tab interval. Additional spaces are appended to the current
line if necessary. The rpt argument specifies how by many tab positions
the cursor is to be advanced.

(goto.line a) Go to column 1 of line a.

(goto.col a) Go to column a of current line. The line is extended if necessary by adding
trailing spaces.

(set.mark) Set the mark at the current cursor position.

(swap.mark) Interchange the cursor and mark positions. Has no effect if there is no
mark position defined.

(retype s) Replace the current line by string s.

(set.case mode rpt) Changes the case of the next rpt words in the current buffer. The mode
argument is:

0 : Set lower case
1 : Set upper case
2 : Set capital initial casing

(toggle.chars) Interchanges the character at the cursor position with that in the preceding
column.

(fwd.word n) Moves the cursor forward by n words.

(back.word n) Moves the cursor backward by n words.

(del.word n) Deletes n words from the current cursor position.

(del.back.word n) Deletes n words backwards from the current cursor position.

(copy.region) Copies the region between the mark and the cursor, which may be in either
order, to the kill buffer.

(delete.region) Copies the region between the mark and the cursor, which may be in either
order, to the kill buffer and deletes the text from the buffer.

(close.spaces) Closes multiple spaces around the current cursor position to be just one
space.

Arithmetic, String and Logical Functions

(add a b) Returns a + b.

(sub a b) Returns a – b.

(mul a b) Returns a * b.

(div a b) Returns a / b.

(rem a b) Returns the remainder of dividing a by b.

(int a) Returns the integer portion of value a by truncating any fractional part.

(eq a b) Test a equal to b.

(ne a b) Test a not equal to b.

(lt a b) Test a less than b.

(gt a b) Test a greater than b.

(le a b) Test a less than or equal to b.

(ge a b) Test a greater than or equal to b.

OpenQM380

2.6-6

(and a b) Forms logical relationship a and b. The and function can take more than
two arguments, each of which is and'ed in turn.

(or a b) Forms logical relationship a or b. The or function can take more than two
arguments, each of which is or'ed in turn.

(not a) Returns logical inverse of a.

(max a b) Returns the maximum of a and b. If either value is not numeric, this
function returns the item that appears last in collating sequence order.

(min a b) Returns the minimum of a and b. If either value is not numeric, this
function returns the item that appears first in collating sequence order.

(len s) Returns the length of string s.

(char n) Returns the character with ASCII character value n.

(seq c) Returns the ASCII character sequence number of the first character of c.

(cat a b) Returns concatenation of strings a and b. The cat function can take more
than two arguments, each of which is concatenated in turn.

(substr s a b) Returns a substring from s starting at character a, b characters long.

(pad s n) Pad string s with spaces to be n characters long. If string s is already at
least n characters long, this function returns the original string.

(trim s) Returns string s with all leading and trailing spaces removed and all
multiple embedded spaces replaced by a single space.

(trimb s) Returns string s with all trailing spaces removed.

(trimf s) Returns string s with all leading spaces removed.

(upcase s) Returns string s converted to upper case.

(downcase s) Returns string s converted to lower case.

(extract str f v s) Returns field f, value v, subvalue s of string str. Specify v and s as zero to
extract field f, s as zero to extract field f, value v.

(rep str f v s new) Returns a string formed from str with field f, value v, subvalue s replaced
by new. Specify v and s as zero to replace field f, s as zero to replace field f
, value v.

(ins str f v s new) Returns a string formed from str with new inserted before field f, value v,
subvalue s. Specify v and s as zero to insert before field f, s as zero to
insert before field f, value v.

(del str f v s) Returns a string formed from str with field f, value v, subvalue s deleted.
Specify v and s as zero to delete field f, s as zero to delete field f, value v.

(field str d n count) Returns a portion of str starting at the n’th substring delimited by d and
extending for count such substrings.

User Input and Screen Display

(prompt prmpt dflt) Displays prmpt prompt text on the upper status line and invites input. Dflt
is the default input if the return key is pressed without entering any
response.

(get.char) Waits for and returns the character sent by the next key pressed by the
user. This function does not position the cursor. Precede it with paint if
the cursor should be refreshed at the current position.

%key.ready Returns a logical value indicating whether there is data waiting from a user
key depression.

QM Commands 381

2.6-6

(get.key) Waits for user input of a bound key and returns the internal code for this
key. These codes are shown under the heading key tokens above. If the
key is a data character, the key type code is .insert and the associated data
character can be retrieved using %key.char. See also %prefix.count and
%prefix.set.

%key.char Returns the character from the last get.key if it was an insert action. For
other actions, it returns a null string.

%prefix.count Returns the prefix count for the last use of get.key. Returns 1 if no prefix
count was entered.
On Initial entry to a procedure started from the keyboard, this function
returns any prefix count associated with the keyboard action.

%prefix.set Returns a logical value indicating whether a prefix count was entered for
the last use of get.key.

(status.msg str) Displays message str on the upper status line. The displayed text may be
cleared by using the status.msg operation with a null str.

(paint mode) Refreshes the screen display and positions the cursor. The mode argument
is:

0 : Updates screen for any changes
1 : Clears the screen and repaints all displayed data

Repainting of the screen terminates on detection of type-ahead.

(beep) Sounds the terminal bell.

(wait.input) Wait for the user to press a key. The actual key pressed remains available
for subsequent processing.

Miscellaneous File Handling

(exists file rec) Returns a logical value indicating whether record rec exists in file.

(read file rec) Returns record rec from file. If the record cannot be read, this function
returns a null string.

(write file rec str) Writes str to record rec of file. If the file cannot be opened, this function
has no effect

(delete rec) Deletes rec from file. If the file cannot be opened, this function has no
effect

Conditional Execution and Loops

(if a proc1 else proc2) Executes procedure proc1 if logical item a is true, proc2 if it is false. The
else component is optional. Both proc1 and proc2 may be one or more
procedures.

(switch val
 case a proc1
 case b proc2
 ...
 else proc) Executes one of several procedures depending on the value of val. Items a,

b and c (etc.) are values which are compared with val. The else
component is optional and is executed only if none of the preceding
conditions is met.

(loop proc
) Executes proc repeatedly. proc may be one or more procedures. A loop is

OpenQM382

2.6-6

terminated by use of exit.

(exit) Exits from the innermost active loop.

(return) Returns from the current PROC.

(return n) Returns n as the value of the current FUNC.

(stop) Terminates extension program and returns to SED edit mode.

(quit n) Terminates current edit. If n is zero, SED continues processing a select list
(equivalent to the quit editor function). For non-zero values of n, SED
terminates the entire sequence (equivalent to the QUIT command).

Setting Variables

(set var val) Set local or global variable var to val.

Extension Control

(unload) Unloads all extensions on exit from outermost extension program.

(bind.command ext name) Binds extension procedure ext as command name. The extension name is
automatically converted to upper case.

(bind.key ext keyseq) Binds extension procedure ext as key sequence keyseq. The extension
name is automatically converted to upper case.
This function returns a logical value indicating whether it was successful.

%key.bindings Returns a dynamic array, each field of which corresponds to a bindable
internal function and consists of one or more values which hold the actual
character sequence. Note that this character sequence is the actual
characters, not the encoded form used in the key bindings records to avoid
use of control characters. The field number of any particular key can be
identified using the key tokens described earlier.

(xeq cmnd) Executes cmnd as though it were entered using the editor command
function. Commands which are themselves bound to extensions cannot be
executed in this way.
SED checks for extensions bound as command names before internal
commands. It is therefore possible to replace a built-in command.
Furthermore, since extensions cannot execute extension commands, the
extension can be used to provide a prelude to a built-in command.

%macro.state Returns state of editor macro system:

0 : Not collecting or executing
1 : Collecting macro
2 : Executing macro

Basic Functions (Operations that mimic QMBasic programming functions)

(alpha str) Equivalent to ALPHA(str)
Returns a logical value indicating whether str is an entirely alphabetic
string.

(convert old new str) Equivalent to CONVERT(old, new, str)
For each character in old, this function replaces all occurrences of that
character in str by the character in the corresponding position in new. If
new is shorter than old, characters in old for which there is no replacement
in new are deleted from the returned version of str.

(count str substr) Equivalent to COUNT(str, substr)

QM Commands 383

2.6-6

Returns a count of the number of occurrences of substr in str.

(dcount str delim) Equivalent to DCOUNT(str, delim)
Returns a count of the number of substrings in str delimited by delim. The
delimiter must be a single character.

(matches str pattern) Equivalent to str MATCHES pattern
Tests whether str matches the given pattern.

(matchfield str pattern n)

Equivalent to MATCHFIELD(str, pattern, n)
Returns the n'th component of str when matched against pattern.

(iconv str conv) Equivalent to ICONV(str, conv)
Returns the result of applying input conversion conv to str.

(index str substr occ) Equivalent to INDEX(str, substr, occ)
Returns the character position (from one) of the occ’th occurrence of
susbtr in str. This function returns zero if the specified occurrence is not
found.

(num str) Equivalent to NUM(str)
Returns a logical value indicating whether str can be interpreted as a
number.

(oconv str conv) Equivalent to OCONV(str, conv)
Returns the result of applying output conversion conv to str.

Keyboard Functions Not Available as Extension Functions

The following editor keyboard functions are not available directly as extension operations. They
can all be achieved by use of other operations.

Editor Function Equivalent Extension Coding
export (write file rec %kill.buffer)
import (insert (read file rec))
insert killed (insert %kill.buffer)

SED Extensions - Argument Passing

Any user written PROC or FUNC may take arguments. The actual number the compiler expects to
pass is determined by the first reference to that PROC or FUNC and is checked at run time against
the number that are expected by the called item.

To declare arguments in a PROC, it is written as

PROC
ARGS arg1, arg2, arg3...
(

...operations...
)

The arg1, arg2, etc. items are local variables into which the argument values are to be transfered
when the procedure is called.

OpenQM384

2.6-6

SED Extensions - An example of a complex extension

The following extension implements a “walk” function. This function allows you to define a
rectangular block of text and use the cursor keys to “walk” it left, right, up or down. As the text
block “runs over” other text, this reappear on the opposite side of the block being moved. The walk
function is very useful in rearranging tabular data.

To use this extension, first position the cursor at the top left of the block. Execute the extension and
move the cursor to the bottom right of the block by using the up, down, left and right functions then
press the return key. Further use of the up, down, left and right functions will move the defined
block until the return key is pressed once more.

PROC
(
 (if %read.only
 (status.msg 'Read only buffer')
 (beep)
 (wait.input)
 (return)
)

 * Step 1 - Get block coordinates

 (set top %line)
 (set left %col)

 (status.msg 'Set block limits')
 (loop
 (switch (get.key)
 case .up.line
 (set ct %prefix.count)
 (loop
 (if (le %line top) (exit))

 (retype (trimb %current.line)) * Remove
trailing spaces
 (up.line 1)
 (if (lt %line.len %col) * Must extend
line
 (retype (pad %current.line %col))
)

 (set ct (sub ct 1))
 (if (eq ct 0) (exit))
)

 case .down.line
 (set ct %prefix.count)
 (loop
 (if (gt %line %lines) (exit))

 (down.line 1)
 (if (lt %line.len %col) * Must extend
line
 (retype (pad %current.line %col))
)

QM Commands 385

2.6-6

 (set ct (sub ct 1))
 (if (eq ct 0) (exit))
)

 case .fwd.char
 (set x (add %col %prefix.count))
 (if (gt x %line.len) (retype (pad %current.line x)))
 (goto.col x)

 case .back.char
 (set x (sub %col %prefix.count))
 (if (le x left) (set x left))
 (goto.col x)

 case .newline
 (set height (add (sub %line top) 1))
 (set width (add (sub %col left) 1))
 (exit)

 case .cancel
 (status.msg '')
 (stop)

 else
 (beep)
)
)

 * Step 2 - Move the block

 (goto.line top)
 (goto.col left)

 (status.msg 'Move block')
 (loop
 (switch (get.key)
 case .up.line * Move block up
 (set rpt %prefix.count)
 (loop
 (set lw (sub left 1)) * Width of bit to left
of block
 (set right (add left width)) * Col of bit to right
of block
 (set rc (sub right 1)) * Righmost column of
block

 (if (le %line 1) (exit))

 (up.line 1)
 (if (lt %line.len rc) * Must extend line
 (retype (pad %current.line rc))
)
 (set wrapped.bit (substr %current.line left width))

 (set ct height)
 (loop

OpenQM386

2.6-6

 (down.line 1)
 (set moving.bit (substr %current.line left
width))
 (up.line 1)
 (retype (cat (substr %current.line 1 lw)
moving.bit
 (substr %current.line right
999999)))

 (down.line 1)
 (set ct (sub ct 1))
 (if (eq ct 0) (exit))
)

 (retype (trimb (cat (substr %current.line 1 lw)
wrapped.bit
 (substr %current.line right
999999))))
 (set top (sub top 1))
 (goto.line top)
 (goto.col left)

 (set rpt (sub rpt 1))
 (if (eq rpt 0) (exit))
)

 case .down.line * Move block down
 (set rpt %prefix.count)
 (loop
 (set lw (sub left 1)) * Width of bit to left
of block
 (set right (add left width)) * Col of bit to right
of block
 (set rc (sub right 1)) * Righmost column of
block

 (if (gt (add %line height) %lines) (exit))

 (down.line height)
 (if (lt %line.len rc) * Must extend line
 (retype (pad %current.line rc))
)
 (set wrapped.bit (substr %current.line left width))

 (set ct height)
 (loop
 (up.line 1)
 (set moving.bit (substr %current.line left
width))
 (down.line 1)
 (retype (cat (substr %current.line 1 lw)
moving.bit
 (substr %current.line right
999999)))

 (up.line 1)
 (set ct (sub ct 1))
 (if (eq ct 0) (exit))

QM Commands 387

2.6-6

)

 (retype (trimb (cat (substr %current.line 1 lw)
wrapped.bit
 (substr %current.line right
999999))))
 (set top (add top 1))
 (goto.line top)
 (goto.col left)

 (set rpt (sub rpt 1))
 (if (eq rpt 0) (exit))
)

 case .fwd.char * Move block to the right
 (set rpt %prefix.count)
 (loop
 (set lw (sub left 1)) * Width of bit to left
of block
 (set right (add left width)) * Col of bit to right
of block

 (set x (add right 1))
 (set ct height)
 (loop
 (if (lt %line.len right) * Must
extend line
 (retype (pad %current.line right))
)
 (set wrapped.bit (substr %current.line right 1))
 (set moving.bit (substr %current.line left
width))
 (retype (cat (substr %current.line 1 lw)
wrapped.bit
 moving.bit
 (substr %current.line x 999999)))

 (down.line 1)
 (set ct (sub ct 1))
 (if (eq ct 0) (exit))
)
 (set left (add left 1))
 (goto.line top)
 (goto.col left)
 (set rpt (sub rpt 1))
 (if (eq rpt 0) (exit))
)

 case .back.char
 (set rpt %prefix.count)
 (loop
 (set lw (sub left 1)) * Width of bit to left
of block
 (set right (add left width)) * Col of bit to right
of block
 (set rc (sub right 1)) * Righmost column of
block

OpenQM388

2.6-6

 (if (le left 1) (exit))

 (set x (sub lw 1))
 (set ct height)
 (loop
 (if (lt %line.len rc) * Must extend
line
 (retype (pad %current.line rc))
)
 (set wrapped.bit (substr %current.line lw 1))
 (set moving.bit (substr %current.line left
width))
 (retype (cat (substr %current.line 1 x)
moving.bit
 wrapped.bit
 (substr %current.line right
999999)))

 (down.line 1)
 (set ct (sub ct 1))
 (if (eq ct 0) (exit))
)
 (set left (sub left 1))
 (goto.line top)
 (goto.col left)

 (set rpt (sub rpt 1))
 (if (eq rpt 0) (exit))
)

 case .newline
 (exit)

 case .cancel
 (status.msg '')
 (stop)

 else
 (beep)
)
)

 * Step 3 - Tidy up by trimming trailing spaces from lines in
block

 (status.msg '')
 (set ct height)
 (loop
 (retype (trimb %current.line))
 (down.line 1)
 (set ct (sub ct 1))
 (if (eq ct 0) (exit))
)
 (goto.line top)
 (goto.col left)
)

QM Commands 389

2.6-6

SED Extensions - Local procedures and functions

A single extension source record may contain local procedures and functions that are only
accessible to the other components of that extension. These must follow the main procedure or
function are take the form

LPROC name
ARGS arg1, arg2, arg3...
(

...operations...
)

or

LFUNC name
ARGS arg1, arg2, arg3...
(

...operations...
)

There is no concept of local variable scope. Variable names used within local PROCs and FUNCs
refer to the same set of variables as in the main PROC or FUNC. In particular, note that the
argument variables simply provide an easy way to transfer information into the local PROC or
FUNC. The two alternatives below are exact equivalents.

PROC
(
 ...
 (MYPROC 12 A)
 ...
)

LPROC MYPROC
ARGS X, Y
(
 ...
)

PROC
(
 ...
 (SET X 12)
 (SET Y A)
 (MYPROC)
 ...
)

LPROC MYPROC
(

)...

Although local procedures may recurse (that is call themselves) it is likely that the lack of scoped
variables makes this of limited use.

OpenQM390

2.6-6

4.134 SEL.RESTORE

The SEL.RESTORE command restores a single file from a Pick style ACCOUNT.SAVE or
FILE.SAVE tape.

Format

SEL.RESTORE {DICT} target.file.name {item.list} {options}

where

target.filet.name is the name of the file into which data is to be restored.

item.list is a list of records to be restored. The default select list may be used
instead.s

options is any combination of the following:

BINARY Suppresses translation of field marks to newlines
when restoring directory files. Use this option
when restoring binary data.

DET.SUP Suppresses display of the name of each file as it is
restored.

NO.CASE Causes new files to be created with case
insensitive record ids. Existing files are not
reconfigured.

NO.INDEX Do not create alternate key indices.

NO.OBJECT Omits restore of object code. This is particularly
useful when migrating to QM from other
environments.

POSITIONED Assumes that the tape is already positioned at the
start of the data to be restored.

Unless the POSITIONED option is used, the SEL.RESTORE command prompts for the name of
the account and the file within that account. It then restores the data for this file from the tape into
the specified target file. which must already exist.

The tape to be restored must first be opened to the process using the SET.DEVICE command.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT,
RESTORE.ACCOUNTS, SET.DEVICE, T.ATT, T.DUMP, T.LOAD, T.xxx

QM Commands 391

2.6-6

4.135 SET

The SET command sets a value into an @-variable.

Format

SET variable value

SET variable EVAL expression

where

variable is the name of the variable to be set. The leading @ character is optional. The
name may be up to 32 characters and is case insensitive.

value is the value to be stored. This may not include the mark characters.

expression is an arithmetic expression to be evaluated.

The SET command sets a value into a user defined @-variable. The values of system defined
variables @SYSTEM.RETURN.CODE, @USER0 to @USER4 and @USER.RETURN.CODE c
an also be set.

In the second form, the expression may include the four arithmetic operators +, -, * and /. These
operators must be surrounded by spaces. Any @-variables in the expression will be expanded.

Examples

SET USER.RETURN.CODE 1

The above command sets the @USER.RETURN.CODE variable to 1.

PA
SET CT 5
LOOP
 DISPLAY <<@CT>>
 SET CT EVAL @CT - 1
 IF @CT = 0 THEN STOP
REPEAT

This paragraph executes the loop five times, displaying the decreasing values stored in @CT on
each cycle.

See also:
LIST.VARS and the QMBasic !ATVAR() and !SETVAR() subroutines.

OpenQM392

2.6-6

4.136 SET.DATE

The SET.DATE command adjusts the date used for all internal processing.

Format

SET.DATE date

where

date is the new date to be used.

The SET.DATE command alters the internal date value affecting all application access to the date
via the QMBasic DATE() function or the @DATE variable. It is useful when, for example,
repeating month end processing after an error has been detected.

QM Commands 393

2.6-6

4.137 SET.DEVICE

The SET.DEVICE command opens a tape or pseudo-tape for processing by QM. The synonym
T.ATT may be used.

Format

SET.DEVICE device.name

where

device.name is the pathname of the device to be opened. This must be enclosed in quotes if
it commences with a backslash on Windows.

The SET.DEVICE command assigns a tape device or a file representing a pseudo-tape to the
current QM process. The device can then be used by other tape processing commands such as
ACCOUNT.SAVE, ACCOUNT.RESTORE, T.DUMP, T.LOAD and the T.xxx tape utility
commands.

Note: QM does not support Pick style use of floppy disks as tape devices.

SET.DEVICE attempts to detect the format of the image being attached. A code signifying the
format is then stored internally for future use by the other tape processing utilities.

Note that access to real tape devices (as opposed to pseudo-tapes) may offer limited functionality.
In particular, the Pick compatible tape transfer tools require the ability to process file mark blocks,
a feature which may not be provided by the underlying operating system device driver. Use of
pseudo-tapes is strongly recommended.

The formats currently supported are:
AS PICK style ACCOUNT-SAVE image (also the QM ACCOUNT.SAVE format)
FS PICK style FILE-SAVE image.
ULTFS Ultimate style FILE-SAVE image.
JBS jBASE ACCOUNT-SAVE image.

The AS type can be either a single ACCOUNT-SAVE or several ACCOUNT-SAVEs on the same
tape. These multiple saves are created by successive ACCOUNT-SAVE commands issued without
rewinding the tape between saves. If multiple accounts exist, this format is handled like the FS type
by the tape utilities and RESTORE.ACCOUNTS, FIND.ACCOUNT and SEL.RESTORE
operations may all be used.

The ULTFS format is a FILE-SAVE format in which several accounts are expected.

The JBS format is essentially the same as the individual files that comprise the ULTFS set. These
files have a single label followed immediately by the account data and are treated like individual AS
types.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT,
RESTORE.ACCOUNTS, SEL.RESTORE, T.DUMP, T.LOAD, T.xxx

OpenQM394

2.6-6

4.138 SET.ENCRYPTION.KEY.NAME

The SET.ENCRYPTION.KEY.NAME command updates a data file to reference a new name for
an encryption key.

Format

SET.ENCRYPTION.KEY.NAME filename field, keyname ...

SET.ENCRYPTION.KEY.NAME filename keyname

where

filename is the name of the encrypted file to be updated.

field is the name or field number of the field to be amended.

keyname is the name of the encryption key to be used. This is case insensitive.

The SET.ENCRYPTION.KEY.NAME command is intended for use where an encrypted file is
moved to a system on which the original encryption key name is already in use but with a different
key value. It updates the encryption key information stored in the file but does not make any
changes to the data records.

The first form of the SET.ENCRYPTION.KEY.NAME command updates the encryption key for
one or more fields within a file that uses field level encryption.

The second form of the SET.ENCRYPTION.KEY.NAME command updates the encryption key
for record level encryption.

Examples

SET.ENCRYPTION.KEY.NAME CUSTOMERS CCARD,CARDNO

The above command sets the encryption key for the CCARD field of the CUSTOMERS file to be
CARDNO.

SET.ENCRYPTION.KEY.NAME CUSTOMERS CKEY

The above command sets the record level encryption key for encrypts the CUSTOMERS file to be
CKEY.

See also:
Data encryption, CREATE.FILE, CREATE.KEY, DELETE.KEY, GRANT.KEY,
LIST.KEYS, RESET.MASTER.KEY, REVOKE.KEY

QM Commands 395

2.6-6

4.139 SET.EXIT.STATUS

The SET.EXIT.STATUS command sets the final exit status returned by QM to the operating
system. This command is not available on the PDA version of QM.

Format

SET.EXIT.STATUS value

where

value is the numeric exit status value to be set.

By default, QM returns an exit status of zero to the operating system on termination. The
SET.EXIT.STATUS command allows an application to return an alternative exit status value to
indicate, for example, success or failure. Note that error conditions detected during startup of a QM
session return an exit status of 1.

See also the QMBasic SET.EXIT.STATUS statement.

OpenQM396

2.6-6

4.140 SET.FILE

The SET.FILE command adds a Q-pointer to the VOC to reference a remote file.

Format

SET.FILE {account { filename { pointer} } }

where

account is the name of the account holding the file to be referenced. This name must exist in
the ACCOUNTS file of the QMSYS account.

filename is the name of the file in the remote account. This must correspond to an F-type
VOC entry in that account. The SET.FILE verb cannot be used to create
Q-pointer chains as this technique is not recommended.

pointer is the name to be given to the Q-pointer created in the local account.

The SET.FILE command prompts for information not provided on the command line. The pointer
defaults to QFILE.

The SET.FILE command creates a Q-pointer in the local account to reference the named file in the
remote account. Q-pointers should be used in preference to multiple F-type records pointing to the
same file as they simplify maintenance and give a sense of ownership of the file to the account
containing the F-type entry.

QM Commands 397

2.6-6

4.141 SET.QUEUE

The SET.QUEUE command creates a relationship between a Pick style form queue number and
the corresponding SETPTR print unit options.

Format

SET.QUEUE queue {, width, depth, top.margin, bottom.margin, mode {, options }}

SET.QUEUE DISPLAY {LPTR {unit}}

where

queue is the form queue number in the range 0 to 999.

width is the page width in characters, excluding any left margin.

depth is the total page length in lines, including the top and bottom margins. A
value of zero implies no pagination of the output data.

top.margin is the number of lines to be left blank at the top of the page.

bottom.margin is the number of lines to be left blank at the bottom of the page.

mode is the print unit mode.

options qualify the output destination. There should be a comma between each
option.

If only queue is given, the current settings of the form queue are reported.

The SET.QUEUE command creates or modifies an entry in the $FORMS file to relate a Pick style
form queue number to the corresponding SETPTR options. This form queue number can then be
used in the SP.ASSIGN command. See SETPTR for details of the command options.

The SET.QUEUE DISPLAY command displays a report of the settings of all defined form
queues. The optional LPTR keyword directs this report to a printer.

Examples

SET.QUEUE 0,80,66,3,3,1,AT laser
Directs form queue 0 output to a printer named "laser" with a page shape of 80 columns by 66 lines
and a 3 line top and bottom margin.

SET.QUEUE 4,80,66,0,0,3,AS SALES_REPORT,BRIEF
Directs form queue 4 output to a record named "SALES_REPORT" in the $HOLD file.

See also:
SETPTR, SP.ASSIGN

OpenQM398

2.6-6

4.142 SET.TRIGGER

The SET.TRIGGER command sets, removes or displays the trigger function associated with a
dynamic file.

Format

SET.TRIGGER file.name function.name {modes} Set trigger function

SET.TRIGGER file.name "" Remove trigger function

SET.TRIGGER file.name Report trigger function

where

file.name is the file to be processed.

function.name is the name of the catalogued trigger function.

modes is any combination of the following tokens indicating when the trigger will
be executed.

PRE.WRITE Before a write operation
PRE.DELETE Before a delete operation
PRE.CLEAR Before a clear file operation
POST.WRITE After a write operation
POST.DELETE After a delete operation
POST.CLEAR After a clear file operation
READ After a read operation

If no modes are specified, the default is PRE.WRITE and
PRE.DELETE.

The first form of the SET.TRIGGER command sets the name of the trigger function to be
associated with the named file. Any existing trigger function is replaced by this action.

The second form of the SET.TRIGGER command removes the trigger function for the named file.

The third form of the SET.TRIGGER command displays the name and modes of the trigger
function for the named file.

QM Commands 399

2.6-6

4.143 SETPORT

The SETPORT command sets communications parameters of a serial port. This command is not
available on the PDA version of QM.

Format

SETPORT port {BAUD rate} {BITS bits.per.byte} {PARITY parity} {STOP.BITS stop}
{BRIEF}

where

port is the name of the port to be accessed (e.g. COM1 on Windows or
/dev/cua0 on Linux).

rate is the baud rate for the port.

bits.per.byte is the number of bits per byte (5 to 8).

parity is the parity mode (NONE, ODD or EVEN).

stop is the number of stop bits (1 or 2).

BRIEF Suppresses the normal confirmation prompt

If only port is given, the current settings of the port are reported.

On some systems, it may be necessary to change the permissions on the device driver to make it
accessible to users.

Example

SET.PORT COM1 BAUD 9600 BITS 7 PARITY ODD STOP.BITS 1

OpenQM400

2.6-6

4.144 SETPTR

The SETPTR command sets print unit characteristics.

Format

SETPTR unit {, width, depth, top.margin, bottom.margin, mode {, options }}

SETPTR DISPLAY {LPTR {printer}}

SETPTR unit, DISPLAY

where

unit is the print unit number in the range 0 to 255 or the keyword DEFAULT.

width is the page width in characters, excluding any left margin.

depth is the total page length in lines, including the top and bottom margins. A
value of zero implies no pagination of the output data.

top.margin is the number of lines to be left blank at the top of the page.

bottom.margin is the number of lines to be left blank at the bottom of the page.

mode is the print unit mode:
1 Output is sent to a printer.
3 Output is directed to a hold file.
4 Output is directed to stderr (standard error).
5 Output is directed to the terminal auxiliary port.
6 Output is written to a file and also printed.

options qualify the destination as described below. There should be a comma
between each option.

If only unit is given, the current settings of the print unit are reported.

Use of the DEFAULT keyword in place of a unit number records the default values to be used
when a new print unit is accessed without prior use of SETPTR to define its settings. Note that this
operation does not affect the default printer, print unit 0, which is configured with standard default
settings on entry to QM. These can be changed with a SETPTR command specifying unit 0.

The third form of SETPTR with a unit number and the DISPLAY keyword shows the current
settings in a form that can be captured by a program and later used to restore the settings by
executing a SETPTR command with the captured value appended.

The options available are:

AS { NEXT } { id } Specifies the hold file record name in modes 3 and 6. At least one of
the optional components must be present.

id is the name of the record to be created in the $HOLD file. If

QM Commands 401

2.6-6

omitted, a default name of Punit is used.

The optional NEXT keyword causes QM to attach a four digit cyclic
sequence number to the end of the name so that successive output is
stored separately. Note that this sequence number is shared across all
printer output directed to the $HOLD file by all processes. Thus two
successive jobs from one process may have non-adjacent sequence
numbers.

AS PATHNAME path Specifies a destination pathname for output in modes 3 and 6.

AT printer.name Specifies the printer name in modes 1 and 6. This name must be
enclosed in quotes if it contains spaces or backslashes. The name is
case sensitive except on Windows.

BANNER text Set the text to appear on a banner page.

BRIEF Suppresses the normal confirmation prompt before setting the printer
characteristics. This is typically used in SETPTR commands from
paragraphs or QMBasic programs.

COPIES n Specifies the number of copies to be printed.

GDI Specifies that the GDI mode API calls are to be used to initiate
printing.

KEEP.OPEN Keeps the printer open to merge successive printer output. Use the
PRINTER CLOSE command to terminate the print job.

LANDSCAPE When used without the PCL option, this option is passed to the
underlying print driver to request landscape format printing where this
is supported. On non-Windows platforms, this is equivalent to use of
OPTIONS "landscape".

LEFT.MARGIN n Inserts a margin of n spaces to the left of the printed data.

NEWLINE mode Determines the newline sequence used by the QMBasic PRINT
statement. This may be CR, LF or CRLF. The default is LF.

NFMT Specifies that no page formatting is to be applied to the output data.
The entire output is treated as a single page with no further inserted
form feeds or top and bottom margins.

NODEFAULT Omitted options normally take their default values. Use of this
keyword leaves the option at its current value.

OPTIONS xxx Passes the given option(s) to the underlying operating system print
spooler (e.g. OPTIONS "landscape" on non-Windows systems).

OVERLAY subr Identifies a catalogued subroutine that will be executed at the start of
each page of output. This subroutine takes a single argument which is
the print unit number and can be used to send printer control codes for
a graphical page overlay, if required. It should not perform any other
printer output. This option is ignored for Windows GDI mode printing.

PCL Specifies that this printer supports PCL. This option cannot be used
with GDI mode Windows printers.

PORTRAIT Where supported by the underlying print driver, this keyword specifies
that the output is to be printed in portrait format.

PREFIX path Sends the contents of the named file to the printer at the start of each

OpenQM402

2.6-6

job. This can be used to send printer specific commands for features
that are not available through other SETPTR options. This option is
ignored for Windows GDI mode printing.

RAW Specifies that the non-GDI mode API calls are to be used to initiate
printing.

SPOOLER name Specifies and alternative spooler to be used on non-Windows systems.
If not specified, the spooler selected by the SPOOLER configuration
parameter is used or, if this is not set, the standard lp spooler is used.
The name can include other spooler options if required but must be
quoted if it includes spaces or other reserved characters. The actual
command executed to print the job will be name with options
appropriate to lp added as follows:

-n copies If COPIES is greater than 1.

-d prt.name To set the printer name if AT is used.

-t banner Banner text if BANNER is used.

-o "options" Text from OPTIONS if used.

-o "landscape" If LANDSCAPE is used.

The SPOOLER option can be used to access another standard
operating system spooler package or to direct output to a user written
shell script or program to perform custom processing.

STYLE name Specifies the name of a query processor report style to be used for all
reports directed to this print unit unless overridden by the STYLE
option in the query command.

The following additional options are available. Although the values set will be saved and can be
accessed by application software, they only affect printing when used with the PCL option. In many
cases, the list of acceptable parameter values can be extended by modifying the SYSCOM
$PCLDATA record.

CPI n Specifies the number of characters per inch. The value may be
non-integer.

DUPLEX Selects duplex (double sided) printing, binding on the long edge.

DUPLEX SHORT Selects duplex (double sided) printing, binding on the short edge.

LANDSCAPE Prints the page in landscape format.

LPI n Specifies the number of lines per inch. The value must be 1, 2, 3, 4, 6,
8, 12, 16, 24 or 48.

PAPER.SIZE xx Specifies the paper size. Valid size names are A4, LETTER, LEGAL,
LEDGER, A3, MONARCH, COM_10, DL, C5, B5.

SYMBOL.SET xx Specifies the character set. Valid values of xx are ROMAN8 (the
default), LATIN1, ASCII, PC8.

WEIGHT xx Specifies the font weight. Valid values of xx are ULTRA-THIN,
EXTRA-THIN, THIN, EXTRA-LIGHT, LIGHT, DEMI-LIGHT,
SEMI-LIGHT, MEDIUM, SEMI-BOLD, DEMI-BOLD, BOLD,
EXTRA-BOLD, BLACK, EXTRA-BLACK, ULTRA-BLACK

QM Commands 403

2.6-6

though specific printers might not support all values.

Note: The quality of PCL implementations varies widely and these options may not give the
expected results on some printers. In particular, setting some font metrics may cause inconsistent
character placement. It is the application developer's responsibility to ensure that the printed results
are acceptable.

On Windows systems, two styles of interface with the underlying Print Manager are supported. The
GDI mode uses the Windows Graphical Device Interface API calls. Non-GDI mode uses an
alternative set of API calls. For most purposes, the non-GDI mode is likely to be preferable.

The GDI parameter to SETPTR sets GDI mode and the RAW parameter sets non-GDI mode. The
default is normally non-GDI but this can be modified by setting the GDI configuration parameter to
1.

Use of mode 4 (stderr) allows an application developer to direct output to the standard error file
handle. It is the user's responsibility to ensure that this points to an appropriate destination as the
default settings may cause the screen display to be overwritten. Headings, footings and other
pagination related features are ignored for printers in mode 4.

The SETPTR DISPLAY command displays a report of the settings of all print unit. The optional
LPTR keyword directs this report to a printer.

Examples

SETPTR 0,80,66,3,3,1,AT laser,BRIEF
Directs print unit 0 output to a printer named "laser" with a page shape of 80 columns by 66 lines
and a 3 line top and bottom margin. The BRIEF option suppresses the normal confirmation prompt.

SETPTR 0,80,66,0,0,3,AS SALES_REPORT,BRIEF
Directs print unit 0 output to a record named "SALES_REPORT" in the $HOLD file. The BRIEF
option suppresses the normal confirmation prompt.

SETPTR 0,,,,,3
Directs print unit 0 output to the default $HOLD file record (P0), leaving all page shape parameters
unchanged.

See also:
PRINTER, SET.QUEUE, SP.ASSIGN

OpenQM404

2.6-6

4.145 SH

The SH command executes a shell (operating system) command. This command is not available on
the PDA version of QM.

Format

SH command

!command

SH (Not Windows)

where

command is the shell command to be executed.

The SH command executes the given operating system command. No checks are performed on the
command to be executed so care needs to be taken not to do anything that would interfere with
correct operation of QM.

The ! synonym is provided for compatibility with other systems. This form does not need a space
between the ! and the command.

Use of SH without a command starts an interactive shell. Use the shell exit command to return to
QM. Interactive shells are not currently available on Windows.

Example

SH DIR

This command lists the current directory on a Windows system.

QM Commands 405

2.6-6

4.146 SLEEP

The SLEEP command suspends execution of further commands until a given number of seconds
have elapsed or until a specified time of day.

Format

SLEEP time

where

time is either a number of seconds or a time of day in any format accepted by the MT
input time conversion.

If time is a positive integer value, the process is suspended for that number of seconds.

If time is a time of day such as 8:27PM or 22:00:30, the process is suspended until that time.
Unlike the QMBasic SLEEP statement, the SLEEP command allows for sleeping past midnight.
A SLEEP to 12:00 executed at 13:00 would sleep for 23 hours.

If time is omitted, the process is suspended for one second.

The SLEEP command reports an error if the value of time is not a positive integer and cannot be
converted to a time of day.

OpenQM406

2.6-6

4.147 SP.ASSIGN

The SP.ASSIGN command uses a form queue number to set the destination and other options for
printer output.

Format

SP.ASSIGN options

where options are chosen from:

n is the number of copies to print.

Fqno specifies the form queue number in the range 0 to 999.

H directs output to the hold file.

O keeps the print unit open until the PRINTER CLOSE command is used.

Qqno Same as Fqno.

Runit uses the specified print unit, zero if omitted.

S Suppresses printing.

The SP.ASSIGN command references the $FORMS file (set up using SET.QUEUE) to relate
Pick style form queue numbers to the corresponding SETPTR options. The options to SP.ASSIGN
can be used to override the settings in the form queue definition.

The Fqno or Qqno options specify the form queue to be used. This defaults to zero if omitted.

The queue number is used to read the corresponding print unit details from the $FORMS file. The
remaining options can be used to override settings in the $FORMS entry.

Use of both the H and S options selects mode 3 printing, directing output to the hold file. When the
H option is used without the S option, print mode 6 is selected causing the output to be written to a
file and also printed.

SP.ASSIGN sets the characteristics of print unit zero, the default printer, unless the Runit option is
given.

Note: SP.ASSIGN is provided to ease migration of applications from Pick style environments. It is
strongly recommended that new applications should make direct use of SETPTR.

Examples

SP.ASSIGN F3
This command uses the definition of form queue 3 to process output sent to the default printer (print

QM Commands 407

2.6-6

unit 0).

SP.ASSIGN HSF3
This command uses the definition of form queue 3 but forces use of print mode 3 to send the data to
a file.

SP.ASSIGN HF3
This is similar to the previous example except that the data is saved to a file and also printed.

SP.ASSIGN 2R4F6
This command uses the definition of form queue 6 to process output sent to print unit 4 but forces
the number of copies to be 2.

See also:
SETPTR, SET.QUEUE

OpenQM408

2.6-6

4.148 SP.OPEN, SP.CLOSE

The SP.OPEN command sets the "keep open" flag on the default printer, merging multiple print
requests into a single print job. The SP.CLOSE command resets this option.

Format

SP.OPEN
SP.CLOSE

The SP.OPEN command is equivalent to use of the O option of the SP.ASSIGN command or the
KEEP.OPEN option of the SETPTR command.

When this mode is set, output directed to the default printer (print unit 0) from successive
commands or programs is merged into a single print job. The job is terminated and queued for
printing by use of SP.CLOSE or PRINTER CLOSE.

Example

SP.OPEN
LIST CUSTOMERS,NORTH LPTR
LIST CUSTOMERS,SOUTH LPTR
SP.CLOSE

The above sequence of commands lists records from two elements of the CUSTOMERS multifile as
a single print job.

See also:
SETPTR, SP.ASSIGN

QM Commands 409

2.6-6

4.149 SP.VIEW

The SP.VIEW command views and, optionally, prints records from $HOLD or other files.

Format

SP.VIEW {file} {item} { LPTR n }

where

file is the file to be processed. If omitted, $HOLD is used.

item is the record id of the record to be processed. If omitted, a pick list of records
is displayed.

LPTR n specifies the default print unit to be used. If omitted, print unit 0 is used.

If only one name is specified on the command line, it is assumed to be the file name if a
corresponding VOC F or Q-type record exists and there is no record of that name in $HOLD.

The SP.VIEW command allows users to view and print records. If no item is specified, a pick list
of records in file is displayed. The cursor keys, page up, page down, home and end keys can be used
to move around within this list. Equivalent actions can be performed using the letter keys or the
SED style control keys.

Cursor up U Ctrl-Z Move up one line

Cursor down D Ctrl-N Move down one line

Page up P Ctrl-V Move to previous page

Page down N Esc-V Move to next page

Home T Esc-< Move to top of list

End B Esc-> Move to bottom of list

Q Quit from program. Requires use of return key to confirm

Return Dive into selected item

After an item has been selected, either as described above or by specifying the item name on the
command line, the text of the given record is displayed. The cursor keys, page up, page down, home
and end keys can be used to move around within the data. Equivalent actions can be performed
using the letter keys or the SED style control keys.

Cursor up U Esc-Z Move to previous page

Cursor down D Ctrl-N Move to next page

Cursor right R Ctrl-F Pan right

Cursor left L Ctrl-B Pan left

Page up P Ctrl-V Move to previous page

OpenQM410

2.6-6

Page down N Esc-V Move to next page

Home T Esc-< Move to top of record

End B Esc-> Move to bottom of record

Q Quit from record. Requires use of return key to confirm

Return S Spool item

The S option prompts for the print unit (defaulting to that in the LPTR option, if used), asks
whether line numbering is to be used and then prints the item.

QM Commands 411

2.6-6

4.150 SPOOL

The SPOOL command sends specified records to the printer.

Format

SPOOL file record(s) { LINES m n } { LNUM }{ LPTR n }

where

file is the file holding the record(s) to be printed.

record(s) is a list of records to be printed. If no record ids are specified, SPOOL will use
the default select list to identify the records to be printed.

LINES m n specifies that only line m to n of the record(s) are to be printed. The value of m
must be greater than 0 and the value of n must be greater than m.

LNUM specifies that line numbers are to be printed.

LPTR n specifies the print unit to be used. If omitted, print unit 0 is used.

The SPOOL command sends the specified records to print unit 0. The actual destination is
determined by use of either PRINTER or SETPTR.

Use of the LNUM keyword prefixes each line by its line number, a colon and a single space. The
line number is printed as a minimum of four digits but expands if the record has more than 9999
lines.

Example

SPOOL INVOICES 01249 01250

The above command would print records 01249 and 01250 from the INVOICES file. The SPOOL
command does no formatting of the data except to replace field marks by newlines.

OpenQM412

2.6-6

4.151 STATUS

The STATUS command displays a list of active phantom processes. This command is not available
on the PDA version of QM.

Format

STATUS

A list of phantom processes is displayed in the form

User Started Command
 2 10:30:28 18 May 1994 BASIC BP ACC

If there are no phantom processes, the STATUS command displays

There are no phantom processes

QM Commands 413

2.6-6

4.152 STOP

The STOP command terminates the currently active paragraph.

Format

STOP

The STOP command is intended as a means of exiting from the middle of a paragraph. The active
paragraph is discarded, control returning to the paragraph, menu, etc from which the paragraph was
started or, if none, to the command prompt.

The value of @SYSTEM.RETURN.CODE is not affected by the STOP command.

See also:
ABORT

OpenQM414

2.6-6

4.153 T.DUMP

The T.DUMP command saves data to a Pick style T-DUMP tape.

Format

T.DUMP {DICT} filename {id...} {BINARY} {COUNT.SUP} {DET.SUP} {FROM
listno}

where

filename is the name of the file to be saved.

id... is a list of record ids to be saved.

BINARY suppresses conversion of newlines to field marks in directory files. Use this
mode when saving binary data.

COUNT.SUP suppresses display of the count of records saved.

DET.SUP suppresses display of the detailed list of records saved.

FROM listno uses the specified select list to identify the records to be saved.

The T.LOAD command processes the named file to produce a Pick style T-DUMP tape

The tape or pseudo-tape to be created must first be assigned to the process using the
SET.DEVICE command.

By default, the entire content of the named file is saved. If the default select list is active or the
FROM option is used to identify an active select list, that list is used to determine the records to be
saved. Alternatively, a list of ids may be given on the command line.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT,
RESTORE.ACCOUNTS, SEL.RESTORE, SET.DEVICE, T.ATT, T.LOAD, T.xxx

QM Commands 415

2.6-6

4.154 T.LOAD

The T.LOAD command restores a Pick style T-DUMP tape.

Format

T.LOAD {DICT} filename {item.list} {BINARY} {COUNT.SUP} {OVERWRITING}

where

filename is the name of the file to receive the restored data.

item.list is the list of items to be restored. The default select list may be used
instead.

BINARY suppresses translation of field marks to newlines in directory files. Use this
mode when restoring binary data.

COUNT.SUP suppresses display of the count of records restored.

OVERWRITING causes existing records to be replaced.

The T.LOAD command processes a Pick style T-DUMP pseudo tape and restores data from it into
the named QM file.

The tape or pseudo-tape to be read must first be assigned to the process using the SET.DEVICE
command.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT,
RESTORE.ACCOUNTS, SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.xxx

OpenQM416

2.6-6

4.155 T.DET, T.EOD, T.FWD, T.RDLBL, T.READ, T.REW, T.STAT, T.WEOF

The T.xxx utility commands perform various functions to a tape device.

Format

T.DET Detach device

T.EOD Position to end of data

T.FWD Skip forwards one file

T.RDLBL Read tape label

T.READ Read tape

T.REW Rewind tape

T.STAT Report device status

T.WEOF Write end of file marker

The tape or pseudo-tape to be processed must first be assigned using the SET.DEVICE command.

See also:
ACCOUNT.RESTORE, ACCOUNT.SAVE, FILE.SAVE, FIND.ACCOUNT,
RESTORE.ACCOUNTS, SEL.RESTORE, SET.DEVICE, T.ATT, T.DUMP, T.LOAD

QM Commands 417

2.6-6

4.156 TERM

The TERM command specifies the terminal display dimensions.

Format

TERM

TERM { columns } { , lines } {term.type}

TERM COLOUR { bgc} { , fgc}

TERM DEFAULT

TERM DISPLAY

where

columns is the width of the display device.

lines is the depth (number of lines) of the display device.

bgc is the required background colour

fgc is the required foreground colour

The TERM command with no qualifying information reports the display device settings. It shows
the page width and depth together with the terminal type (as in the @TERM.TYPE variable).

The command may include either or both of the columns and lines values to specify the
characteristics of the display device. If used for a console session or a QMTerm connection with
values of columns and lines less than 256, the command will also set the device window to the
given shape.

The columns value must be in the range 20 to 32767. The lines value must be in the range 10 to
32767.

The term.type option selects the terminal device type. The name given must correspond to an entry
in the terminfo library or may be QMTERM (case independent) for the QMTerm emulator.

The COLOUR (or COLOR) option can be used to set the background and foreground colours.
The colour names are case insensitive and chosen from BLACK, BLUE, GREEN, CYAN, RED,
MAGENTA, BROWN, WHITE, GREY, BRIGHT BLUE, BRIGHT GREEN, BRIGHT CYAN,
BRIGHT RED, BRIGHT MAGENTA, YELLOW, BRIGHT WHITE. The American spelling
GRAY can be used in place of GREY and the two word names can be written with either a space or
a dot between the words.

Note that some terminal emulators only apply the background colour to characters output by the
application, not to the entire window. Thus clearing the screen, for example, may lead to
unexpected results.

The TERM DEFAULT command resets the device to 80 x 24.

The TERM DISPLAY command displays a list of input key codes and output control sequences
for the currently selected terminal type.

OpenQM418

2.6-6

Example

TERM 120,32

The above command sets the terminal to be 120 columns wide by 32 lines. A subsequent TERM
command with no qualifying information would report

Page width: 120
Page depth: 32
Device : QMTERM

QM Commands 419

2.6-6

4.157 TIME

The TIME command displays the current date and time.

Format

TIME

TIME INTERNAL

The command takes no arguments. The date and time is reported in the form

14:30:00 12 May 1993

The TIME INTERNAL form displays the current time in internal form (seconds since midnight).

See DATE for an alternative format date and time report.

@SYSTEM.RETURN.CODE is not affected by this command.

OpenQM420

2.6-6

4.158 UNLOCK

The UNLOCK command, available only in the QMSYS account, releases task, record or file locks
set by any process.

Format

UNLOCK { USER user.no } { FILE file.no } { ALL | record.ids... }

UNLOCK { USER user.no } { FILE file.no } FILELOCK

UNLOCK TASKLOCK lock.no...

In the first form, UNLOCK releases record ids set by user user.no on file file.no. At least one of
these options must be present. The values of user.no and file.no can be found from the output of
the LIST.READU command. The UNLOCK requires either a list of record ids or the ALL
keyword to determine which records to unlock.

In the second form, the file lock set by the specified user on the given file is released. Again, at least
one of the USER and FILE options must be specified.

The third form allows task locks owned by other users to be released. Any number of locks may be
released in a single command.

The UNLOCK command should be used with great care. Locks are taken by application software
to protect critical operations. Releasing a lock can cause data integrity problems.

Example

LIST.READU
File Path
 17 D:\SALES\INVENTORY
File User Type Id
 17 4 RU 18464
 17 4 RU 21968
UNLOCK USER 4 18464

In this example, LIST.READU is used to check which locks are outstanding and the UNLOCK
command is used to release a specific record lock.

QM Commands 421

2.6-6

4.159 UPDATE.ACCOUNT

The UPDATE.ACCOUNT command copies all system VOC entries from NEWVOC, setting the
correct locations for system files.

Format

UPDATE.ACCOUNT

The UPDATE.ACCOUNT command copies all NEWVOC items to the VOC file of the current
account. It is useful after an upgrade or if the VOC has been damaged. Unlike a simple COPY
from NEWVOC to the VOC, UPDATE.ACCOUNT checks for changes that may have a
detrimental effect.

Executing this command in the QMSYS account when logged in as a user with administrator rights
prompts to ask whether all registered accounts are to be updated. This can be useful after an
upgrade on a system with many accounts.

See also:
CREATE.ACCOUNT, DELETE.ACCOUNT

OpenQM422

2.6-6

4.160 UPDATE.LICENCE

The UPDATE.LICENCE command, available only in the QMSYS account, applies new licence
details.

Format

UPDATE.LICENCE

The UPDATE.LICENCE command prompts for the licence information supplied with the product
or at an upgrade.

Care should be taken to enter the information exactly as it appears on the licence information sheet.
When relicensing an existing system, the old licence data is displayed allowing amendment of only
the fields that have changed.

The screen layout for the PDA version is different and omits the user limit field.

Example

LICENCE DETAILS

Licence number [1961491396] System id WLHX-YRTZ
Max users [50]
Expiry date [31 Dec 2000]
Authorisation code [YKSAJ-KKRFW-CNDKD-LRRTW-CJRTD]
Security number [65859]
Site text [Manor Developments Limited]

Use Return, Tab or Cursor keys to move between fields.
Use Ctrl-X to abort licence data entry.

Enter 10 digit licence number

QM Commands 423

2.6-6

4.161 UPDATE.RECORD

UPDATE.RECORD simplifies amendment of database files. In batch mode, it allows the same
update to be made to multiple records in a file with just one command, possibly changing the
content of more than one field. In visual mode, it displays a full screen image of fields from the
data record in their external (converted) form, allowing modifications to be entered as the cursor is
moved around the displayed data.

Format

UPDATE.RECORD {DICT} file {USING {DICT} dict}

FROM listno
ALL
id { id ...}
INQUIRING {prompt}

Batch mode:
field,value {CONV "spec"} { field,value ...}
DELETING field
{COUNT.SUP}
{VERIFY.SUP}
{EXCLUSIVE}
{WAIT} or {NO.WAIT}
{CREATING}
{OVERWRITING}
{REPORTING}
{LPTR {n}}
{NO.PAGE}

Visual mode:
{ID.SUP}
{COL.SUP}

Identifying the file to be processed:

{DICT} file specifies the file to be updated. The optional DICT keyword
indicates that the dictionary portion of the file is to be updated.

USING {DICT} dict specifies that dict is to be used as the dictionary for file. The
optional DICT keyword uses the dictionary portion of dict.

Selection of the records to be updated:

FROM listno specifies that select list listno (0 to 10) is to be used as the list of
records to process.

ALL specifies that all records in file are to be updated.
UPDATE.RECORD will use select list 0 internally to generate

OpenQM424

2.6-6

the list of records to be processed.

id { id ...} is a list of specific record ids to process. Record ids should be
enclosed in single or double quotes if they contain spaces or
commas or match command keywords.

INQUIRING {prompt} causes UPDATE.RECORD to prompt for the id of each record
to be processed. The prompt string is optional and must be
enclosed in single or double quotes if it contains spaces or
commas. If omitted, a default of "Record id" is used. Inquiry mode
is the default in visual mode if no record ids are specified and the
ALL and FROM keywords are not used.

Only one of these selection styles can be used in a single command. If none of the above record
selection criteria is given and the default select list is active, that list is used.

Specifying the updates to be made in batch mode:

field identifies the field to be updated. The value given may be a
numeric field position or the name of an A, D or S-type item from
the dictionary.

value identifies the new value to be placed in field. This may be a
number, a quoted string, the name of a field or I-type from the
dictionary or the keyword EVAL followed by an I-type expression
in either single or double quotes.

CONV "spec" Allows use of alternative conversion codes.

DELETING field Deletes the specified field from the data record, moving all
subsequent fields back by one position.

Options controlling the action of UPDATE.RECORD in batch mode:

COUNT.SUP suppresses the normal report of the number of records processed.

VERIFY.SUP suppresses the confirmation prior to an update using a select list or
the ALL keyword.

EXCLUSIVE causes UPDATE.RECORD to lock the entire file during the
update to ensure exclusive access. If the file cannot be locked,
UPDATE.RECORD will display a message and terminate unless
the WAIT keyword is also given, in which case it will wait until it
can obtain exclusive access.

WAIT can be used with the EXCLUSIVE keyword as described above. It
can also be used alone to specify that UPDATE.RECORD should
wait whenever it encounters a locked record.

NO.WAIT turns off WAIT. It is not normally required as this is the default.
UPDATE.RECORD honours the last WAIT or NO.WAIT on the

QM Commands 425

2.6-6

command line.

CREATING causes UPDATE.RECORD to create records that are not found in
the file.

OVERWRITING allows overwriting of existing records when changing the record id.

REPORTING produces a detailed report of each update.

LPTR {n} directs the commentary from UPDATE.RECORD to the specified
print unit. Print unit 0 is used if n is omitted.

NO.PAGE suppresses pagination of output to the display.

The sequence of the command components must be file specification, record ids, fields and values,
options.

Options controlling the action of UPDATE.RECORD in visual mode:

ID.SUP suppresses display of the field names.

COL.SUP suppresses display of the display names (column headings in a
query report).

OpenQM426

2.6-6

UPDATE.RECORD batch mode

UPDATE.RECORD runs in batch mode of the command line includes one or more field/value
specifications.

If the EXCLUSIVE keyword is used, UPDATE.RECORD will obtain exclusive access to the file
by acquiring the file lock. If another user holds a record lock or the file lock when the command is
issued, UPDATE.RECORD will terminate with an error message unless the WAIT keyword has
been used, in which case a message is displayed and it repeats the attempt to lock the file at five
second intervals.

For each record to be processed, UPDATE.RECORD first locks and reads the record. If another
user has the record locked and the WAIT keyword has been used, UPDATE.RECORD will wait
for the record to become available. If the WAIT keyword was not used, the record id is added to a
list of locked records. If either the INQUIRING or REPORTING keywords was used, a message
is output showing the id of the record that could not be locked.

If the specified record does not exist in the file and the CREATING keyword has been used, a new,
empty record is created to which the amendments are then applied. If the CREATING keyword is
not present, the record id is added to a list of missing records

Once the record has been successfully locked, UPDATE.RECORD performs each of the specified
amendments in the order in which they appear on the command line. Each amendment may draw on
the result of preceding amendments. Note in particular, that use of the DELETING option will
result in new field positions for all later fields. The record id may be changed by specifying the
target as field 0 or a dictionary item such as @ID that refers to field 0. Any I-type or EVAL
expressions after the change of record id will see the new id in @ID.

The field specification may be a numeric field position or the name of a D-type item from the
dictionary or the VOC. The value specification may be:

A number or a quoted string.

The name of an A, D, I or S-type dictionary or VOC item identifying the field from which data
is to be copied. If this is an I-type item or an A/S-type item with a correlative expression, it
must have been compiled prior to use by UPDATE.RECORD.

The keyword EVAL followed by an I-type expression in single or double quotes. This
expression will be compiled by UPDATE.RECORD and evaluated to determine the new value
of the field.

UPDATE.RECORD honours dictionary conversion specifications for both the source and target
data items. Where the new value for a field is derived via a dictionary name, the value is first
converted to its external form. Where the field to be updated is identified via a dictionary name, the
new value is converted to its internal form prior to storing in the record. If the value specification is
followed by the CONV keyword and a quoted conversion specification, this will overrule any
conversion specified in the dictionary. UPDATE.RECORD will report a warning message if the
conversion generates an error when applied to value.

The REPORTING keyword causes UPDATE.RECORD to produce a detailed report of each
amendment made, including the record id together with the old and new values of each field
amended. This report can be directed to a specific print unit using the LPTR keyword.

QM Commands 427

2.6-6

In the absence of the REPORTING and INQUIRING keywords or if the report is directed to a
print unit rather than the display, UPDATE.RECORD displays a progress report in the form of a
series of asterisks.

On completion of the update, UPDATE.RECORD may create two entries in the $SAVEDLISTS
file. If one or more records could not be updated because they were locked by other users, a select
list named &LOCK.userno& is created containing a list of such records. If one or more records
specified for update did not exist in the file and the CREATING keyword was not used, a select
list named &MISS.userno& is created containing a list of the missing record ids.
UPDATE.RECORD deletes any old versions of these lists at the start of the update.

Note that the database locking system is of a voluntary nature. Both the file and record level locking
performed by UPDATE.RECORD only prevent other users acquiring the locks. A program that
does not use locks correctly may still be able to access the file during the update.

On completion of the update, @SYSTEM.RETURN.CODE will be set to the number of records
updated. If the command terminates due to a command line error, @SYSTEM.RETURN.CODE
will be negative.

Examples

UPDATE.RECORD STOCK 01-1745 IN.STOCK,0

This update amends field IN.STOCK of record 01-1745 in the STOCK file to be zero.

UPDATE.RECORD SALES ALL TOTAL.SOLD, EVAL "TOTAL.SOLD +
THIS.MONTH" THIS.MONTH,0 EXCLUSIVE REPORTING LPTR 2

This update processes all records from the SALES file, adding the current value of the
THIS.MONTH field into the TOTAL.SOLD field, resetting THIS.MONTH to zero. The
EXCLUSIVE keyword ensures that the file is not updated by other users during the amendment. A
detailed report of the changes is sent to print unit 2.

UPDATE.RECORD PAYROLL INQUIRING SALARY,EVAL "SALARY * 1.05"

This update processes entries of the PAYROLL file specified in response to a record id prompt,
increasing the value of SALARY by 5%.

UPDATE.RECORD STOCK FROM 2 5,"12/9/96" CONV "D2/"

This update uses select list 2 to identify records of the STOCK file in which field 5 is to be set to
the internal form of the date 12/9/96.

The Report

The REPORTING keyword causes UPDATE.RECORD to generate a detailed report of its
actions. This can be used as a simple audit trail of the changes made to the file and also contains
information that enables recovery from an incorrect amendment.

OpenQM428

2.6-6

The report shows the start of the amendment for a given record, the changes made to each field and
the termination of the update at the point when the record has been written back to the file. Missing
records and records which have been created by UPDATE.RECORD are highlighted in this report.

A command such as

UPDATE.RECORD STOCK FROM 2 OLD.VALUE,VALUE VALUE,EVAL
"VALUE*1.1" CREATING

might produce a report including the following lines

Start of update of record ‘01-1268’
 Field OLD.VALUE was ‘’ now ‘90’
 Field VALUE was ‘90’, now ‘99’
 Completed update of record 01-1268’
Record ‘01-6723’ locked by another user.
Creating record ‘01-7491’
 Field OLD.VALUE was ‘75’ now ‘80’
 Field VALUE was ‘80’, now ‘88’
 Completed update of record 01-7491’

This example shows the report entries for update of a record found in the file, a record that was not
updated because it was locked by another user and a record that was created by
UPDATE.RECORD.

If the CREATING option was not used, record 01-7491 would have produced the following report
line

Record ‘01-7491’ not found.

QM Commands 429

2.6-6

UPDATE.RECORD visual mode

UPDATE.RECORD runs in visual mode if the command line contains no field/value
specifications.

Visual mode presents a full screen display of the external (converted) form of fields from a data
record. Changes are made by moving the cursor to the desired position and entering or deleting
characters. Modified lines are converted back into their internal form within UPDATE.RECORD
when the cursor is moved to a new line or when the data is to be written back to the file.

 1: NAME : Site Name : Acme Software Limited
 2: ADDRESS : Address : 42 High Street, Anytown
 3: POSTCODE : Postcode : AN11 1XX
 6: DATE.PAID : Date Paid : 12 Feb 98ý17 Mar 98
 7: INVOICES : Invoices : 001763ý001966
 8: LICENCES : Licences : 907881792ý1907881802ý1907881808
 9: EXPIRED.LICENCES: Expired :
10: COUNTRY : Country :
11: CLASS : Class : 3
12: DEALER.SALES : Sales :
13: CALLBACK.DATE : Callback : 01 Jul 98
14: CALLBACK.TEXT : Callback note: Interested in new product range
15: VAT.NO : VAT no : 614 1210 25
16: SITE.TEXT : Site text : Acme Software
17: CONTACT : Contact : Anne McIntosh
18: POSITION : Position :
19: TEL.NO : Tel no : 01234-56789ý01234-64526
20: FAX.NO : Fax no : 01234-21767
21: MOBILE.NO : Mobile no :
22: EMAIL : E-mail : acme@mailer.com
23: SALES.TOTAL : Sales : £12783.33
24: NOTES : Notes :
*CLIENTS 00106
<6,1,1> | D2DMYL[,A3] | 9R | PAYDATE | S |

By default, the display shows all fields for which a D-type dictionary entry or an A/S=type entry
with no correlative exists. A specific subset of fields can be displayed by creating a dictionary
phrase named @UPDATE.RECORD which lists the required fields (and possibly keywords).

For each field, the display shows:
The field number
The field name (unless suppressed by use of ID.SUP)
The display name (unless suppressed by COL.SUP)
The data in its external form

The last two lines of the screen are used as a status area. The upper status line displays the file
name and record id. An asterisk is shown at the start of this line if the data has been changed.

The lower status line shows the field, value and subvalue in which the cursor is positioned and the
dictionary conversion code, format code, association name and single/multi-value flag for the field.
The final field of this status line shows a letter O if UPDATE.RECORD is in overlay mode (see
below).

UPDATE.RECORD uses a subset of the default key bindings of the SED full screen editor. These
all consist of keystrokes which are

Control shift + key

OpenQM430

2.6-6

ESCape followed by another key
Ctrl-X followed by another key

The table below summarises the key bindings. All other keystrokes except for unused control shift
codes cause the character to be inserted into the record text at the current cursor position.

Ctrl- Esc- Ctrl-X -

A Home

B Cursor left

C Repeat Quit

D Delete char

E End

F Cursor right

G Cancel Goto

H Backspace

I

J (Return)

K Kill line

L Refresh

M (Return)

N Cursor down

O Overlay Overlay

P Cursor up

Q Quote char Quote char

R

S Save

T

U Repeat

V Page down Page up

W Cut Copy

X Ctrl-X prefix Command

Y Paste Paste

Z Cursor up

. Mark

= Expand char

< Top

> Bottom

Bkspc Backspace

Del Delete char

Return Cursor down

QM Commands 431

2.6-6

UPDATE.RECORD also recognises the following terminal control keys:

Home End Cursor left

Cursor right Cursor up Cursor down

Insert (Overlay) Delete Page up

Page down

Some functions are available using alternative key sequences. Such alternatives are shown above
and in the descriptions that follow.

The repeat function (Ctrl-C or Ctrl-U) repeats the previous function.

The cancel function (Ctrl-G) can be used to abort partially entered incorrect key sequences and to
terminate certain functions as described below.

Cursor Movement Functions

Note: A confirmation prompt appears if the cursor is moved from a line that contains a data
conversion error.

Home (Ctrl-A or Home)
Moves the cursor to the start of the current line.

End (Ctrl-E or End)
Moves the cursor to the position after the last character in the current line.

Top (Esc-<)
Moves to the start of the first displayed field.

Bottom (Esc- >)
Moves to the start of the last displayed field.

Cursor down (Ctrl-N or Ctrl-P or Cursor down)
Moves the cursor vertically down one line. If this position is beyond the end of the data in the
new line, the cursor is displayed immediately to the right of the final character.
UPDATE.RECORD remembers the column position from which the cursor was moved so that
a further vertical movement will continue to place the cursor at the lesser of its original column
position and the end of the current line.

Cursor up (Ctrl-P or Ctrl-Z or Cursor up)
Moves the cursor vertically up one line. The same process is used for determining the column
position as for the cursor down operation described above.

Cursor right (Ctrl-F or Cursor right)
Moves the cursor right.

Cursor left (Ctrl-B or Cursor left)
Moves the cursor left.

Page down (Ctrl-V or Page down)
Moves the cursor down by one screen or to the last line.

OpenQM432

2.6-6

Page up (Esc-V or Page up)
Moves the cursor up by one screen or to the first line.

Goto (Esc-G)
Prompts for a field, value and subvalue position and moves the cursor to that position. The
position may be specified as:

field go to specified field, value 1, subvalue 1
field, value go to specified field and value, subvalue 1
field, value, subvalue go to specified field, value and subvalue

Fields may be specified by number or name. Omitted field or value components mean " within
the current field/value" unless a higher level component is specified in which case the default is
1. For example:

,value go to specified value in current field
,value,subvalue go to specified value/subvalue in current field
,,subvalue go to specified subvalue in current field/value
field,,subvalue go to specified field, value 1, specified subvalue

An asterisk can be use to imply "no change". This is useful when processing associated
multi-valued fields. For example:

*,value go to specified value in current field
field,* go to current value position in specified field
field,*,* go to current value and subvalue in specified field

If the specified value or subvalue does not exists, UPDATE.RECORD will offer to create it.

Data Insertion

Data is inserted at the current cursor position. If overlay mode is set the new data overwrites any
existing data at this position, otherwise it is inserted before the character under the cursor. Overlay
mode may be toggled using the overlay function (Ctrl-O or Ctrl-X O or Insert).

Any character other than a field mark or item mark may be inserted. The quote character function
(Ctrl-Q or Esc-Q) allows insertion of non-printing characters. It may be used in three ways:

Followed by a number of up to three digits, it inserts the character with that decimal ASCII
sequence.

Followed by V, S or T, it inserts a value mark, subvalue mark or text mark respectively.

Followed by any other character, usually a non-printing character, it will insert that character.

Copying, Deleting and Restoring Data

Delete char (Ctrl-D or Del, Delete)
The character at the current cursor position is deleted.

QM Commands 433

2.6-6

Backspace (Backspace or Ctrl-H)
The backspace function removes the character to the left of the cursor.

Kill line (Ctrl-K)
The kill line function deletes all characters following the cursor.

Copy (Esc-W)
The copy copies part of a field to the clipboard buffer. The required sequence of actions is:

Position the cursor on the first character to be copied.
Execute the mark function (Esc-.).
Position the cursor after the last character to be copied. Where the terminal device allows,
the selected characters will be highlighted.
Press the copy key.

The copy function can be cancelled using the cancel function (Ctrl-G).

Cut (Ctrl-W)
The cut function cuts (deletes) part of a field, placing a copy of the deleted text in the clipboard
buffer. The required sequence of actions is:

Position the cursor on the first character to be cut.
Execute the mark function (Esc-.).
Position the cursor after the last character to be cut. Where the terminal device allows, the
selected characters will be highlighted.
Press the cut key.

The cut function can be cancelled using the cancel function (Ctrl-G).

Paste (Ctrl-Y or Esc-Y)
The paste function inserts a copy of the clipboard buffer as set using copy or cut at the current
cursor position.

Miscellaneous Functions

Save (Ctrl-X S or Ctrl-X Ctrl-S)
The save function saves the modified data record. UPDATE.RECORD remains in the current
record allowing further changes if required.

The save function cannot be executed if the current line contains a data conversion error.

Quit (Ctrl-X C or Ctrl-X Ctrl-C)
The quit function moves to the next record to be processed (if any). A confirmation prompt is
displayed if the current record has been modified and not saved.

Expand char (Ctrl-X =)
Certain control characters (e.g. tab, form feed) are represented on the screen by question marks.
The expand char function displays the character sequence number for the character at the
cursor position on the lower status line.

Command (Esc-X)
The command function allows executing of any valid QM command from within
UPDATE.RECORD. In addition, it supports the following built-in commands:

OpenQM434

2.6-6

SPOOL Used without any following file name etc. , this command spools a copy of
the record to the default printer.

QUIT Terminates processing of the current record and exits
UPDATE.RECORD, abandoning any further records specified for
processing.

QM Commands 435

2.6-6

4.162 WHO

The WHO command displays the current user number and account name.

Format

WHO

Each directory holding a VOC file is termed an account. Multiple accounts are useful where there
are several distinct projects. They can also be used to separate development and production versions
of an application.

The WHO command displays the current user number and account name. If the current account is
not the same as the initial account on entry to QM, the initial account name is also displayed.

Example

WHO
 1 AC1

LOGTO AC2
WHO
 1 AC2 from AC1

In this example, the user enters QM in account AC1. The WHO command shows the user number
and this account name. A LOGTO command is used to transfer to AC2. The WHO command now
shows the new account and the original.

OpenQM436

2.6-6

4.163 WHERE

The WHERE command displays the pathname of the current account.

Format

WHERE

This command is a simple sentence that displays the value of the @PATH system variable.

Example

WHERE
 C:\QMACC\SALES

Part

5
Query Processing

OpenQM438

2.6-6

5 Query Processing

QM verbs that select records from files or produce reports are handled by the query processor. All
query processor verbs follow a common format.

The query processor verbs are

LIST List records meeting specified criteria

LIST.ITEM List records meeting specified criteria in internal format

LIST.LABEL List records meeting specified criteria in address label format

REFORMAT Builds a new file from data in the source file

SHOW Interactive select list generation

SORT List records meeting specified criteria in order of record id

SORT.ITEM List records meeting specified criteria in order of record id in internal
format

SORT.LABEL List records meeting specified criteria in address label format, in order of
record id

SELECT Create a select list of records meeting specified criteria

SSELECT Create a select list of records meeting specified criteria in order of record
id

SEARCH Create a select list of records meeting specified criteria which include text
matching over the entire record

COUNT Count records meeting specified criteria

SUM Report total of named fields

The General Form of a Query Processor Verb

All query processor verbs follow the same general format though not all parts are applicable to all
verbs. The components of the command may be in any order except that the file name must
immediately follow the verb and the order may be significant in repeated instances of an element.

verb {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause }
{sort.clause }
{display.clause }
{record.id...}

Query Processing 439

2.6-6

{FROM select.list.no}
{TO select.list.no}

where

verb is the query processor verb name

{DICT} file.name identifies the file to be processed. The optional DICT keyword
indicates that the dictionary part of the file is to be processed. The
DICT.DICT file will be used as the dictionary defining the items in the
dictionary being reported.

USING {DICT} file.name indicates that a dictionary other than the one normally associated
with the file is to be used.

field.name is the name of a field (D or I-type) to be displayed. Multiple fields may
be specified in a single command. In addition, the special construct Fn
may be used to reference field n and the EVAL keyword may be used
to introduce an evaluated expression.

field.qualifier provides qualifying information about the immediately preceding
field.name such as the format in which it is to be displayed.

selection.clause specifies criteria determining which records from the file are to be
included.

sort.clause specifies the order in which records are to be processed.

display.clause controls the manner in which data is displayed or printed.

record.id specifies a particular record id is to be processed. Multiple record ids
may be specified.

FROM select.list.no specifies that a select list is to be used to control which records are
processed. If the FROM option is not used and the default select list
(list 0) is active, this list will be used automatically. If used in
conjunction with one or more record.id items, only records that appear
in the select list and are named record.ids will be processed.

TO select.list.no for verbs that produce a select list, specifies which list is to be created.
If the TO option is not used, the default select list (list 0) is used.

Phrases defined in the VOC or the dictionary may be included at any point in a query processor
command and will be expanded at that position in the command line.

Literal values used in selection or sort clauses do not need to be enclosed in quotes unless they
correspond to names defined in either the VOC or the file's dictionary or if the contain spaces,
commas or quotes. Use of quotes is recommended to prevent incorrect interpretation of commands.

The $QUERY.DEFAULTS Record

The default actions of the query processor LIST, SORT, LIST.LABEL and SORT.LABEL

OpenQM440

2.6-6

commands can be controlled by adding an X-type record to the VOC file or to the dictionary of the
file referenced by the query command. Field 2 of this record contains query processor command line
elements that will be inserted into the command after the file name but before any further command
line options. The options may extend over multiple lines by use of an underscore as the last
character of the line to indicate that a continuation line is present. The lines are merged together
with the underscore replaced by a single space.

The query processor checks first for this optional record in the dictionary of the file. If it is not
found, it then looks in the VOC. It is therefore possible to use a VOC record to set account level
defaults which can be overridden by an alternative record in individual dictionaries. A
$QUERY.DEFAULTS record in the dictionary with a type code of X but no further content will
effectively disable use of the VOC $QUERY.DEFAULTS record whilst not applying any defaults
of its own.

Links

Dictionary L-type records can be used to represent a relationship between two files without the need
to include a separate I-type TRANS() expression for each field.

In a query command, a link is used by specifying a field name that is constructed from the link
name and the name of a field in the linked file, separated by a percent sign (%).

For example, consider a library application where the BOOKS file representing a physical copy of
a book uses a composite key constructed from the id of a record in the TITLES file and the copy
number, separated by a hyphen. A link record could be placed in the dictionary of the BOOKS file:

TITLES 1: L
2: @ID['-', 1, 1]
3: TITLES

A query against the BOOKS file may then refer to fields from the TITLES file as, for example,
TITLES%AUTHOR. The linked field (AUTHOR in this example) must be a D or I-type item.

To allow use of field names that contain % characters, the query processor only interprets a field
name containing a % character as a link if there is no dictionary or VOC item corresponding to the
entire name.

Query Processing 441

2.6-6

5.1 The Selection Clause

A selection clause may be provided to specify criteria governing which records are processed by
the command. If omitted, all records are processed. Selection clauses can be used with all query
processor verbs

The selection clause is described in detail under the WITH and WHEN keywords.

The performance of queries against large files can be improved dramatically by use of alternate key
indices. These are index files that relate a particular value of a data field or virtual attribute to the
ids of records that have that value. Alternate key indices are created in a two step operation using
the CREATE.INDEX and BUILD.INDEX commands. Once an index has been built, it is
maintained automatically by QM and is used by the query processor whenever it is advantageous to
do so.

Ranges of values can also be satisfied using indices if the upper and lower limits are defined in the
first two conditional elements. For example,

LIST STOCK WITH QOH > 3 AND QOH < 10 AND SUPPLIER = 27

will use an index on the QOH field to access the data whereas

LIST STOCK WITH QOH > 3 AND SUPPLIER = 27 AND QOH < 10

will not. Use of unnecessary brackets may also defeat the indexing system. For example,

LIST STOCK WITH QOH > 3 AND (QOH < 10 AND SUPPLIER = 27)

will not use the index as the second conditional element is not a simple item.

Selection clause comparisons are case sensitive by default. Case insensitivity can be applied by
including the NO.CASE qualifier after the relation operator or by use of the QUERY.NO.CASE
mode of the OPTION command.

The PICK.IMPLIED.EQ mode of the OPTION command can be used to select Pick style
behaviour where a field name followed by a literal value enclosed in double quotes has and implied
equals operator. Thus

LIST CLIENTS WITH CUST.NO "1234" "5678"

is equivalent to

LIST CLIENTS WITH CUST.NO = "1234" "5678"

Without this option, the semantics of the query are such that the two literal values are treated as
record ids and the selection element restricts processing to records in which the CUST.NO field is
not empty.

OpenQM442

2.6-6

5.2 The Sort Clause

The optional sort clause determines the order in which records are inserted into the select list (
SELECT, SSELECT, SEARCH) or reported (LIST, SORT, LIST.ITEM, SORT.ITEM).

Sorting is performed before conversion of data to its external format. Thus sorts of date fields, for
example, will correctly sequence dates regardless of their conversion.

The justification mode of the field's format is used to determine whether a left of right aligned sort is
performed. For dates, a right aligned sort is required to avoid problems with dates with internal
values of differing numbers of digits.

There are two sort clause operators for single valued fields, BY and BY.DSND, which differ only
in that BY sorts into ascending order and BY.DSND sorts into descending order. Similarly, there
are two exploded sort operators, BY.EXP and BY.EXP.DSND, for use with multi-valued fields.
These explode the multi-valued records to their single valued equivalents, allowing a query to
process values in sequence.

Where multiple sort items are specified, the query processor examines them in the order in which
they appear in the command. The second and subsequent sort items are only examined where the
previous sort was not sufficient to identify the record sequence.

The SORT, SORT.ITEM and SSELECT verbs are equivalent to the LIST, LIST.ITEM and
SELECT verbs with a BY @ID clause as the final sort.

Query Processing 443

2.6-6

5.3 The Display Clause

The optional display clause determines which fields (columns) are reported and how they are
displayed. This clause is applicable to the LIST and SORT verbs only. If omitted, the query
processor uses the default listing phrase to determine what is shown.

Fields appear in the report left to right in the order of the display clause elements. The default view
of the record id (@ID) is always shown as the leftmost column unless it is suppressed using the
ID.SUP keyword.

The display clause is constructed from the elements in the table below.

Prefix Data Item Suffix

AVG D-type item CONV "code"

PCT [n] I-type item FMT "spec"

TOTAL EVAL "expr" [AS xx] COL.HDG "text"

MAX Fn ASSOC "name"

MIN ASSOC.WITH field

BREAK.ON ["text"] DISPLAY.LIKE field

BREAK.SUP ["text"] SINGLE.VALUE

ENUM MULTI.VALUE

CALC NO.NULLS

CUMULATIVE

Each data item may optionally be prefixed by one of the qualifiers in the first column and followed
by any number of compatible options from the third column.

Where no such item is defined in the dictionary or the VOC, the Fn data item is recognised by the
query processor as a reference to field n, treating the data as single valued with a format code of
"15T". These display characteristics can be modified using other elements from the table above.

Qualified Display Clauses

For improved compatibility with other multi-value databases, QM supports the concept of qualified
display clauses. These combine the role of the display clause with simple selection clause elements.
Because qualified display clauses lead to a potential ambiguity in the interpretation of a query, this
feature must be enabled using the QUALIFIED.DISPLAY mode of the OPTION command.

A qualified display clause element inserts a conditional test after the data item but before any items
from the third column of the table above. This conditional test consists of an operator and a field or

OpenQM444

2.6-6

value against which the test is to be performed. It may not include the AND or OR operator or the
use of brackets.

For example, the query

LIST STOCK SUPPLIER = 14 DESCRIPTION

would list the record id (default), SUPPLIER and DESCRIPTION fields, showing only those
record where the SUPPLIER field contains 14. This is equivalent to

LIST STOCK SUPPLIER DESCRIPTION WITH SUPPLIER = 14

The optional display clause determines the manner in which records are reported. This clause is
applicable to the LIST and SORT verbs only.

There are a wide variety of options in this clause. Some determine the actual layout of the data
while others set breakpoints at which totals, averages, etc are to be reported.

Query Processing 445

2.6-6

5.4 SELECT and SSELECT

The SELECT and SSELECT verbs build a select list containing the keys of records meeting
specified criteria. SSELECT is equivalent to SELECT with a final sort by record id.

SELECT {DICT} file.name
{USING {DICT} file.name}
{selection.clause}
{sort.clause}
{record.id...}
{FROM select.list.no}
{SAVING {UNIQUE} {MULTI.VALUE} field.name {NO.NULLS}}
{TO select.list.no}

SSELECT {DICT} file.name
{USING {DICT} file.name}
{selection.clause}
{sort.clause}
{record.id...}
{FROM select.list.no}
{SAVING {UNIQUE} {MULTI.VALUE} field.name {NO.NULLS}}
{TO select.list.no}

Example

SELECT VOC WITH F1 LIKE F...

This command builds a select list containing the ids of VOC records with field one starting with an
upper case F. Such a list corresponds to all files defined by the VOC.

OpenQM446

2.6-6

5.5 SEARCH

The SEARCH verb is similar to SELECT except that it also prompts for entry of one or more text
strings. Records that meet any other selection criteria given on the command line are tested for the
presence of the search strings at any position in the record.

Up to 20 search strings may be specified. Entry of search strings is terminated by entering a blank
response to the prompt.

The optional NO.CASE keyword makes the search string test case insensitive.

By default, the SEARCH verb builds a list of all records that contain any of the supplied search
strings. This can be changed by use of the ALL.MATCH or NO.MATCH keywords. The
ALL.MATCH keyword specifies that the selected records must contain all of the supplied strings.
The NO.MATCH keyword specifies that the selected records must not contain any of the supplied
strings.

All other options of the SELECT verb may be used in SEARCH.

Example

SEARCH BP
String: !SORT

The above lines entered at the keyboard would search all QMBasic source programs in the BP file
for references to the !SORT() subroutine.

See also:
ALL.MATCH, NO.CASE, NO.MATCH

Query Processing 447

2.6-6

5.6 LIST and SORT

The LIST and SORT verbs produce reports from QM files. The LIST verb displays records in the
order in which they are encountered in the file unless a sort clause in present in the command. The
SORT verb is equivalent to LIST with a final sort by record id.

LIST {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause}
{sort.clause}
{display.clause}
{record.id...}
{FROM select.list.no}

SORT {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause}
{sort.clause}
{display.clause}
{record.id...}
{FROM select.list.no}

The record id is always reported as the first item in the output unless the ID.SUP keyword has been
used to suppress it. The format of this item is determined by the @ID dictionary record. If this
record is not found in the dictionary, a default format is used.

If field names are specified in the command, these fields are displayed in the order specified. If no
field names are present, the query processor looks for a phrase in the dictionary defining a default
set of fields to be reported. If the LPTR keyword has been included, the query processor first looks
for a phrase record named @LPTR. If this cannot be found or the LPTR keyword was not used, it
looks for a phrase record named @. The @LPTR and @ phrases can be used to create separate
default field name lists for output to the printer and the display respectively. If no @LPTR or @
record is found, only the record id is reported.

The default listing phrase may include field qualifiers, selection, sort and display clause items.

The LIST and SORT verbs normally produce a tabular format report with items listed side by side.
If the total width of the items to be reported exceeds the width of the display or printer to which the
report is directed, a vertical format report is produced. This can be forced by use of the
VERTICALLY keyword.

The PAN keyword allows reports wider than the display to be produced using the left and right
cursor keys to pan part or all of the displayed data.

The SCROLL keyword allows scrolling back and forward using the up and down cursor keys.

When LIST or SORT are used to list a dictionary with the no display clause, the action of the
default listing phrase (@), includes transformation of A and S-type dictionary items into a form that
maps onto the standard dictionary display format used for other types.

OpenQM448

2.6-6

Example

LIST STOCK QTY REORDER.LEVEL WITH QTY < REORDER.LEVEL

This command lists all records from the STOCK file for which the quantity in stock (QTY field) is
less than or equal to the reorder level (REORDER.LEVEL field). These two fields are displayed
together with the record id.

Query Processing 449

2.6-6

5.7 LIST.ITEM and SORT.ITEM

The LIST.ITEM and SORT.ITEM verbs display data from QM files in its internal format. The
LIST.ITEM verb displays records in the order in which they are encountered in the file unless a
sort clause in present in the command. The SORT.ITEM verb is equivalent to LIST.ITEM with a
final sort by record id.

LIST.ITEM {DICT} file.name
{USING {DICT} file.name}
{selection.clause}
{sort.clause}
{record.id...}
{FROM select.list.no}

SORT.ITEM {DICT} file.name
{USING {DICT} file.name}
{selection.clause}
{sort.clause}
{record.id...}
{FROM select.list.no}

The output from these verbs displays the record id followed by each field on a separate line. No
conversion or formatting is performed on the data. Multivalued data will be displayed with
embedded mark characters.

The SCROLL keyword allows scrolling back and forward using the up and down cursor keys.

Example

LIST.ITEM STOCK 16798

This command lists the content of record 16798 of the STOCK file.

OpenQM450

2.6-6

5.8 LIST.LABEL and SORT.LABEL

The LIST.LABEL and SORT.LABEL verbs are used to print address labels from QM files. The
LIST.LABEL verb processes records in the order in which they are encountered in the file unless a
sort clause in present in the command. The SORT.LABEL verb is equivalent to LIST.LABEL
with a final sort by record id.

LIST.LABEL {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause}
{sort.clause}
{display.clause}
{record.id...}
{FROM select.list.no}

SORT.LABEL {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause}
{sort.clause}
{display.clause}
{record.id...}
{FROM select.list.no}

The optional clauses to LIST.LABEL and SORT.LABEL work in exactly the same way as for
LIST and SORT except that arithmetic field modifiers (AVERAGE, ENUMERATE, MAX,
MIN, PERCENTAGE, TOTAL), breakpoints (BREAK.ON, BREAK.SUP) and the page
format keywords (COL.SUP, COL.HDR.SUPP, COL.SPACES, HDR.SUP, DBL.SPC,
FOOTING, GRAND.TOTAL, HEADING, PAN, SCROLL, VERTICALLY) are not allowed.

The LIST.LABEL and SORT.LABEL commands produce a vertical style report set out into the
positions of labels on the printed page. The label page shape may be defined by a record in the
dictionary of the file or in the VOC file, or it may be entered in response to prompts.

If the command includes the LABEL keyword, this may be followed by the name of an X-type
label template record stored in the dictionary or in the VOC. This record contains the page shape as
a series of lines. Only the leading numeric part of each line is used thus allowing comments to be
inserted explaining what each number represents. A typical label might read:

1: X
2: 2 Count of labels across the page
3: 8 Count of labels per column
4: 42 Characters per line on each label
5: 7 Lines per label
6: 0 Indentation to first column of leftmost label
7: 6 Horizontal space between labels
8: 3 Lines between labels
9: 1 Omit blanks

The final field determines whether blank lines within a label should be omitted. It should be set to 1
to omit or 0 to include such lines.

Query Processing 451

2.6-6

If no LABEL keyword is present in the command line (or any phrase use by the query), the query
processor looks for a default label template stored in a record named @LABEL in the dictionary of
the file or in the VOC. This action can be suppressed by use of LABEL NO.DEFAULT in the
command.

If no label template has been specified and either there is no @LABEL record or the
NO.DEFAULT keyword has been used, the query processor will prompt the user to enter the label
shape parameters in the same order as above. The omit blanks option must be entered as Y or N.

It may be necessary to check that a printer font is chosen where the line spacing fits correctly onto
the label page. The SETPTR command top margin may also need to be set to fit the page.

Example

LIST.LABEL CUSTOMERS NAME ADDRESS ID.SUP LABEL ADDR.LABELS
LPTR

This command prints address labels from all records in the CUSTOMERS file. Each label contains
data from the NAME and ADDRESS fields. A label template named ADDR.LABELS is used.

OpenQM452

2.6-6

5.9 REFORMAT

The REFORMAT verb constructs a new file from data in the source file. It is of use, for example,
when constructing intermediate files in complex reporting processes.

REFORMAT {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause}
{sort.clause}
{display.clause}
{record.id...}
{FROM select.list.no}
{TO new.file.name}

REFORMAT behaves like LIST except that the data identified by the display clause is used to
populate a new file instead of being displayed or printed. The first item in the data is used as the
record id for the item in the new file. The remaining items form the fields within the record.
REFORMAT does not automatically prefix the display clause with @ID.

The TO clause can be used to name the target file on the command line. If this clause is not present,
a prompt is displayed for the file name. The file must already exist.

Example

REFORMAT CUSTOMERS ZIP.CODE CUST.NO NAME TO CUST.BY.ZIP

This command constructs a new file, CUST.BY.ZIP, keyed by zip code and containing two data
fields, the customer number and name. Note that if two or more customers share the same zip code,
the record will be overwritten by the second and subsequent items.

Query Processing 453

2.6-6

5.10 COUNT

The COUNT verb reports the number of records meeting specified criteria.

COUNT {DICT} file.name
{USING {DICT} file.name}
{selection.clause}
{record.id...}
{FROM select.list.no}

Example

COUNT INVOICES WITH NO PAYMENT.DATE

This command counts records on the INVOICES file for which the PAYMENT.DATE field is null.
This might be a valid means of identifying unpaid invoices.

OpenQM454

2.6-6

5.11 SUM

The SUM verb reports the total of the values in named fields.

SUM {DICT} file.name
{USING {DICT} file.name}
field.name {field.qualifier} ...
{selection.clause}
{record.id...}
{FROM select.list.no}

Example

SUM INVOICES BALANCE WITH NO PAYMENT.DATE

This command the BALANCE field of records on the INVOICES file for which the
PAYMENT.DATE field is null.

Query Processing 455

2.6-6

5.12 SHOW

The SHOW command provides an interactive means of building select lists.

Format

SHOW {DICT} file.name
{USING {DICT} file.name}
{field.name {field.qualifier} ...}
{selection.clause}
{sort.clause}
{display.clause}
{record.id...}
{FROM select.list.no}
{TO select.list.no}

The SHOW command supports two special options:

MAX n specifies the maximum number of items that may be selected for the returned list.

MIN n specifies the minimum number of items that may be selected for the returned list.
Returning no items is always valid regardless of the value of n.

Examples

SHOW BP

Displays a list of records in the BP file from which items may be chosen to build a select list.

SHOW CLIENTS COMPANY EVAL "BALANCE - CREDIT" ID.SUP WITH
BALANCE > CREDIT

For each client in the CLIENTS file with an outstanding balance greater then their credit limit,
display the company name and the calculated amount by which the client has exceeded their credit
limit. Display of the CLIENTS file record id is suppressed. The result of the SHOW operation
becomes the default select list (list 0).

SHOW STOCK QTY REORDER.LEVEL TO 3

Displays the id, quantity and reorder level fields of each item in the STOCK file. The result of the
SHOW operation is saved in select list 3.

SHOW CLIENTS COMPANY FMT "30T" LAST.CALL CONV "D2/"

Shows a list of CLIENTS file ids, the company name formatted to fit a 30 character wide field and
the date on which the client was last called using the D2/ conversion for this date.

OpenQM456

2.6-6

Using the SHOW Command

The SHOW command displays a list of records from the file being processed. This display consists
of

A page heading which may be omitted using the HDR.SUP keyword. A default page heading is
used unless specifically set by use of the HEADING keyword. The SHOW command does not
support use of embedded control codes in page headings.

Column headings which may be omitted using the COL.SUP keyword. The heading is taken
from the display name field of the dictionary entry for the item in the column. If blank, the field
name is used.

Data from records being processed. The items displayed are the record id (unless the ID.SUP
keyword has been used) and other fields named on the command line.

If the total width of the named fields exceeds the available space, SHOW will drop trailing
fields until the data fits the display width or only one (plus the record id, if not suppressed)
remains. If the data still does not fit after dropping fields, the remaining fields are displayed
in reduced space.

The SHOW command splits multi-valued items onto successive lines and correctly relates
values and subvalues in associated fields. A record is never split between two pages, a new
page being started if necessary. If a single record requires more lines than will fit on a
screen page, it is truncated.

Each item on the page is numbered for reference in the commands that manipulate the list.
The number starts at one for the first item on each page.

A status line showing the number of selected records.

An input line on which commands are entered.

An error line on which error messages and help text appears.

Using the commands listed below, the user can scroll through the displayed records setting or
clearing a marker (displayed as an asterisk next to the record number) which indicates whether the
record is to be included in the generated select list.

T Move to the top of the list (first page).

N Move to the next page. The return key with no command text has the same effect.

P Move to the previous page.

Q Quit from record selection. Any records marked with an asterisk are entered into the new
select list.

QC Quit, clearing any record selection.

R Redisplay the screen. This is useful if a data transmission error causes screen corruption.

^^ Synonym for R.

Query Processing 457

2.6-6

? Display help text on the error line. Use the return key to walk through this text, line by
line. Any key other than the return key will terminate the help display.

S item Select item. The space before the item description is optional. An asterisk will be
displayed next to all selected items.

C item Clear item, removing the asterisk marker from the screen.

item Synonym for S item.

The item specification may be

The number shown next to a displayed record.

A range of numbers in the form a-b which indicates that the command is to be applied to all
items from that tagged with number a to that tagged with number b. There must be no spaces
either side of the hyphen.

The keyword VISIBLE to apply the command to all items on the current page.

The keyword ALL to apply the command to all items in the list.

Multiple item specifications may be included in a single command by using either a space or a
comma as a separator. For example "1,4,8-11".

The VISIBLE and ALL keywords may be abbreviated by omitting any number of trailing letters
(e.g. VIS or V).

OpenQM458

2.6-6

5.13 Query processor keywords

Field qualifiers
% Synonym for PERCENTAGE
AS Define synonym for field and qualifiers
ASSOC Include field in association
ASSOC.WITH Associate two fields
AVERAGE Report average of field values
AVG Synonym for AVERAGE
BREAK.ON Define field as breakpoint control item.
BREAK-ON Synonym for BREAK.ON
BREAK.SUP Define field as non-displayed breakpoint control item.
BREAK-SUP Synonym for BREAK.SUP
CALC Calculate total of I-type item
CALCULATE Synonym for CALC
COL.HDG Set column heading for displayed item
CONV Specify conversion to be applied to field
CUMULATIVE Report cumulative value of field
DISPLAY.LIKE Display field using attributes of another field
DISPLAY.NAME Synonym for COL.HDG
ENUM Synonym for ENUMERATE
ENUMERATE Count number of values in specified field
EVAL Defines expression to be evaluated
FMT Specify format for display of field
MAX Report maximum value of a field
MIN Report minimum value of a field
MULTI.VALUE Treat field as multi-valued
MULTIVALUED Synonym for MULTI.VALUE
NO.NULLS Suppress null fields in MIN and AVG calculations
PCT Synonym for PERCENTAGE
PERCENT Synonym for PERCENTAGE
PERCENTAGE Report percentages
SINGLE.VALUE Treat field as single-valued
SINGLEVALUED Synonym for SINGLE.VALUE
TOTAL Report total of field values

Selection clause options
FIRST Synonym for SAMPLE
FROM Process only records from given select list
REQUIRE.SELECT Query must have an active select list
SAMPLE Report only specified number of records
SAMPLED Report only a sample of records
WHEN Introduces multi-valued field selection criteria
WITH Introduces record selection criteria

SEARCH options
ALL.MATCH Record must contain all given strings
NO.CASE Case insensitive option for SEARCH
NO.MATCH Record must contain none of the given strings

Selection clause operators used in WITH constructs
Not equal. Synonym for NE
& Logical AND. Synonym for AND

Query Processing 459

2.6-6

< Less than. Synonym for LT
< Less than or equal to. Synonym for LE
<> Not equal. Synonym for NE

Equals. Synonym for EQ
=< Less than or equal to. Synonym for LE
=> Greater than or equal to. Synonym for GE
> Greater than. Synonym for GT
>< Not equal. Synonym for NE
> Greater than or equal to. Synonym for GE
~ Soundex matching. Synonym for SAID
AFTER Greater than Synonym for GT
AND Logical AND
BEFORE Less than. Synonym for LT
BETWEEN Closed range test
EQ Equals
EQUAL Equals. Synonym for EQ
GE Greater than or equal to
GREATER Greater than. Synonym for GT
GT Greater than
LE Less than or equal to
LESS Less than. Synonym for LT
LIKE Pattern match
LT Less than
MATCHES Pattern match. Synonym for LIKE
MATCHING Pattern match. Synonym for LIKE
NE Not equal
NO Test for null field
NOT Synonym for NE
OR Logical OR
SAID Soundex matching
SPOKEN Soundex matching. Synonym for SAID
UNLIKE Inverse pattern match. Opposite of LIKE

Sort clause options
BY Sort by ascending field value order
BY.DSND Sort by descending field value order
BY-DSND Synonym for BY.DSND
BY.EXP Ascending exploded multi-valued sort
BY-EXP Synonym for BY.EXP
BY.EXP.DSND Descending exploded multi-valued sort
BY-EXP-DSND Synonym for BY.EXP.DSND

Display options
BOXED Generates a boxed report on a PCL printer
CAPTION Synonym for GRAND.TOTAL
COL.HDG.ID Use field names as default column headings
COL.HDR.SUPP Suppress page and column headings
COL.HDR.SUP Synonym for COL.HDR.SUPP
COL-HDR-SUPP Synonym for COL.HDR.SUPP
COL-HDR-SUP Synonym for COL.HDR.SUPP
COL.SPACES Specifies inter-column spacing
COL.SPCS Synonym for COL.SPACES
COL.SUP Suppress column headings
COL-SUPP Synonym for COL.SUP

OpenQM460

2.6-6

COUNT.SUP Suppress record count message at end of report
CSV Specifies a comma separated delimited report
DBL.SPC Output report with double line spacing
DBL-SPC Synonym for DBL.SPC
DELIMITER Specifies delimited report
DET.SUP Suppress detail lines
DET-SUPP Synonym for DET.SUP
FOOTER Synonym for FOOTING
FOOTING Specify page footing
FORCE Force print of headings in empty report
GRAND.TOTAL Specify format for totals line
GRAND-TOTAL Synonym for GRAND.TOTAL
HDR.SUP Suppress default page heading
HDR-SUPP Synonym for HDR.SUP
HEADER Synonym for HEADING
HEADING Specify page heading
ID.ONLY Suppress use of @ phrase
ID.SUP Suppress default inclusion of @ID in report
ID-SUPP Synonym for ID.SUP
LPTR Direct report to a printer
MARGIN Specify width of left margin
NEW.PAGE Display or print each record on a separate page
NO.PAGE Suppress pause between displayed pages
NOPAGE Synonym for NO.PAGE
NO.SPLIT Avoid splitting a record across pages if possible
ONLY Synonym for ID.ONLY
OVERLAY Sets a graphical page overlay
PAN Pan columns of a wide report
REPEATING Repeats single valued items or the final value of a multivalued

item
SCROLL Allow scrolling through report pages
STYLE Sets a report style
SUPP Synonym for HDR.SUP
VERT Synonym for VERTICALLY
VERTICALLY Report in vertical (one field per line) format

SELECT and SSELECT options
NO.NULLS Ignore null fields with SAVING option
SAVING Save field value in place of record id
TO Specifies target select list number
UNIQUE Omit duplicates with SAVING

Miscellaneous
ABSENT.NULL Treats an absent record as a null item rather than an error
LABEL Specifies the label template for LIST.LABEL and SORT.LABEL
LOCKING Takes a file lock on the file being processed, preventing updates
NO.INDEX Do not use an alternate key index for record selection
REQUIRE.INDEX Do not perform the query unless an alternate key index can be

used
TO Specifies the output file name for REFORMAT
TO Specifies the output pathname for a delimited report
USING Use an alternative dictionary

Query Processing 461

2.6-6

5.14 ABSENT.NULL

The ABSENT.NULL keyword treats an absent record as a null item rather than an error.

Format

ABSENT.NULL

There are situations where two or more related files share a common record id (or a related id) but
some ids may not appear in all of the files. The ABSENT.NULL keyword, normally used with a
select list, allows reports to be constructed that draw data from the complete set of files, returning a
null record for any item that is not present in the main file processed by the query. A dictionary
I-type entry can then be used to retrieve data from the related files.

Example

FILE1 contains records 1 and 2. FILE2 contains records 2 and 3.

The dictionary for FILE1 contains an I-type entry, F2REF, that is a simple TRANS() using the
record id of FILE1 to access the same record in FILE2, returning data from this file.

TRANS(FILE2, @ID, FIELD.NAME, 'X')

If we have a select list containing 1, 2 and 3,

LIST FILE1 F1 F2REF

would report records 1 and 2 but give an error for record 3.

Adding the ABSENT.NULL option,

LIST FILE1 F1 F2REF ABSENT.NULL

will process records 1, 2, and 3 from both files, using a null record for the absent records (3 in
FILE1 and 1 in FILE2).

OpenQM462

2.6-6

5.15 ALL.MATCH

The ALL.MATCH keyword used in a SEARCH command specifies that the records to be selected
must contain all of the given search strings.

Format

ALL.MATCH

Without this keyword, the SEARCH command builds a list of records containing any of the
supplied search strings. With ALL.MATCH, the records must contain all of the supplied strings.

Example

SEARCH BP ALL.MATCH
String: STOCK.FILE
String: STK.F
String:

This command builds a list of records in the BP file containing both the given strings.

See also:
NO.CASE, NO.MATCH, SEARCH

Query Processing 463

2.6-6

5.16 AND

The AND selection clause operator links two selection criteria where both must be true for the
record to be selected. The synonym & can be used.

Format

WITH condition.1 AND condition.2

where

condition.1, condition.2 are record selection criteria.

The AND selection clause operator returns true if both condition.1 and condition.2 are true.
Alternatively, multiple WITH clauses can be used.

The AND and OR operators are normally of equal priority and will be evaluated strictly left to
right. Brackets may need to be used to enforce evaluation in an different order. Thus a query such
as

LIST CLIENTS WITH REGION = 1 AND VALUE > 1000 OR REGION = 2
AND VALUE > 500

may need brackets to achieve the desired effect

LIST CLIENTS WITH (REGION = 1 AND VALUE > 1000) OR (REGION = 2
AND VALUE > 500)

Pick style multivalue database products give AND priority over OR such that the above query
would not need the brackets. This behaviour can be enabled in QM by use of the
QUERY.PRIORITY.AND mode of the OPTION command.

Example

LIST STOCK WITH QTY GT 100 AND REORDER LT 300

This command lists items found on the STOCK file with a QTY field of over 100 and a REORDER
field of less than 300.

The same results can be achieved with

LIST STOCK WITH QTY GT 100 WITH REORDER LT 300

OpenQM464

2.6-6

5.17 AS

The AS keyword is a field qualifier which defines a synonym for a field and any qualifying
information.

Format

field.name {field.qualifier} AS synonym

where

field.name is the name of the field (D or I-type) or an evaluated expression to be given
a synonym.

field.qualifier is any qualifying information such as CONVor FMT keywords.

synonym is the name by which the field and its qualifiers is to be known. This name
must not correspond to an existing entry in the file's dictionary or in the
VOC.

The AS keyword creates a synonym for field.name together with any field.qualifier. It is normally
only used in conjunction with a field.qualifier or to name an evaluated expression.

Example

LIST INVOICES EVAL "SUM(RECEIVED)" AS AMT BY.DSND AMT

This command processes records from the INVOICES file and reports the total of the multi-valued
RECEIVED field . The report is displayed in descending order of total received amount. The AS
keyword is used to give the synonym AMT to the evaluated sum so that it can be referred to again
in the sort clause after the BY.DSND keyword without full expansion.

See also:
EVAL

Query Processing 465

2.6-6

5.18 ASSOC

The ASSOC keyword is a field qualifier to specify that the field is to be treated as part of a named
association.

Format

field.name ASSOC "name"

where

field.name is the name of the field (D or I-type) or an evaluated expression to be
associated.

name is the name of the association in which field.name is to be included. The name
must be quoted to avoid its expansion as a phrase.

The ASSOC keyword causes field.name to be treated as part of the named association.

Example

LIST ORDERS PART.NO QTY EVAL "SELL * QTY" ASSOC LINE.ITEMS

This command processes records from the ORDERS file and reports the multi-valued part numbers,
quantities and calculated line total value for each record. The evaluated expression is treated as a
member of the association LINE.ITEMS to which the other reported fields already belong.

See also:
ASSOC.WITH

OpenQM466

2.6-6

5.19 ASSOC.WITH

The ASSOC.WITH keyword is a field qualifier to specify that the field is to be associated with
some other named field.

Format

field.name ASSOC.WITH name

where

field.name is the name of the field (D or I-type) or an evaluated expression to be
associated.

name is the name of the field with which field.name is to be associated.

The ASSOC.WITH keyword causes field.name to be treated as associated with field name.

Example

LIST ORDERS PART.NO QTY EVAL "SELL * QTY" ASSOC.WITH PART.NO

This command processes records from the ORDERS file and reports the multi-valued part numbers,
quantities and calculated line total value for each record. The evaluated expression is treated as
associated with PART.NO.

See also:
ASSOC

Query Processing 467

2.6-6

5.20 AVERAGE

The AVERAGE field qualifier keyword causes a field to be reported together with its average
value. The synonym AVG may be used.

Format

AVERAGE field {field.qualifiers} {NO.NULLS}

where

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

NO.NULLS causes null values to be ignored.

The AVERAGE field qualifier keyword is placed before the field name to which it applies and
causes the query processor to report the value of the field for each record processed and also to
report the average value at the end of the report. Used with breakpoints, the AVERAGE keyword
will also report the average value of the field at each breakpoint.

If the field is defined as multi-valued, the AVERAGE keyword operates on each value in turn.

The AVERAGE keyword operates only on numeric data. Non-numeric values are ignored.

The NO.NULLS keyword can be used to prevent null values being included in the calculation of
the average value.

Example

The sentence

LIST INVOICES AVERAGE VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below in which the average value of the VALUE field is
included at the end of the report.

LIST INVOICES AVERAGE VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
 ========
 £489.49
4 records listed.

OpenQM468

2.6-6

5.21 BETWEEN

The BETWEEN selection clause operator compares a field or evaluated expression against two
other fields, evaluated expressions or literal values, testing whether the value of the first item lies
between the other two values.

Format

field BETWEEN {NO.CASE} value1 value2

where

field is the first field or evaluated expression to be compared.

value1 is the low end of the range of values to be selected.

value2 is the high end of the range of values to be selected.

The BETWEEN selection clause operator returns true if field is greater than or equal to value1
and less than or equal to value2. The optional NO.CASE qualifier causes a case insensitive
comparison to be applied.

When applied to multivalued fields, the test is applied to each value in turn. Note that the query

LIST ORDERS WITH PART.NO BETWEEN 200 299

is not the same as

LIST ORDERS WITH PART.NO >= 200 AND PART.NO <= 299

if PART.NO is a multivalued field. The first query selects only those records which include part
numbers in the range 200 to 299. The second query selects those records which include a part
number that is greater than or equal to 200 and another part number that is less than or equal to
299.

Query Processing 469

2.6-6

5.22 BOXED

The BOXED display clause option causes the query processor to generate a boxed report. This
option is ignored if report destination is not a printer or file set in PCL mode.

Format

BOXED

The BOXED option draws a box around the page border as defined by the page width and depth
specified in the SETPTR command. The effective width of the page is reduced by two characters to
ensure that there is a margin between the text and sides of the box.

If the report includes a page heading or footing, these are separated from the body of the report by a
horizontal line.

Note: The quality of PCL implementations varies widely and this option may not give the expected
results on some printers. It is the application developer's responsibility to ensure that the printed
results are acceptable.

OpenQM470

2.6-6

5.23 BREAK.ON

The BREAK.ON field qualifier keyword causes the query processor to display the named field,
generating a breakpoint whenever the field value changes.

Format

BREAK.ON { "options" } field

where

options controls the appearance of the breakpoint.

field is the field name or evaluated expression to be reported.

The BREAK.ON keyword appears before the field name and causes the query processor to
generate a breakpoint whenever the field value changes. The field is also printed as part of the
report. Queries using breakpoints should also sort on the breakpoint field(s).

The action taken at the breakpoint depends on the optional options component and whether any
field value accumulations (AVERAGE, CALC, MAX, MIN, PERCENTAGE or TOTAL) are
in use.

A breakpoint with no options and no field accumulations prints a line with two asterisks in the
column for the field causing the breakpoint followed by a blank line. If field accumulations are
present, subtotals are also printed for each accumulated column. A line of hyphens may appear
above the subtotals depending on the use of the U breakpoint control code.

The options text will be used in place of the default two asterisks when a breakpoint occurs. This
text may also contain control codes enclosed in single quotes. The available control codes are:

B{n} Start a new page, retaining the value of the breakpoint field for inclusion in the page
heading/footing by use of the B heading text option. The optional single digit qualifier,
n, allows collection of values from multiple breakpoints for inclusion in a composite
heading. If omitted, the value of n defaults to zero. Thus use of B alone is equivalent to
use of B0.

D Omit the subtotal line if there is only one line of detail for this breakpoint.

L Emit a blank line in place of the breakpoint. Any text in the options string will be
ignored.

O Only show the value of the breakpoint field on the first detail line within the breakpoint.

P Start a new page.

U If the PICK.BREAKPOINT.U mode of the OPTIONcommand is in effect, this mode
inserts a line of hyphens above any subtotals, etc. If this option is not in effect, the line
of hyphens is produced unless the U mode is used.

V Print the breakpoint field value in place of the default two asterisks. The V control code
can be embedded in text into which the value will be inserted.

Combinations of control codes may be used together.

Query Processing 471

2.6-6

Pick Syntax

If the PICK.BREAKPOINT mode of the OPTION command is in effect, the options element of
the BREAK.ON appears after the field rather than before.

Examples

The command

LIST SALES BY REGION BREAK.ON REGION SALESMAN TOTAL
ORDER.VALUE

might produce a display such as that below.

LIST SALES BY REGION BREAK.ON REGION SALESMAN TOTAL
ORDER.VALUE Page 1
SALES..... REGION SALESMAN ORDER VALUE
19887 North Roberts 279.40
19859 North Sharp 384.43
19858 North Sharp 845.50
19845 North Harris 234.53
 ** -----------
 North 1743.86

19866 South Abbott 465.31
19886 South Abbott 397.23
19830 South Smith 324.39
 ** -----------
 South 1186.93

 ===========
 2930.79

7 records listed.

For this same data, the command

LIST SALES BY REGION BREAK.ON "Total'O'" REGION SALESMAN TOTAL
ORDER.VALUE

would produce

LIST SALES BY REGION BREAK.ON "Total"O"" REGION SALESMAN TOTAL
ORDER.V Page 1
SALES..... REGION SALESMAN ORDER VALUE
19887 North Roberts 279.40
19859 Sharp 384.43
19858 Sharp 845.50
19845 Harris 234.53
 Total -----------
 North 1743.86

19866 Abbott 465.31
19886 Abbott 397.23

OpenQM472

2.6-6

19830 Smith 324.39
 Total -----------
 South 1186.93

 ===========
 2930.79

7 records listed.

See also:
BREAK.SUP

Query Processing 473

2.6-6

5.24 BREAK.SUP

The BREAK.SUP field qualifier keyword causes the query processor to generate a breakpoint
whenever the field value changes. The field is not displayed in the report.

Format

BREAK.SUP { "options" } field

where

options controls the appearance of the breakpoint.

field is the field name or evaluated expression to be reported.

The BREAK.SUP keyword appears before the field name and causes the query processor to
generate a breakpoint whenever the field value changes. Queries using breakpoints should also sort
on the breakpoint field(s).

The action taken at the breakpoint depends on the optional options component and whether any
field value accumulations (AVERAGE, CALC, MAX, MIN, PERCENTAGE or TOTAL) are
in use.

A breakpoint with no options and no field accumulations prints a line with two asterisks in the
column for the field causing the breakpoint followed by a blank line. If field accumulations are
present, subtotals are also printed for each accumulated column. A line of hyphens may appear
above the subtotals depending on the use of the U breakpoint control code.

The options item is as for BREAK.ON though the text will never appear and only some control
options are of use with BREAK.SUP. The useful control codes are:

B{n} Start a new page, retaining the value of the breakpoint field for inclusion in the page
heading/footing by use of the B heading text option. The optional single digit qualifier,
n, allows collection of values from multiple breakpoints for inclusion in a composite
heading. If omitted, the value of n defaults to zero. Thus use of B alone is equivalent to
use of B0.

D Omit the subtotal line if there is only one line of detail for this breakpoint.

L Emit a blank line in place of the breakpoint. Any text in the options string will be
ignored.

P Start a new page.

U If the PICK.BREAKPOINT.U mode of the OPTIONcommand is in effect, this mode
inserts a line of hyphens above any subtotals, etc. If this option is not in effect, the line
of hyphens is produced unless the U mode is used.

Combinations of control codes may be used together.

Pick Syntax

OpenQM474

2.6-6

If the PICK.BREAKPOINT mode of the OPTION command is in effect, the options element of
the BREAK.SUP appears after the field rather than before.

Examples

The command

LIST SALES BY REGION BREAK.SUP REGION SALESMAN TOTAL
ORDER.VALUE

might produce a display such as that below.

LIST SALES BY REGION BREAK.SUP REGION SALESMAN TOTAL
ORDER.VALUE Page 1
SALES..... SALESMAN ORDER VALUE
19887 Roberts 279.40
19859 Sharp 384.43
19858 Sharp 845.50
19845 Harris 234.53

 1743.86

19866 Abbott 465.31
19886 Abbott 397.23
19830 Smith 324.39

 1186.93

 ===========
 2930.79

7 records listed.

For this same data, the command

LIST SALES BY REGION BREAK.SUP "'B'" REGION SALESMAN TOTAL
ORDER.VALUE HEADING "SALES FOR REGION: 'B'"

would produce

SALES FOR REGION: North
SALES..... SALESMAN ORDER VALUE
19887 Roberts 279.40
19859 Sharp 384.43
19858 Sharp 845.50
19845 Harris 234.53

 1743.86
<<page>>
SALES FOR REGION: South
SALES..... SALESMAN ORDER VALUE
19866 Abbott 465.31
19886 Abbott 397.23
19830 Smith 324.39

Query Processing 475

2.6-6

 1186.93

 ===========
 2930.79

7 records listed.

See also:
BREAK.ON

OpenQM476

2.6-6

5.25 BY

The BY sort clause keyword causes the query processor to sort records prior to display or when
building a select list.

Format

BY field

where

field is the field name or evaluated expression to be used to determine the sort order.

The BY keyword causes records to be sorted into ascending order of the specified field. The
comparison is performed before conversion of the data to its display format. If the display format is
left justified, a left justified sort is performed. Conversely, if the display format is right justified, a
right justified sort is performed.

If more than one sort clause is present, sort criteria are applied in the order in which they are
specified.

The command

LIST BOOKS BY @ID

is identical to

SORT BOOKS

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID BY VALUE

would produce a display such as that below.

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID BY VALUE
Invoice ...Value Customer...................
74993 £9.29 Write Right Stationery
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74529 £1712.43 J McTavish
4 records listed.

See also:
BY.DSND, BY.EXP, BY.EXP.DSND

Query Processing 477

2.6-6

5.26 BY.DSND

The BY.DSND sort clause keyword causes the query processor to sort records prior to display or
when building a select list. The synonym BY-DSND may be used.

Format

BY.DSND field

where

field is the field name or evaluated expression to be used to determine the sort order.

The BY.DSND keyword causes records to be sorted into descending order of the specified field.
The comparison is performed before conversion of the data to its display format. If the display
format is left justified, a left justified sort is performed. Conversely, if the display format is right
justified, a right justified sort is performed.

If more than one sort clause is present, sort criteria are applied in the order in which they are
specified.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID BY.DSND
VALUE

would produce a display such as that below.

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID BY.DSND
VALUE
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
63940 £141.00 R Bryant
74273 £95.23 County Newspapers
74993 £9.29 Write Right Stationery
4 records listed.

See also:
BY, BY.EXP, BY.EXP.DSND

OpenQM478

2.6-6

5.27 BY.EXP

The BY.EXP sort clause keyword applied to a multi-valued field causes the query processor to
explode the multi-valued items to form separate single valued records and to sort these into
ascending order prior to display or when building a select list.

Format

BY.EXP field

where

field is the field name or evaluated expression to be used to determine the sort order.

The BY.EXP keyword causes records to be sorted into ascending order of the values stored in the
specified field. The comparison is performed before conversion of the data to its display format. If
the display format is left justified, a left justified sort is performed. Conversely, if the display
format is right justified, a right justified sort is performed.

If more than one sort clause is present, sort criteria are applied in the order in which they are
specified.

Example

The command

LIST ORDERS PART.NO QTY LINE.TOTAL

might produce a display such as that below.

LIST ORDERS PART.NO QTY PRICE LINE.TOTAL
ORDER PART QTY PRICE TOTAL.
24842 648 7 10.00 70.00
 216 3 8.00 24.00
24851 107 2 12.50 25.00
24856 319 6 4.50 27.00
 372 1 18.75 18.75
3 records listed.

The command

LIST ORDERS PART.NO QTY LINE.TOTAL BY.EXP PART.NO

applied to the same data would produce the display below.

LIST ORDERS PART.NO QTY PRICE LINE.TOTAL
ORDER PART QTY PRICE TOTAL.
24851 107 2 12.50 25.00
24842 216 3 8.00 24.00
24856 319 6 4.50 27.00
24856 372 1 18.75 18.75

Query Processing 479

2.6-6

24842 648 7 10.00 70.00
3 records, 5 values listed.

See also:
BY, BY.DSND, BY.EXP.DSND

OpenQM480

2.6-6

5.28 BY.EXP.DSND

The BY.EXP.DSND sort clause keyword applied to a multi-valued field causes the query processor
to explode the multi-valued items to form separate single valued records and to sort these into
descending order prior to display or when building a select list.

Format

BY.EXP.DSND field

where

field is the field name or evaluated expression to be used to determine the sort order.

The BY.EXP.DSND keyword causes records to be sorted into descending order of the values
stored in the specified field. The comparison is performed before conversion of the data to its
display format. If the display format is left justified, a left justified sort is performed. Conversely, if
the display format is right justified, a right justified sort is performed.

If more than one sort clause is present, sort criteria are applied in the order in which they are
specified.

Example

The command

LIST ORDERS PART.NO QTY LINE.TOTAL

might produce a display such as that below.

LIST ORDERS PART.NO QTY PRICE LINE.TOTAL
ORDER PART QTY PRICE TOTAL.
24842 648 7 10.00 70.00
 216 3 8.00 24.00
24851 107 2 12.50 25.00
24856 319 6 4.50 27.00
 372 1 18.75 18.75
3 records listed.

The command

LIST ORDERS PART.NO QTY LINE.TOTAL BY.EXP.DSND PART.NO

applied to the same data would produce the display below.

LIST ORDERS PART.NO QTY PRICE LINE.TOTAL
ORDER PART QTY PRICE TOTAL.
24842 648 7 10.00 70.00
24856 372 1 18.75 18.75
24856 319 6 4.50 27.00
24842 216 3 8.00 24.00

Query Processing 481

2.6-6

24851 107 2 12.50 25.00
3 records, 5 values listed.

See also:
BY, BY.DSND, BY.EXP

OpenQM482

2.6-6

5.29 CALC

The CALC keyword prefixes an I-type field name or an evaluated expression and causes the
calculation to be performed on the total lines using accumulated values from the detail lines.

Format

CALC field

where

field is the I-type field or expression for which the calculation is to be performed.

The CALC keyword works in conjunction with the I-type TOTAL() function. During detail lines,
the TOTAL() function accumulates values which are then used on the subtotal and grand total lines
to calculate the value in the column to which the CALC keyword applies.

Example

We have a file which includes a calculated PROFIT item defined as

100 * (SELL - COST) / COST

The command

LIST PARTS AVG COST AVG SELL AVG PROFIT

This might produce a report such as that below

LIST PARTS AVG COST AVG SELL AVG PROFIT
Part Cost. Sell. Profit%
 101 10.00 13.00 30.00
 102 15.00 18.00 20.00
 103 14.00 17.00 21.43
 ===== ===== =====
 13.00 16.00 23.81
 3 records listed.

The average profit figure (23.81) is the average of the figures in the column above it. Perhaps what
we really want to show is the percentage profit selling for 16.00 something that cost us 13.00 (the
average cost and selling prices). To do this, the PROFIT expression is changed to

100 * (TOTAL(SELL) - TOTAL(COST)) / TOTAL(COST)

or, more simply,

100 * TOTAL(SELL - COST) / TOTAL(COST)

The command

LIST PARTS AVG COST AVG SELL CALC PROFIT

now produces

Query Processing 483

2.6-6

LIST PARTS AVG COST AVG SELL CALC PROFIT
Part Cost. Sell. Profit%
 101 10.00 13.00 30.00
 102 15.00 18.00 20.00
 103 14.00 17.00 21.43
 ===== ===== =====
 13.00 16.00 23.08
3 records listed.

OpenQM484

2.6-6

5.30 COL.HDG

The COL.HDG keyword defines an alternative column heading for reported data.
The synonym DISPLAY.NAME may be used.

Format

field COL.HDG text

where

field is the field or expression to which the new column heading is to be applied.

text is the new column heading. This must be enclosed in single or double quotes.

The default column heading for reported data is the display name from the dictionary entry or, for
evaluated expressions, the expression. The COL.HDG field qualifier can be used to set an
alternative column heading.

The text may include the control tokens that control how the column heading is displayed. The
codes are enclosed in single quotes which implies that a column heading specification that uses the
codes must itself be enclosed in double quotes.

'L' appearing within text breaks the heading onto a new line at that point. This is
equivalent to use of a value mark in a dictionary heading definition.

'R' at the start of the heading text right aligns the heading.

'X' at the start of the heading text suppresses the dot fillers normally inserted into unused
columns of the heading.

If both R and X are to be used, they should be enclosed in a single set of quotes.

Examples

LIST INVOICES AMT.DUE COL.HDG "Outstanding" SITE.NAME WITH NO
AMT.RECEIVED

This command reports records from the INVOICES file where no payment has been recorded. The
AMT.DUE field has the column heading set to "Outstanding".

LIST SALES CUST.NO COL.HDG "Client'L'Number" VALUE COL.HDG
"'RX'Value"

This command reports records from the SALES file. The heading for the CUST.NO field occupies
two lines. The column heading for VALUE is right justified with the normal dot filler suppressed.

Query Processing 485

2.6-6

5.31 COL.HDG.ID

The COL.HDG.ID keyword causes the query processor to use the display clause field names as the
default column headings.

Format

COL.HDG.ID

The query processor normally uses the display name entry from the dictionary as the column
heading in a report. Use of the COL.HDG.ID keyword causes use of the actual field name as the
column heading for all fields unless overridden by use of COL.HDG.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would normally produce a display such as

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Adding the COL.HDG.ID option, the command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID COL.HDG.ID

would produce a display such as

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
INVOICE ...VALUE CUSTOMER.NAME..............
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

OpenQM486

2.6-6

5.32 COL.HDR.SUPP

The COL.HDR.SUPP display clause keyword suppresses page and column headings. The
synonyms COL-HDR-SUPP, COL.HDR.SUP and COL-HDR-SUP can be used.

Format

COL.HDR.SUPP

The COL.HDR.SUPP keyword suppresses both the page heading (normally the command that
invoked the query processor) and the column headings derived from the dictionary display names or
COL.HDG keywords.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would normally produce a display such as

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Adding the COL.HDR.SUPP option, the command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
COL.HDR.SUPP

would produce a display such as

74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Query Processing 487

2.6-6

5.33 COL.SPACES

The COL.SPACES keyword determines the number of spaces inserted between columns of a
tabular report. The synonym COL.SPCS may be used.

Format

COL.SPACES n

where

n is the number of spaces to be used.

Tabular reports are automatically adjusted to fit the available page space. The COL.SPACES
keyword allows a user specified column spacing to be used.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below.

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Use of the COL.SPACES keyword could modify this to become

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID COL.SPACES
8
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

OpenQM488

2.6-6

5.34 CONV

The CONV keyword defines an alternative conversion for reported data.

Format

field CONV conv.spec

where

field is the field or expression to which the new conversion is to be applied.

conv.spec is the new conversion specification. This must be enclosed in single or double
quotes.

The default conversion for reported data is taken from the dictionary entry for field or, for
evaluated expressions, the first field referenced in the expression. The CONV field qualifier can be
used to set an alternative conversion specification.

Example

LIST ORDERS ORDER.DATE CONV "DDMY"

This command reports records from the ORDERS file where using a non-default conversion
specification for the ORDER.DATE field.

Query Processing 489

2.6-6

5.35 COUNT.SUP

The COUNT.SUP display option keyword suppresses display of the number of records listed or
selected at the end of the command.

Format

COUNT.SUP

Query processor commands normally displays the number of records listed or selected at the end of
the command. The COUNT.SUP keyword can be used to suppress this action.

Example

Compare the two commands and their displayed results shown below.

SELECT STOCK WITH QTY < REORDER.LEVEL
78 records selected.

SELECT STOCK WITH QTY < REORDER.LEVEL COUNT.SUP

The first command shows the normal display of the count of records selected. The second command
includes the COUNT.SUP keyword to suppress this display.

OpenQM490

2.6-6

5.36 COL.SUP

The COL.SUP display clause keyword suppresses column headings. The synonym COL-SUPP
can be used.

Format

COL.SUP

The COL.SUP keyword suppresses the column headings derived from the dictionary display names
or COL.HDG keywords.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would normally produce a display such as

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Adding the COL.SUP option, the command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID COL.SUP

would produce a display such as

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID COL.SUP
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Query Processing 491

2.6-6

5.37 CSV

The CSV display option keyword specifies that the report should be produced in CSV format.

Format

CSV {mode} {"delimiter"}

where

mode is a numeric value specifying the format rules to be applied.

delimiter is an alternative delimiting character. This may not be a double quote.

The CSV keyword produces a report in CSV (comma separated variable) format as used by many
software products. In this format, each item in the report is separated by a comma instead of the
usual tabular style of report. QM extends this format by allowing use of an alternative delimiter
character.

The mode option specifies the format rules to be applied. A mode value of 1 (the default if no mode
is given) produces output that conforms to the CSV format specification (RFC 4180). This requires
that items containing double quotes or the delimiter character are enclosed in double quotes with
embedded double quotes replace by two adjacent double quotes.

A mode value of 2 encloses all non-null values in double quotes except for numeric items that do
not contain a comma. Embedded double quotes are replaced by two adjacent double quotes.

The delimiter may be set to a tab character by use of the special syntax "<TAB>". Other
non-printing characters can be specified by use of the ̂ nnn notation where nnn is the three digit
character number from the ASCII character set.

In normal usage, the page heading and record counts would probably need to be suppressed using
the HDR.SUP and COUNT.SUP keywords. The COL.SUP keyword can be used to suppress
column headings.

The TO keyword can be used to specify the pathname of a file to receive the output. Use of this
option implies use of HDR.SUP as the output is not paginated.

Example

The command

LIST CUSTOMERS NAME TEL HDR.SUP COL.SUP COUNT.SUP CSV

would produce a display such as that below.

17463,Arkright Tool Hire,01726-48745
56221,"Smith,Price and Samuel", 01876-28414

Note how the customer name in the second line has been quoted because it contains a comma.

OpenQM492

2.6-6

See also: DELIMITER

Query Processing 493

2.6-6

5.38 CUMULATIVE

The CUMULATIVE field qualifier keyword displays the cumulative value of a field.

Format

CUMULATIVE field {field.qualifiers}

where

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

The CUMULATIVE field qualifier keyword is placed before the field name to which it applies and
causes the query processor to report the cumulative value of the field. A total line is also produced.
Used with breakpoints, the CUMULATIVE keyword will also report the total value of the field at
each breakpoint.

The CUMULATIVE keyword operates only on numeric data. Non-numeric values are ignored.

Example

The command

LIST INVOICES TOTAL VALUE CUMULATIVE VALUE CUSTOMER.NAME WITH
NO AMT.PAID

would produce a display such as that below in which the total value of the VALUE field is included
at the end of the report.

LIST INVOICES TOTAL VALUE CUMULATIVE VALUE CUSTOMER.NAME WITH
NO AMT.PAID
Invoice ...Value ...Value Customer...................
74529 £1712.43 £1712.43 J McTavish
74273 £95.23 £1807.66 County Newspapers
63940 £141.00 £1948.66 R Bryant
74993 £9.29 £1957.95 Write Right Stationery
 ======== ========
 £1957.95 £1957.95
4 records listed.

OpenQM494

2.6-6

5.39 DBL.SPC

The DBL.SPC display option keyword causes records in a tabular report to be double spaced. The
synonym DBL-SPC may be used.

Format

DBL.SPC

The DBL.SPC keyword inserts a blank line between each record displayed in a tabular format
report. It has no effect in a vertical format report.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below.

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Using the DBL.SPC keyword modifies this report to become

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID DBL.SPC
Invoice ...Value Customer...................
74529 £1712.43 J McTavish

74273 £95.23 County Newspapers

63940 £141.00 R Bryant

74993 £9.29 Write Right Stationery

4 records listed.

Query Processing 495

2.6-6

5.40 DELIMITER

The DELIMITER display option keyword specifies the separating character(s) to be used in a
delimited report.

Format

DELIMITER "string"

where

string is the character sequence to be placed between report "columns".

A delimited report displays it output as a series of items separated by the given string instead of the
usual tabular style of report. The DELIMITER keyword causes the query processor to produce
this style of report and specifies the separator to be used. The output from a delimited report can,
for example, be structured with comma separators, sent to a file using the LPTR keyword and then
read into applications such as Microsoft Excel.

The string may contain tab characters by use of the special syntax "<TAB>". Other non-printing
characters can be included by use of the ^nnn notation where nnn is the three digit character
number from the ASCII character set.

In normal usage, the page heading and record counts would probably need to be suppressed using
the HDR.SUP and COUNT.SUP keywords. The COL.SUP keyword can be used to suppress
column headings.

The TO keyword can be used to specify the pathname of a file to receive the output. Use of this
option implies use of HDR.SUP as the output is not paginated.

Examples

The command

LIST INVOICES VALUE CUSTOMER.NAME DELIMITER "," HDR.SUP
COL.SUP COUNT.SUP

would produce a display such as that below.

74529,£1712.43,J McTavish
74273,£95.23,County Newspapers
63940,£141.00,R Bryant
74993,£9.29,Write Right Stationery

The command

LIST INVOICES VALUE CUSTOMER.NAME DELIMITER "<tab>" HDR.SUP
COUNT.SUP

would produce a display such as that below where the spacing is performed by tab characters.

74529 £1712.43 J McTavish
74273 £95.23 County Newspapers

OpenQM496

2.6-6

63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery

See also: CSV

Query Processing 497

2.6-6

5.41 DET.SUP

The DET.SUP keyword (synonym DET-SUPP) suppresses reporting of detail lines, leaving only
page and column headers, totals, footers and the final record count.

Format

DET.SUP

The DET.SUP keyword removes all detail lines from a report. It allows easy reporting of totals
without the data that contributed to the totals.

When used with report styles (see the STYLE option), subtotal lines will be reported using the
detail line style.

Example

The command

LIST SALES BY REGION BREAK.ON REGION SALESMAN TOTAL
ORDER.VALUE

would produce a display such as that below.

LIST SALES BY REGION BREAK.ON REGION SALESMAN TOTAL
ORDER.VALUE Page 1
SALES..... REGION SALESMAN ORDER VALUE
19887 North Roberts 279.40
19859 North Sharp 384.43
19858 North Sharp 845.50
19845 North Harris 234.53
 ** -----------
 North 1743.86

19866 South Abbott 465.31
19886 South Abbott 397.23
19830 South Smith 324.39
 ** -----------
 South 1186.93

 ===========
 2930.79
7 records listed.

Adding the DET.SUP keyword and omitting the salesman changes this report to be as below.

LIST SALES BY REGION BREAK.ON REGION TOTAL ORDER.VALUE DET.SU
Page 1
REGION ORDER VALUE
North 1743.86
South 1186.93

OpenQM498

2.6-6

 ===========
 2930.79
7 records listed.

Query Processing 499

2.6-6

5.42 DISPLAY.LIKE

The DISPLAY.LIKE keyword is a field qualifier which causes the field to be displayed using the
attributes of another field defined in the dictionary.

Format

field.name DISPLAY.LIKE other.field

where

field.name is the field or an evaluated expression to be displayed.

other.field is the field whose attributes are to be used when field.name is displayed.

The DISPLAY.LIKE keyword causes the attributes of other.field to be used when displaying
field.name. The attributes are the display name, conversion, format, single / multiple value flag and
association. The COL.HDG, CONV, FMT, SINGLE.VALUE, MULTI.VALUE, ASSOC and
ASSOC.WITH field qualifiers can be used to further modify the attributes.

Example

LIST INVOICES EVAL "ISSUE.DATE + 90" DISPLAY.LIKE DUE.DATE
COL.HDG "Reminder date"

This command processes records from the INVOICES file and reports the record id (probably the
invoice number) and the date 90 days after that stored in the ISSUE.DATE field using the attributes
of the DUE.DATE field except for the column heading which is specifically set.

OpenQM500

2.6-6

5.43 ENUMERATE

The ENUMERATE field qualifier keyword causes a field to be reported together with a count of
values. The synonym ENUM may be used.

Format

ENUM field {field.qualifiers} {NO.NULLS}

where

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

NO.NULLS causes null values to be ignored.

The ENUMERATE field qualifier keyword is placed before the field name to which it applies and
causes the query processor to report the value of the field for each record processed and also to
report the number of values at the end of the report. Used with breakpoints, the ENUMERATE
keyword will also report the number of values at each breakpoint.

If the field is defined as multi-valued, the ENUMERATE keyword counts each value.

The NO.NULLS keyword can be used to ignore null values.

Example

The command

LIST INVOICES ENUMERATE VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below in which the number of items in the VALUE field is
shown at the end of the report.

LIST INVOICES ENUMERATE VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
 ========
 4
4 records listed.

Query Processing 501

2.6-6

5.44 EQ

The EQ selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item being equal to the second. The
synonyms EQUAL and = can be used.

Format

field EQ {NO.CASE} value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared. The
optional NO.CASE qualifier causes a case insensitive comparison to be applied.

The EQ selection clause operator returns true if field is equal to value.

Example

LIST STOCK WITH QTY EQ 100

This command lists items found on the STOCK file with a QTY field of 100.

Pick Style Wildcards

If the PICK.WILDCARD option is enabled (see the OPTION command) and the value item is a
literal value, the interpretation is extended to include use of Pick style wildcard characters:

· A [character at the start of the value replaces any number of leading characters. It is
equivalent to the … action of the LIKE operator.

· A] character at the end of the value replaces any number of trailing characters. It is
equivalent to the … action of the LIKE operator.

· A ^ character within the value replaces a single character. It is equivalent to the 1X action
of the LIKE operator.

OpenQM502

2.6-6

5.45 EVAL

The EVAL (or EVALUATE) keyword prefixes an expression to be evaluated and used as though
it were an I-type defined in the dictionary.

Format

EVAL expr

where

expr is the expression. This must be enclosed in single or double quotes.

The EVAL keyword prefixes an expression which is handled as a temporary I-type. It may be used
as a field for display or in selection or sort clauses.

The expr string conforms to the same rules as I-type expressions. It is compiled by the query
processor for use within the command being executed but is not saved in the dictionary. Where the
value of expr is a constant, the expression is evaluated only once and then treated as a literal value.

The default display name used for an EVAL expression in the absence of a COL.HDG qualifier is
the expression itself.

The default display format and conversion are taken from the first field referenced by the
expression. If no fields are referenced, the format defaults to 10L with no conversion. Alternative
format or conversion may be specified with the FMT or CONV field qualifiers.

Example

LIST INVOICES EVAL "SUM(RECEIVED)"

This command processes records from the INVOICES file and reports the record id (probably the
invoice number) and the total of the RECEIVED field which is multi-valued to allow for more than
one payment against an invoice.

See also:
AS

Query Processing 503

2.6-6

5.46 FMT

The FMT keyword defines an alternative format for reported data.

Format

field FMT fmt.spec

where

field is the field or expression to which the new format is to be applied.

fmt.spec is the new format specification. This must be enclosed in single or double
quotes.

The default format for reported data is taken from the dictionary entry for field or, for evaluated
expressions, the first field referenced in the expression. The FMT field qualifier can be used to set
an alternative format specification.

Example

LIST ORDERS SITE.NAME FMT "32L"

This command reports records from the ORDERS file where using a non-default format
specification for the SITE.NAME field.

OpenQM504

2.6-6

5.47 FOOTING

The FOOTING keyword defines a page footing for the report.

Format

FOOTING "text"

where

text is the footing text to appear on each page.

A page footing defined with the FOOTING keyword will appear at the bottom of each page of the
report. The footing text may contain control codes enclosed in single quotes to insert variable data
or to alter the appearance of the footing. These control codes are:

B{n} Insert data from the corresponding B control code in a BREAK.ON or BREAK.SUP
option string. The optional single digit qualifier, n, defaults to zero if omitted.

C Centres the current line of the footing text.

D Inserts the date. The default format is dd mmm yyyy (e.g. 24 Aug 2005) but can be
changed using the DATE.FORMAT command.

F{n} Inserts the file name in a field of n spaces. If n is omitted, a variable width is used.

G Inserts a gap. Spaces are inserted in place of the G control code to expand the text to
the width of the output device. If more than one G control code appears in a single line,
spaces are distributed as evenly as possible.

When a footing line uses both G and C, the footing is considered as a number of
elements separated by the G control options. The element that contains the C option
will be centered. The items either side of the centered element are processed separately
when calculating the number of spaces to be substituted for each G option.

Hn Sets horizontal position (column) numbered from one. Use of H with C or with a
preceding G token may have undesired results.

I{n} Inserts the record id in a field of n spaces. If n is omitted, a variable width is used.

L Inserts a new line at this point in the text.

N Suppresses pagination of the output to the display.

O Reverses the elements separated by G tokens in the current line on even numbered
pages. This is of use when printing double sided reports.

P{n} Insert page number. The page number is right justified in n spaces, widening the field if
necessary. If omitted, n defaults to four.

R{n} Same as I{n}.

S{n} Insert page number. The page number is left justified in n spaces, widening the field if
necessary. If omitted, n defaults to one.

T Inserts the time and date in the form hh:mm:ss dd mmm yyyy. The format of the date
component can be changed using the DATE.FORMAT command.

Query Processing 505

2.6-6

A single quote may be inserted in the footing by use of two adjacent single quotes in the text.

If more than one FOOTING definition is given in a single query, the first one is used. This allows a
query sentence to include a footing that will override an alternative footing in the default listing
phrase.

Example

The command

LIST SALES FOOTER "'C'SALES REPORT'LDG'Confidential" HDR.SUP

might produce a report such as that below.

SALES..... REGION SALESMAN ORDER VALUE
19845 North Harris 234.53
19858 North Sharp 845.50
19859 North Sharp 384.43
19887 North Roberts 279.40
19830 South Smith 324.39
19886 South Abbott 397.23
19866 South Abbott 465.31

7 records listed.

 SALES REPORT
26 Jun 2000
Confidential

OpenQM506

2.6-6

5.48 FORCE

The FORCE keyword forces output of page headings in an empty report.

Format

FORCE

A query report that finds no records to output normally shows only the zero record count. The
FORCE option causes the page and column headings to be displayed in this situation.

Query Processing 507

2.6-6

5.49 FROM

The FROM keyword specifies the select list to be used as a source of record ids for processing by
the query.

Format

FROM list.no

where

list.no is the select list number (0 to 10) to be used.

If the FROM keyword is not present, the query processor will automatically use the default list, list
0, if it is active.

Example

LIST STOCK FROM 4

This command lists items from the STOCK file using select list 4 as the source of record ids to be
processed.

OpenQM508

2.6-6

5.50 GE

The GE selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item being greater than or equal to the
second. The synonyms >= and => can be used.

Format

field GE {NO.CASE} value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared. The
optional NO.CASE qualifier causes a case insensitive comparison to be applied.

The GE selection clause operator returns true if field is greater than or equal to value.

Example

LIST STOCK WITH QTY GE 100

This command lists items found on the STOCK file with a QTY field of 100 or over.

Query Processing 509

2.6-6

5.51 GRAND.TOTAL

The GRAND.TOTAL keyword (synonyms GRAND-TOTAL and CAPTION) specifies text to
appear at the left edge of the grand total line when any field accumulations (AVERAGE,
ENUMERATE, MAX, MIN, PERCENTAGE or TOTAL) are used.

Format

GRAND.TOTAL "text"

where

text is the text to appear on the grand total line.

The GRAND.TOTAL text may include control options enclosed in single quotes. These are:

L Suppress the grand total line completely (see also NO.GRAND.TOTAL).

P Print the grand total line on a new page.

The text normally appears on the same line as the row of equals signs (=) that are shown above the
total values. The PICK.GRAND.TOTAL keyword of the OPTION command can be used to
move this text down to the line that holds the values.

Example

The command

LIST SALES TOTAL ORDER.VALUE GRAND.TOTAL "TOTAL"

might produce the report below.

LIST SALES TOTAL ORDER.VALUE GRAND.TOTAL "TOTAL"
 Page 1
SALES..... ORDER VALUE
19845 234.53
19858 845.50
19859 384.43
19887 279.40
19830 324.39
19886 397.23
19866 465.31
TOTAL ===========
 2930.79

7 records listed.

See also:
NO.GRAND.TOTAL

OpenQM510

2.6-6

5.52 GT

The GT selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item being greater than the second. The
synonyms AFTER, GREATER and > can be used.

Format

field GT {NO.CASE} value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared. The
optional NO.CASE qualifier causes a case insensitive comparison to be applied.

The GT selection clause operator returns true if field is greater than value.

Example

LIST STOCK WITH QTY GT 100

This command lists items found on the STOCK file with a QTY field of over 100.

Query Processing 511

2.6-6

5.53 HDR.SUP

The HDR.SUP display clause keyword suppresses the default page heading. The synonyms
HDR-SUPP and SUPP can be used.

Format

HDR.SUP

The HDR.SUP keyword suppresses the default page heading (the command that invoked the query
processor). Any heading specified by use of the HEADING keyword will still be output.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would normally produce a display such as

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

Adding the HDR.SUP option, the command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID HDR.SUP

would produce a display such as

Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
4 records listed.

OpenQM512

2.6-6

5.54 HEADING

The HEADING keyword defines a page heading for the report.

Format

HEADING "text"

where

text is the heading text to appear on each page.

A page heading defined with the HEADING keyword will appear at the top of each page of the
report in place of the default heading. Except when used with the SHOW verb, the heading text
may contain control codes enclosed in single quotes to insert variable data or to alter the appearance
of the heading. These control codes are:

B{n} Insert data from the corresponding B control code in a BREAK.ON or BREAK.SUP
option string. The optional single digit qualifier, n, defaults to zero if omitted.

C Centres the current line of the heading text.

D Inserts the date. The default format is dd mmm yyyy (e.g. 24 Aug 2005) but can be
changed using the DATE.FORMAT command.

F{n} Inserts the file name in a field of n spaces. If n is omitted, a variable width is used.

G Inserts a gap. Spaces are inserted in place of the G control code to expand the text to
the width of the output device. If more than one G control code appears in a single line,
spaces are distributed as evenly as possible.

When a heading line uses both G and C, the heading is considered as a number of
elements separated by the G control options. The element that contains the C option
will be centered. The items either side of the centered element are processed separately
when calculating the number of spaces to be substituted for each G option.

Hn Sets horizontal position (column) numbered from one. Use of H with C or with a
preceding G token may have undesired results.

I{n} Inserts the record id in a field of n spaces. If n is omitted, a variable width is used.

L Inserts a new line at this point in the text.

N Suppresses pagination of the output to the display.

O Reverses the elements separated by G tokens in the current line on even numbered
pages. This is of use when printing double sided reports.

P{n} Insert page number. The page number is right justified in n spaces, widening the field if
necessary. If omitted, n defaults to four.

R{n} Same as I{n}.

S{n} Insert page number. The page number is left justified in n spaces, widening the field if
necessary. If omitted, n defaults to one.

T Inserts the time and date in the form hh:mm:ss dd mmm yyyy. The format of the date
component can be changed using the DATE.FORMAT command.

Query Processing 513

2.6-6

A single quote may be inserted in the heading by use of two adjacent single quotes in the text.

If more than one HEADING definition is given in a single query, the first one is used. This allows
a query sentence to include a heading that will override an alternative heading in the default listing
phrase.

Example

The command

LIST SALES HEADER "'C'SALES REPORT'LDG'Confidential" HDR.SUP

might produce a report such as that below.

 SALES REPORT
26 Jun 2000
Confidential SALES..... REGION SALESMAN ORDER VALUE
19845 North Harris 234.53
19858 North Sharp 845.50
19859 North Sharp 384.43
19887 North Roberts 279.40
19830 South Smith 324.39
19886 South Abbott 397.23
19866 South Abbott 465.31

7 records listed.

OpenQM514

2.6-6

5.55 ID.ONLY

The ID.ONLY keyword causes the query processor to ignore the default listing phrase and show
only record ids. The synonym ONLY may be used.

Format

ID.ONLY

Used with no field names on the command line, the ID.ONLY keyword causes the query processor
to ignore the default listing phrase (@ or @LPTR) and to show the record its only. If field names
are given on the command line this keyword has no effect.

For compatibility with other multivalue products, the ID.ONLY keyword may appear before the
file name in a query processor sentence. For example:

LIST ID.ONLY ORDERS

Query Processing 515

2.6-6

5.56 ID.SUP

The ID.SUP display option keyword causes the record id to be omitted from the report. The
synonym ID-SUPP may be used.

Format

ID.SUP

The record id is normally included automatically as the first item in a LIST or SORT report. The
ID.SUP keyword can be used to suppress this item either where it is not required or where it is
named explicitly in the command so that, for example, non-standard display attributes can be used

Example

The command

LIST STOCK DESCRIPTION QTY WITH QTY < REORDER.LEVEL

might produce a report such as

LIST STOCK DESCRIPTION QTY WITH QTY < REORDER.LEVEL
Item code Description............... Stock
A17439 A4 four hole binder, black 12
A50993 Adhesive tape, 25mm x 30m 3
D94266 Fibre pens, 10 pack, blue 6
3 records listed.

including the ID.SUP keyword would change this to become

LIST STOCK DESCRIPTION QTY WITH QTY < REORDER.LEVEL ID.SUP
Description............... Stock
A4 four hole binder, black 12
Adhesive tape, 25mm x 30m 3
Fibre pens, 10 pack, blue 6
3 records listed.

OpenQM516

2.6-6

5.57 LABEL

The LABEL keyword specifies the label template record name for LIST.LABEL and
SORT.LABEL.

Format

LABEL template.name

LABEL NO.DEFAULT

The first format of the LABEL keyword specifies the name of a label template record stored in the
dictionary of the file being processed or in the VOC.

The second format specifies that the default @LABEL record is not to be used. The query
processor will then prompt for the label page shape parameters.

Query Processing 517

2.6-6

5.58 LE

The LE selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item being less than or equal to the
second. The synonyms <= and =< can be used.

Format

field LE {NO.CASE} value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared. The
optional NO.CASE qualifier causes a case insensitive comparison to be applied.

The LE selection clause operator returns true if field is less than or equal to value.

Example

LIST STOCK WITH QTY LE 100

This command lists items found on the STOCK file with a QTY field of 100 or less.

OpenQM518

2.6-6

5.59 LIKE

The LIKE selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item matching the pattern template given
by the second. The synonyms LIKE, MATCHES and MATCHING can be used.

Format

field LIKE {NO.CASE} template

where

field is the first field or evaluated expression to be compared.

template is the field, evaluated expression or literal value representing the pattern
against which field is to be compared. The optional NO.CASE qualifier
causes a case insensitive comparison to be applied.

The LIKE selection clause operator returns true if field matches template.

The LIKE operator treats characters that do not correspond to any valid component of a pattern as
literal values which must be matched exactly. Thus it is possible to find all the QMBasic include
records (which have a suffix of .H) in the BP file by a command of the form

SELECT BP WITH @ID LIKEH

The initial three dots are a valid template component. The remaining two characters are not and are
hence treated as literals. It would be better to enter this as

SELECT BP WITH @ID LIKE "...'.H'"

to avoid confusion. In some cases quotes must be used to handle literal values which are also valid
components of a pattern template.

Example

LIST STOCK WITH PRODUCT.CODE LIKE A...

This command lists items found on the STOCK file with a PRODUCT.CODE starting with A.

See also:
Pattern Matching

Query Processing 519

2.6-6

5.60 LOCKING

The LOCKING keyword locks the file during a report, preventing updates.

Format

LOCKING

The LOCKING keyword causes the query processor to take a file lock on the file named in the
query sentence. This prevents any other process from modifying the file during the report, ensuring
that the report reflects a snap shot view of the data at the point when the query began.

Files accessed using the TRANS() function in I-type dictionary records or using the T conversion
code will not be locked and hence may be modified during the report.

It is the user's responsibility to ensure that use of the lock in lengthy reports does not cause
operational problems. In particular, be aware that a user who leaves a query on a "Press return to
continue" prompt may severely affect the ability of other users to access the file.

OpenQM520

2.6-6

5.61 LPTR

The LPTR keyword directs the output of the query to a printer.

Format

LPTR { unit }

where

unit is the print unit number. If omitted, print unit 0 is used.

The LPTR keyword directs the query processor output to the specified print unit. It also changes
the way in which the default listing phrase operates. With this option, if no report fields are
specified on the command line, the query processor first looks for a phrase named @LPTR and
then, if this does not exist, it reverts to the @ phrase. This allows different default report formats
for the printer and the display.

Query Processing 521

2.6-6

5.62 LT

The LT selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item being less than the second. The
synonyms BEFORE, LESS and < can be used.

Format

field LT {NO.CASE} value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared. The
optional NO.CASE qualifier causes a case insensitive comparison to be applied.

The LT selection clause operator returns true if field is less than value.

Example

LIST STOCK WITH QTY LT 100

This command lists items found on the STOCK file with a QTY field of less than 100.

OpenQM522

2.6-6

5.63 MARGIN

The MARGIN keyword specifies the width of a blank left margin to appear in the report output.

Format

MARGIN width

where

width specifies the margin width in characters.

The MARGIN keyword allows a blank left margin to be produced at the edge of the report. It is
intended for use when the printed report is to be bound and thus requires clear space at the left edge.

Query Processing 523

2.6-6

5.64 MAX

The MAX field qualifier keyword causes a field to be reported together with its maximum value.

Format

MAX field {field.qualifiers}

where

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

The MAX field qualifier keyword is placed before the field name to which it applies and causes the
query processor to report the value of the field for each record processed and also to report the
maximum value at the end of the report. Used with breakpoints, the MAX keyword will also report
the maximum value of the field at each breakpoint.

If the field is defined as multi-valued, the MAX keyword operates on each value in turn.

The MAX keyword operates on all types of data. Where the field holds non-numeric data, a string
comparison is performed.

Used with the SHOW verb, the MAX keyword specifies the maximum number of records allowed
in the resultant select list.

Example

The command

LIST INVOICES MAX VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below in which the maximum value of the VALUE field is
repeated at the end of the report.

LIST INVOICES MAX VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
 ========
 £1712.43
4 records listed.

OpenQM524

2.6-6

5.65 MIN

The MIN field qualifier keyword causes a field to be reported together with its minimum value.

Format

MIN field {field.qualifiers} {NO.NULLS}

where

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

NO.NULLS causes null values to be ignored.

The MIN field qualifier keyword is placed before the field name to which it applies and causes the
query processor to report the value of the field for each record processed and also to report the
minimum value at the end of the report. Used with breakpoints, the MIN keyword will also report
the minimum value of the field at each breakpoint.

If the field is defined as multi-valued, the MIN keyword operates on each value in turn.

The MIN keyword operates on all types of data. Where the field holds non-numeric data, a string
comparison is performed.

The NO.NULLS keyword can be used to prevent null values being included in the test for the
minimum value.

Used with the SHOW verb, the MIN keyword specifies the minimum number of records allowed in
the resultant select list.

Example

The command

LIST INVOICES MIN VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below in which the minimum value of the VALUE field is
repeated at the end of the report.

LIST INVOICES MIN VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
 ========
 £9.29

Query Processing 525

2.6-6

4 records listed.

OpenQM526

2.6-6

5.66 MULTI.VALUE

The MULTI.VALUE keyword is a field qualifier that forces the field to be processed as a
multi-valued item. The synonym MULTIVALUED can be used.

Format

field MULTI.VALUE

where

field is the field or expression which is to be treated as multi-valued.

The query processor verbs normally use the dictionary to determine whether a field should be
treated as single or multi-valued. The MULTI.VALUE field qualifier forces the field to be
processed as a multi-valued item regardless of the dictionary definition. It is normally only used
with an EVAL expression.

See also:
SINGLE.VALUE

Query Processing 527

2.6-6

5.67 NE

The NE selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item being not equal to the second. The
synonyms NOT, #, <> and >< can be used.

Format

field NE {NO.CASE} value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared. The
optional NO.CASE qualifier causes a case insensitive comparison to be applied.

The NE selection clause operator returns true if field is not equal to value.

Example

LIST STOCK WITH QTY NE 0

This command lists items found on the STOCK file with a non-zero QTY.

Pick Style Wildcards

If the PICK.WILDCARD option is enabled (see the OPTION command) and the value item is a
literal value, the interpretation is extended to include use of Pick style wildcard characters:

· A [character at the start of the value replaces any number of leading characters. It is
equivalent to the … action of the UNLIKE operator.

· A] character at the end of the value replaces any number of trailing characters. It is
equivalent to the … action of the UNLIKE operator.

· A ^ character within the value replaces a single character. It is equivalent to the 1X action
of the UNLIKE operator.

OpenQM528

2.6-6

5.68 NEW.PAGE

The NEW.PAGE display option keyword causes each record in a report to start on a new page.

Format

NEW.PAGE

Query Processing 529

2.6-6

5.69 NO

The NO selection clause operator tests whether a field or evaluated expression is null.

Format

WITH NO field

where

field is the field or evaluated expression to be tested.

The NO selection clause operator returns true if field is null.

Example

LIST STOCK WITH NO SUPPLIER.CODE

This command lists items found on the STOCK file with a null SUPPLIER.CODE.

OpenQM530

2.6-6

5.70 NO.CASE

The NO.CASE keyword used in the SEARCH verb specifies that the string comparison is to be
performed in a case insensitive manner.

Format

NO.CASE

The SEARCH verb is normally case sensitive in its comparison of the given search strings. The
NO.CASE option performs a case insensitive comparison.

The NO.CASE keyword can also be used as a qualifier with relational operators in the selection
clause.

See also:
ALL.MATCH, NO.MATCH, SEARCH

Query Processing 531

2.6-6

5.71 NO.GRAND.TOTAL

The NO.GRAND.TOTAL phrase suppresses the grand total in a query report.

Format

NO.GRAND.TOTAL

The NO.GRAND.TOTAL phrase suppresses the grand total line. It is only of use when the query
includes breakpoints that produce subtotals.

Example

LIST ORDERS BY CUST.NO BREAK.ON CUST.NO TOTAL ORDER.VALUE
NO.GRAND.TOTAL

This is equivalent to

LIST ORDERS BY CUST.NO BREAK.ON CUST.NO TOTAL ORDER.VALUE
GRAND.TOTAL "'L'"

See also:
GRAND.TOTAL

OpenQM532

2.6-6

5.72 NO.INDEX

The NO.INDEX keyword causes the query processor to ignore any index that would otherwise be
used to handle the selection clause of the query.

Format

NO.INDEX

Use of the NO.INDEX keyword may result in faster query processing where the selection clause
includes a large proportion of the records in the file.

Query Processing 533

2.6-6

5.73 NO.MATCH

The NO.MATCH keyword used in a SEARCH command specifies that the records to be selected
must contain none of the given search strings.

Format

NO.MATCH

Without this keyword, the SEARCH command builds a list of records containing any of the
supplied search strings. With NO.MATCH, the records must contain none of the supplied strings.

Example

SEARCH BP NONE.MATCH
String: STOCK.FILE
String: STK.F
String:

This command builds a list of records in the BP file containing neither of the given strings.

See also:
ALL.MATCH, NO.CASE, SEARCH

OpenQM534

2.6-6

5.74 NO.NULLS

The NO.NULLS keyword suppresses null items.

Format

NO.NULLS

The NO.NULLS keyword has three uses:

1. With the query processor AVERAGE, ENUMERATE and MIN keywords, this keyword
suppresses use of null values when calculating averages, enumerations or minimum values.

2. With the query processor SAVING keyword, this keyword omits null field values from the
generated select list.

3. With the CREATE.INDEX command, it omit records with null field values from the
index.

Query Processing 535

2.6-6

5.75 NO.PAGE

The NO.PAGE display option keyword suppresses the normal page end prompt. The synonym
NOPAGE may be used.

Format

NO.PAGE

The LIST and SORT commands normally pause at the end of each page when output is directed to
the display. The NO.PAGE keyword suppresses this page end prompt.

OpenQM536

2.6-6

5.76 NO.SPLIT

The NO.SPLIT keyword causes the query processor to avoid splitting records across pages where
possible.

Format

NO.SPLIT

The NO.SPLIT causes the query processor to start a new page when there is insufficient space on
the current page for the record about to be reported.

Query Processing 537

2.6-6

5.77 OR

The OR selection clause operator links two selection criteria where either may be true for the record
to be selected.

Format

WITH condition.1 OR condition.2

where

condition.1, condition.2 are record selection criteria.

The OR selection clause operator returns true if either or both of condition.1 and condition.2 are
true.

The AND and OR operators are normally of equal priority and will be evaluated strictly left to
right. Brackets may need to be used to enforce evaluation in an different order. Thus a query such
as

LIST CLIENTS WITH REGION = 1 AND VALUE > 1000 OR REGION = 2
AND VALUE > 500

may need brackets to achieve the desired effect

LIST CLIENTS WITH (REGION = 1 AND VALUE > 1000) OR (REGION = 2
AND VALUE > 500)

Pick style multivalue database products give AND priority over OR such that the above query
would not need the brackets. This behaviour can be enabled in QM by use of the
QUERY.PRIORITY.AND mode of the OPTION command.

Example

LIST STOCK WITH QTY GT 100 OR REORDER LT 300

This command lists items found on the STOCK file with a QTY field of over 100 or a REORDER
field of less than 300.

OpenQM538

2.6-6

5.78 OVERLAY

The OVERLAY option specifies a catalogued subroutine to emit a graphical page overlay.

Format

OVERLAY subr.name

where

subr.name is the name of a catalogued subroutine.

The OVERLAY option allows a report to include a graphical overlay to draw a form on each page
of a report directed to a printer or a file. This is equivalent to use of the OVERLAY option of the
SETPTR command except that it applies only to the one report.

The subr.name qualifier is the name of a catalogued subroutine that will emit the page overlay. This
subroutine takes a single argument, the print unit number, and should not perform any other action.

Example

LIST ORDERS OVERLAY ORD.OV LPTR

This command lists the ORDERS file, overlaying each page with a graphical image generated by
the ORD.OV subroutine.

Query Processing 539

2.6-6

5.79 PAGESEQ

The PAGESEQ option identifies a record that controls page numbering.

Format

PAGESEQ filename id

where

filename is the name of the file containing the control record.

id is the record id of the control record.

The PAGESEQ option provides a way in which successive uses of the same report can produce
sequentially numbered pages allowing, for example, separate monthly business reports to be
assembled into a single item. The option is ignored for reports directed to the screen.

The PAGESEQ option specifies the name of a file and a record within that file. This record should
contain a single field which holds the page number to be applied to the first page of the report. The
query processor will retain a lock on this record for the duration of the query and will update it on
completion to contain a value one greater than the number of the final page in the report.

If the control record does not exist, a default page number of 1 is used for the first page and the
record will be created when the query terminates.

Example

The command

LIST MONTHLY.INVOICES PAGESEQ SEQFILE INV LPTR

would produce a report of the MONTHLY.INVOICES file, using the value in SEQFILE INV as
the start page number and updating this value on completion of the report.

OpenQM540

2.6-6

5.80 PAN

The PAN keyword, used in reports directed to the display, permits the total width of the report to
exceed that of the display by allowing the user to pan columns.

Format

PAN

The PAN keyword causes the query processor to buffer the report page and allows the user to pan
columns using the left and right cursor key. The panning operation never displays only part of a
column.

The PAN keyword operates differently depending on where it is placed in the query sentence. If it
appears before or after all the displayed fields, the entire display is panned. If it appears between
displayed fields, only those fields following the keyword are panned; the remaining fields being
locked in position.

The L and R keys or Ctrl-B and Ctrl-F can be used in place of the cursor keys.

Query Processing 541

2.6-6

5.81 PERCENTAGE

The PERCENTAGE field qualifier keyword causes a field to be reported as a percentage of the
total of the value of the field in all selected records.

Format

PERCENTAGE {dp} field {field.qualifiers}

where

dp is the number of decimal places to be displayed. This defaults to zero if
omitted.

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

The PERCENTAGE field qualifier keyword is placed before the field name to which it applies and
causes the query processor to report the value of the field for each record processed as a percentage
of the total value of the field in all selected records. The total percentage (always 100 unless the
data has changed during the query) is shown at the end of the report. Used with breakpoints, the
PERCENTAGE keyword will also report the percentage value at each breakpoint.

If the field is defined as multi-valued, the PERCENTAGE keyword operates on each value in turn.

The PERCENTAGE keyword operates only on numeric data. Non-numeric values are treated as
zero.

Example

The command

LIST INVOICES TOTAL VALUE PCT VALUE CUSTOMER.NAME WITH NO
AMT.PAID

would produce a display such as that below.

LIST INVOICES TOTAL VALUE PCT VALUE CUSTOMER.NAME WITH NO
AMT.PAID
Invoice ...Value Value Customer...................
74529 £1712.43 87 J McTavish
74273 £95.23 5 County Newspapers
63940 £141.00 7 R Bryant
74993 £9.29 1 Write Right Stationery
 ======== =====
 £1957.95 100

4 records listed.

OpenQM542

2.6-6

5.82 REQUIRE.INDEX

The REQUIRE.INDEX keyword causes the query processor to terminate the query unless it can
make use of an alternate key index.

Format

REQUIRE.INDEX

Use of the REQUIRE.INDEX keyword can help determine whether a query has been phrased in a
manner that can make use of an alternate key index.

Query Processing 543

2.6-6

5.83 REQUIRE.SELECT

The REQUIRE.SELECT keyword indicates that the query should only proceed if there is an
active select list.

Format

REQUIRE.SELECT

The REQUIRE.SELECT keyword is useful in automated queries from paragraphs, etc. where a
preceding SELECT might have found no items and hence not left an active list. The following
query would therefore process all records instead of none.

If no select list is active when a query using this keyword is initiated, an error message is displayed.

Example

SELECT ORDERS WITH VALUE > 1000 SAVING UNIQUE CUST.NO
0 records selected to list 0
LIST CUSTOMERS REQUIRE.SELECT
Select list required - Processing terminated

The above sequence shows how the REQUIRE.SELECT keyword causes the query processor to
terminate the LIST operation when no records were found matching the selection criteria. Without
this keyword, the LIST would have reported all the customers.

OpenQM544

2.6-6

5.84 REPEATING

The REPEATING keyword causes the query processor to repeat single valued data against further
values in other fields.

Format

REPEATING

In a report that includes multivalued fields, the value of any single valued items normally only
appears once. The REPEATING keyword duplicates the single valued items against each
multivalued element of other fields.

The decision as to whether an item is single or multivalued is based on the S/M flag in the D/I-type
dictionary definition or use of the equivalent field qualifiers, not by whether the data includes value
marks. This is to ensure that a multivalued field with only a single entry does not get repeated.

Pick style A/S-type dictionary items are always treated as multivalued.

Example

A file containing a multivalued list of order numbers corresponding to each customer might produce
a report that includes the following section:

LIST CUST.SALES ORDER.NO HDR.SUP

Customer Order No
1447 10045
1587 10051
 10059

Using the REPEATING keyword changes this to:

LIST CUST.SALES ORDER.NO HDR.SUP REPEATING

Customer Order No
1447 10045
1587 10051
1587 10059

Query Processing 545

2.6-6

5.85 SAID

The SAID selection clause operator compares a field or evaluated expression against another field,
evaluated expression or literal value and tests for the first item having the Soundex phonetic code
given by the second. The synonyms SPOKEN and ~ can be used.

Format

field SAID value

where

field is the first field or evaluated expression to be compared.

value is the second field, evaluated expression or literal value to be compared.

The SAID selection clause operator returns true if the Soundex phonetic code for field is value.

The Soundex phonetic code for a word is made up from the first letter of the word in upper case
followed by three digits which are found by examination of further characters of the word according
to the following table.

0 A E H I O U W Y
1 B F P V
2 C G J K Q S X Z
3 D T
4 L
5 M N
6 R

Other letters are ignored. Consecutive letters that result in the same value result in only a single
character. If the result is less than four characters long, zeros are added to fill the remaining
positions. Thus the word SOUNDEX encodes to S532.

Example

LIST STAFF WITH SURNAME SAID EVAL "SOUNDEX('REED')"

This command names in the STAFF file that sound like Reed (Read, Reid, etc).

OpenQM546

2.6-6

5.86 SAMPLE

The SAMPLE selection clause keyword causes only a limited number of records to be selected or
displayed. The synonym FIRST can be used in place of SAMPLE.

Format

SAMPLE {n}

where

n is the number of records to be processed. If n is omitted, this defaults to 10.

The SAMPLE keyword causes selection or listing of records to terminate after the given number of
records have been found. Sampling occurs after selection criteria but before sorting. Thus it cannot
be used to show, for example, only the first three records in sorted order of the whole file.

Example

LIST STOCK WITH QTY > 100 SAMPLE 5

This command lists the first 5 items found on the STOCK file with a QTY field of over 100.

Query Processing 547

2.6-6

5.87 SAMPLED

The SAMPLED selection clause keyword causes only a proportion of records to be selected or
displayed.

Format

SAMPLED {n}

where

n is the sample interval. If n is omitted, this defaults to 10.

The SAMPLED keyword causes only every n'th record meeting the selection criteria (if any) to be
selected or listed.

Example

LIST STOCK WITH QTY > 100 SAMPLED 5

This command lists every fifth item found on the STOCK file with a QTY field of over 100.

OpenQM548

2.6-6

5.88 SAVING { UNIQUE}

The SAVING clause can be used in a SELECT or SSELECT command to save the content of a
field in place of the record id.

Format

SAVING {UNIQUE} {MULTI.VALUE} field.name {NO.NULLS}

where

UNIQUE specifies that duplicate values are not to be repeated in the saved list.

MULTI.VALUE specifies that values and subvalues in the field are to be saved as separate
list entries.

field.name is the field or evaluated expression to be saved.

NO.NULLS causes null values to be omitted from the saved list.

The SAVING clause changes the action of SELECT or SSELECT to save the content of a field
(D or I-type) or evaluated expression into the target select list in place of the record id. It is
normally used to saved fields which are ids of records in some other file.

Use of the UNIQUE keyword suppresses multiple inclusion of the same field value in the list.

For compatibility with other products, the SAVING clause normally treats value marks and
subvalue marks as part of the data without applying any special meaning. Use of the
MULTI.VALUE keyword causes each value or subvalue to be inserted in the list as a separate
entry.

Example

SELECT INVOICES SAVING UNIQUE SITE.REF

This command creates a save list of all the site references appearing in the invoices file. The
UNIQUE keyword ensures that site references only appear once regardless of the number of
invoices that refer to them.

Query Processing 549

2.6-6

5.89 SCROLL

The SCROLL keyword used in a report directed to the display enables scrolling back through
report pages.

Format

SCROLL { pages }

where

pages This value is ignored but is preserved in the command syntax for backward
comaptibility.

Use of the SCROLL keyword allows paging back through a displayed report. The following
options are available at the end of page prompt:

A Abort. The query is terminated, returning to the command prompt. The ON.ABORT
paragraph will be executed, if it exists.

Q Quit. The query is terminated, returning to the menu or paragraph from which the
query was initiated or to the command prompt.

N Next. The next page of the report is shown. The cursor down key or ctrl-N can also be
used.

P Previous. The previous page of the report is shown. The cursor up key, ctrl-P or ctrl-Z
can also be used.

n Page number. The specified page number is shown.

C Continue. Used when the display is showing a saved page, this continues with the first
unseen page.

S Suppress pagination. The query continues with no further screen pagination.

OpenQM550

2.6-6

5.90 SINGLE.VALUE

The SINGLE.VALUE keyword is a field qualifier that forces the field to be processed as a
single-valued item.

Format

field SINGLE.VALUE

where

field is the field or expression which is to be treated as single-valued.

The query processor verbs normally use the dictionary to determine whether a field should be
treated as single or multi-valued. The SINGLE.VALUE field qualifier forces the field to be
processed as a single-valued item regardless of the dictionary definition. It is normally only used
with an EVAL expression.

See also:
MULTI.VALUE

Query Processing 551

2.6-6

5.91 STYLE

The STYLE keyword selects the report style to be used, overriding any style selected using the
REPORT.STYLE or SETPTR commands or the QMBasic SETPU statement.

Format

STYLE name

where

name is the name of a VOC style record. Use of STYLE NONE will disable use of any
style selected using the REPORT.STYLE or SETPTR commands or the
QMBasic SETPU statement.

Each line of a report falls into one of the following classifications: Heading, Column heading,
Detail, Subtotal, Total, Footing, Other. Report styles allow users to attribute each of these
classifications a colour for a displayed report or a font weight for a report directed to a PCL printer.
An additional style, Exit, is used to determine how the screen is left on exit from the query
processor. If this is absent, the query processor sends the terminfo sgr0 code to turn off all display
attributes.

Report styles are defined using an X-type VOC record where fields 2 onwards consist of a line
classification, foreground colour, background colour and font weight in the form:

Heading=Bright blue,Black,Bold

Only the first character of the line classification name is used. Thus the above line could be written
as

H=Bright blue,Black,Bold

The colour names are taken from the following list:
Black, Blue, Green, Cyan, Red, Magenta, Brown, White, Grey, Bright Blue, Bright Green,
Bright Cyan, Bright Red, Bright Magenta, Yellow, Bright White

Any non-alphabetic characters are ignored. Thus Bright Green can also be written as, for example,
Bright.Green, Bright-Green or BrightGreen. Numeric colour values of 0 to 15 can be used where
these correspond to the order of the colour names above.

Note that the colour palette used by AccuTerm may need to be amended from its default settings to
improve the rendering of the non-bright colours.

Font weights are taken from the list defined in SYSCOM $PCLDATA which defaults to:
Ultra-Thin, Extra-Thin, Thin, Extra-Light, Light, Demi-Light, Semi-Light, Medium,
Semi-Bold, Demi-Bold, Bold, Extra-Bold, Black, Extra-Black, Ultra-Black

Any non-alphabetic characters are ignored in the same way as for colour names Numeric font
weight values in the range -7 to +7 can be used where these correspond to the order of the font
weight names above.

All components of a style definition are case insensitive.

OpenQM552

2.6-6

Any classification not defined in the style record, or any omitted component within a classification,
takes on the values of the Other classification which itself defaults to White foreground, Black
background, Medium font weight if not defined.

When the DET.SUP keyword is used, subtotals are reported using the detail line style.

Example

X
H=Bright Blue,,Bold
S=Blue
T=Bright Red,,Bold

See also:
REPORT.STYLE

Query Processing 553

2.6-6

5.92 TO (Selection verbs)

The TO keyword used in a SELECT, SSELECT or SEARCH command specifies the select list
to be created.

Format

TO list.no

where

list.no is the select list number (0 to 10) to be created.

If the TO keyword is not present, the default list, list 0, will be created.

Example

SELECT STOCK WITH COST > 100 TO 4

This command builds a list of records in the STOCK file with the COST field greater than 100,
placing the resultant record ids in select list 4.

OpenQM554

2.6-6

5.93 TO (REFORMAT)

The TO keyword used in a REFORMAT command specifies the name of the output file.

Format

TO new.file.name

where

new.file.name is the name of an existing file into which the REFORMAT output is to be
written.

If the TO keyword is not present, the REFORMAT command prompts for the file name.

Example

REFORMAT CUSTOMERS ZIP.CODE CUST.NO.NAME TO CUST.BY.ZIP

This command constructs a new file, CUST.BY.ZIP, keyed by zip code and containing two data
fields, the customer number and name. Note that if two or more customers share the same zip code,
the record will be overwritten by the second and subsequent items.

Query Processing 555

2.6-6

5.94 TO (Delimited reports)

The TO keyword used in a LIST or SORT command with the CSV or DELIMITER options
specifies the pathname of the output file.

Format

TO pathname {NO.QUERY | APPENDING}

where

pathname is the pathname of the file to receive the output.

The CSV and DELIMITER options of the query processor create a delimited format report which
is normally directed to the screen or, by use of the LPTR keyword, to a print unit. The TO option
can be used to direct the output to the file identified by pathname.

If the target pathname already exists, the user will be prompted to confirm whether it should be
overwritten. The NO.QUERY option suppresses this prompt, overwriting the existing file. The
APPENDING option causes the output to be appended to the output file if it already exists. The
NO.QUERY and APPENDING options may not be used together.

Use of TO implies use of HDR.SUP as the output is not paginated.

Example

LIST STOCK PROD.NO QOH DESCR CSV TO C:\STOCK.CSV

This command constructs comma separated format report of the STOCK file into the
C:\STOCK.CSV file.

OpenQM556

2.6-6

5.95 TOTAL

The TOTAL field qualifier keyword causes a field to be reported together with its total value.

Format

TOTAL field {field.qualifiers}

where

field is the field or evaluated expression to be displayed.

field.qualifiers are other field qualifying keywords

The TOTAL field qualifier keyword is placed before the field name to which it applies and causes
the query processor to report the value of the field for each record processed and also to report the
total value at the end of the report. Used with breakpoints, the TOTAL keyword will also report the
total value of the field at each breakpoint.

If the field is defined as multi-valued, the TOTAL keyword operates on each value in turn.

The TOTAL keyword operates only on numeric data. Non-numeric values are ignored.

Example

The command

LIST INVOICES TOTAL VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below in which the total value of the VALUE field is included
at the end of the report.

LIST INVOICES TOTAL VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
74993 £9.29 Write Right Stationery
 ========
 £1957.95
4 records listed.

Query Processing 557

2.6-6

5.96 UNLIKE

The UNLIKE selection clause operator compares a field or evaluated expression against another
field, evaluated expression or literal value and tests for the first item not matching the pattern
template given by the second. The synonym NOT.MATCHING can be used.

Format

field UNLIKE {NO.CASE} template

where

field is the first field or evaluated expression to be compared.

template is the field, evaluated expression or literal value representing the pattern
against which field is to be compared. The optional NO.CASE qualifier
causes a case insensitive comparison to be applied.

Example

LIST STOCK WITH PRODUCT.CODE UNLIKE A...

This command lists items found on the STOCK file with a PRODUCT.CODE not starting with A.

See also:
Pattern Matching

OpenQM558

2.6-6

5.97 USING

The USING clause allows a query to be processed using the dictionary of another file.

Format

USING { DICT } file.name

where

DICT specifies that the dictionary of the named file is to be used.

file.name is the file to be used as the dictionary for the query.

The USING keyword allows a query to be processed with an alternative dictionary. It is of
particular use where files share a dictionary.

The query processor uses the dictionary of the file being reported until the USING clause is
encountered. All subsequent command line items are parsed using the specified dictionary. It is
therefore usual to place the USING clause immediately after the query file name.

Example

LIST ARCHIVED.CUSTOMERS USING DICT CUSTOMERS

This command lists an archive file of customer data using the dictionary of the main CUSTOMERS
file.

Query Processing 559

2.6-6

5.98 VERTICALLY

The VERTICALLY display option keyword causes a vertical format report to be produced. The
synonym VERT may be used.

Format

VERTICALLY

The LIST and SORT commands normally produce a tabular report unless the total width of the
data to be reported exceeds that of the display or printer to which it is directed. The
VERTICALLY keyword forces a vertical format report regardless of display width. A blank line
is produced between each record in the report.

Example

The command

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID

would produce a display such as that below.

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice ...Value Customer...................
74529 £1712.43 J McTavish
74273 £95.23 County Newspapers
63940 £141.00 R Bryant
3 records listed.

Including the VERTICALLY keyword would modify the display format to become

LIST INVOICES VALUE CUSTOMER.NAME WITH NO AMT.PAID
Invoice...74529
Value.....£1712.43
Customer..J McTavish

Invoice...74273
Value..... £95.23
Customer..County Newspapers

Invoice...63940
Value..... £141.00
Customer..R Bryant

3 records listed.

OpenQM560

2.6-6

5.99 WHEN

The WHEN keyword introduces a selection clause for a multi-valued field.

Format

WHEN condition

where

condition is field1 operator field2 to compare two fields
or field1 operator value to compare a field with a literal value

operator is any of the query processor operators:

EQ = EQUAL

NE # NOT <> ><

LT < LESS BEFORE

LE <= =<

GT > GREATER AFTER

GE >= =>

LIKE MATCHES MATCHIN
G

UNLIKE NOT.MATCHI
NG

SAID SPOKEN ~

NO

BETWEE
N

A selection clause specifies criteria governing which records are processed by the command. If
omitted, all records are processed. The WHEN clause performs selection on exploded values from
within the named multi-valued field, showing only the selected value of the named field and all
associated fields

Field comparisons are performed using the internal format of field1, converting the field2 or value
item to this format if required. Thus a field holding an internal date, for example, may be compared
with the more natural external form of the date. For example,

LIST INVOICES WHEN ISSUE.DATE > "12 OCT 96"

will list all invoice records with an issue date after 12 October 1996.

Example

The command

LIST SALES WITH PART = 100

Query Processing 561

2.6-6

to find only orders containing part 100 might produce a report such as

LIST SALES WITH PART = 100
Order Part Qty
10001 100 4
 107 3
 219 3
10021 100 3
 206 3
 219 7
10014 105 3
 100 1
 210 7

3 records listed.

For the same data, use of the WHEN keyword to select only part 100 with a query such as

LIST SALES WHEN PART = 100

would produce the report below.

LIST SALES WHEN PART = 100
Order Part Qty
10001 100 4
10021 100 3
10014 100 1

3 records listed.

OpenQM562

2.6-6

5.100 WITH

The WITH keyword introduces a selection clause.

Format

WITH {EVERY} condition {rel.op {EVERY} condition...}

where

condition is field1 operator field2 to compare two fields
or field1 operator value to compare a field with a literal value

rel.op is AND or OR

operator is any of the query processor operators:

EQ = EQUAL

NE # NOT <> ><

LT < LESS BEFORE

LE <= =<

GT > GREATER AFTER

GE >= =>

LIKE MATCHES MATCHIN
G

UNLIKE NOT.MATCHI
NG

SAID SPOKEN ~

NO

BETWEE
N

A selection clause specifies criteria governing which records are processed by the command. If
omitted, all records are processed.

The relational operators may be followed by the keyword NO.CASE to apply a case insensitive
comparison. This also occurs if the QUERY.NO.CASE mode of the OPTION command is in
effect.

The EVERY keyword indicates that every value or subvalue of field1 must match field2 in the
manner defined by the operator. For example, the command

LIST EXAM.RESULTS STUDENTS SUBJECTS WITH EVERY GRADE = "A"

might be used to report a list of students achieving grade A in every examination. The SUBJECTS
and GRADE fields in this example are a pair of associated multi-valued fields recording
examination subjects and grades.

The AND and OR operators may be used to build complex conditions. For example,

Query Processing 563

2.6-6

LIST STOCK WITH QTY < REORDER AND SUPPLIER = 26

selects only those records where the content of the QTY field is less than the content of the
REORDER field and the SUPPLIER field contains the value 26.

The AND and OR operators are of equal priority and, if both appear in a single WITH clause, are
evaluated left to right. Brackets may be used to modify the evaluation sequence. For example,

LIST STOCK WITH QTY < REORDER AND (SUPPLIER = 26 OR WAREHOUSE
= 14)

A query may contain more than one WITH clause. There is normally an implied AND relationship
between these clauses. Thus the command

LIST STOCK WITH QTY < REORDER AND SUPPLIER = 26

is identical in effect to

LIST STOCK WITH QTY < REORDER WITH SUPPLIER = 26

The WITH.IMPLIES.OR mode of the OPTION command changes the effect of multiple WITH
clauses to have an implied OR between the clauses.

Field comparisons are performed using the internal format of field1, converting the field2 or value
item to this format if required. Thus a field holding an internal date, for example, may be compared
with the more natural external form of the date. For example,

LIST INVOICES WITH ISSUE.DATE > "12 OCT 96"

will list all invoice records with an issue date after 12 October 1996.

Short forms

The query processor offers a variety of short forms for selection clause elements.

Implicit field names
If two or more tests are to be performed against the same field, the field name only needs to appear
in the first test. A relational operator without a preceding field name uses the same field as in the
previous operator or the record id if this is the first relational operator.

In each of the following examples, the second query is an abbreviated form of the first

LIST VOC WITH TYPE = F OR TYPE = Q
LIST VOC WITH TYPE = F OR = Q

LIST ORDERS WITH DATE AFTER '31 DEC 99' AND DATE BEFORE '1 JAN
01'
LIST ORDERS WITH DATE AFTER '31 DEC 99' AND BEFORE '1 JAN 01'

LIST SALES WITH @ID > 10000
LIST SALES > 10000

Implicit OR relation

OpenQM564

2.6-6

A relational operator followed by a series of values tests each of the values against the given field in
an implicit OR relationship.

LIST ORDERS WITH REGION = 'SOUTH' OR REGION = 'NORTH'
LIST ORDERS WITH REGION = 'SOUTH' 'NORTH'

Query Processing 565

2.6-6

5.101 WITHOUT

The WITHOUT phrase is a synonym for use of WITH NO.

Format

WITHOUT condition {rel.op condition...}

Example

LIST ORDERS WITHOUT PAYMENT.DATE

This is equivalent to

LIST ORDERS WITH NO PAYMENT.DATE

Part

6
QMBasic

OpenQM568

2.6-6

6 QMBasic

There are times when the powerful facilities available using the standard commands of QM are not
sufficient to meet application demands. For these occasions, the QMBasic programming language
provides a very easy to use means of developing components of the application. User written
programs can be mixed with standard commands to give maximum capabilities with minimum
development costs.

QMBasic is not difficult to learn. As the name implies, it has its origin in the Basic language found
on many personal computers, however, the powerful string handling and screen formatting
functions make development extremely fast. QMBasic has very high compatibility with the
equivalent languages found in other similar data management products but also has some major
extensions such as object oriented programming.

QMBasic Overview

Variable Names and Values

Scalars, Matrices and Dynamic Arrays

Objects

Common Blocks

Labels

Expressions and Operators

Assignment Statements

Type Conversion

Matrix file i/o

Sequential file i/o

Multivalue functions

Object oriented programming

Compiler Directives

Limits

QMBasic Statements by Name

QMBasic 569

2.6-6

6.1 QMBasic overview

QM applications are written using QMBasic. Unlike many other programming languages, the
individual source modules are not linked together to form a single executable program but remain
separate items that are loaded into memory dynamically when they are first needed. This approach
generally results in lower memory usage and easier maintenance.

The program modules are stored as simple text records in directory files where each field of the
record represents a line of the program (a transformation that corresponds exactly to how directory
file records are stored by the underlying operating system). Although you may place your program
modules in any directory file you wish or scatter them over several files, by convention
programmers often use a file named BP (Basic Programs). The BASIC and RUN commands will
look here for programs by default if no file name is given in the commands.

QMBasic modules are of four types:

Programs A program is a simple program module that can be run directly from the
command line. It can also be called from other programs using CALL in
the same way as a subroutine that has no arguments. A program optionally
starts with a PROGRAM statement though this is implied if none of the
statements used to start the module types below are present.

Subroutines A subroutine is a module that is called from another QMBasic element
using CALL. Subroutines usually take arguments, variables that are
passed in or out of the subroutine to transfer data between modules. A
subroutine module starts with a SUBROUTINE statement.

Functions A function is very similar to a subroutine but returns a value to the
program that executed it. A function module starts with a FUNCTION
statement.

Class modules A class module contains the property and method routines that are used
for object oriented programming. A class module starts with a CLASS
statement.

Throughout all documentation, the word program is used to refer to all of the above module types
unless the context explicitly states otherwise.

Before a program can be executed, the source form written by the developer must be compiled
(translated into corresponding executable program modules) using the BASIC command. The
executable items are written to records of the same name as the source but in a file with a .OUT
suffix added. For example, the compiled version of a program stored as MYPROG in BP will be in
MYPROG in the BP.OUT file. Programs may be executed directly from the .OUT file or may be
moved into the system catalogue using the CATALOGUE command. Subroutines, functions and
class modules must be catalogued before use.

Often, it is useful to place QMBasic source code elements that are used in more than one program
in a separate record which is read during compilation as though it was part of the main program. In
particular, common data structures or names representing keys to subroutines may be handled in
this way to ensure that all components of the application have a common view of the information
instead of needing to make changes in many places. The SYSCOM file is an example of this
technique with records containing keys and other values that you may need in many programs. The
QMBasic $INCLUDE directive described later in this section is used to direct the compiler to
include text from another record. Include records may be stored in any file and are not separately
compiled as the text is imported into other programs. It is recommended that a suffix of .H is used

OpenQM570

2.6-6

on include record names as the compiler will automatically skip these when using a select list. This
suffix has its origins in the C programming language where it is used to denote a "header file" that
serves the same purpose as QMBasic include records.

A QMBasic program has a very simple to understand format. The program is made up of a series
of statements. Each statement normally corresponds to a single line of source program text though
it is possible to place multiple statements on a single line by separating them with semicolons. Some
statements have a syntax which allows them to span multiple lines without special action. Any
statement may be split over multiple lines by ending each line except the last with a tilde (~)
character. Also, any statement that includes a comma in its syntax may start a new line immediately
after the comma.

Lines commencing with an asterisk or an exclamation mark are treated as comments and ignored by
the compiler. Comments can be included on the same line as a source program statement by using a
semicolon to start a new statement followed by an asterisk or an exclamation mark. Blank lines and
leading spaces are ignored by the compiler.

* A comment on a line of its own
A = 44 ;* This is a trailing comment
B = "abc" ; C = LEN(B) ;* Two statements on a single line
CALL MYSUBR(TITLE, ;* A subroutine call
 DATA, ;* with each argument
 ITEM.COUNT) ;* on a separate line

The compiler is not case sensitive in language keywords. By default, variable names are also case
insensitive but this can be altered using the $MODE directive or the $BASIC.OPTIONS record.

A program usually commences with a PROGRAM, SUBROUTINE, FUNCTION or CLASS
statement. This serves to identify the type of QMBasic item and to assign a name to it. If none of
these statements is present it is assumed to be a program.

The formats of these statements are

PROGRAM name
SUBROUTINE name(arg1,arg2,...)
FUNCTION name(arg1,arg2,...)

and
CLASS name

where a subroutine may take up to 255 arguments, a function 254.

A program ends with an END statement. Only blank lines and comments may follow this final
END. For compatibility with other multivalue database products there is a compiler option to make
this final END optional.

QMBasic 571

2.6-6

QMBasic - Variable names and values

Variable names must commence with a letter and may contain letters, digits, periods (full stops),
percentage signs and dollar signs. Names may also contain underscore characters but not as the last
character of the name. Users are discouraged from defining names containing dollar signs for their
own purposes as these are reserved to identify system functions and constants. Except as indicated
elsewhere, there is no restriction on the length of a name though very long names may appear
truncated in debugging information.

Although QMBasic imposes few restrictions on the choice of names, it is advisable to avoid using
names which correspond to QMBasic statements, functions and keywords. The only reserved names
which may not be usable in some contexts are

AND GOSUB ON

BEFORE GOTO OR

BY GT REPEAT

CAPTURING IN RETURNING

CAT LE SETTING

DO LOCKED STEP

ELSE LT THEN

EQ MATCH TO

FROM MATCHES TRAPPING

GE NE UNTIL

GO NEXT WHILE

QMBasic variables are type variant, that is, that they may hold, for example, an integer value at
one point in time and a character string later on. The actual form in which the data is held is
determined by how it was assigned. If a variable is set to contain a string of digits and is
subsequently used in an arithmetic calculation, the value is converted internally to a numeric form
without affecting the variable itself. If this arithmetic calculation was performed many times in a
loop, it may be worth forcing a type conversion to prevent repeated temporary conversions. For this
reason, QMBasic programs often contain apparently redundant looking statements of the form

A = A + 0 ;* Convert to numeric form
or

S = S : "" ;* Convert to string form

Numeric values may are held as integers wherever possible, conversion to floating point format
occurring when the result of an arithmetic operation is non-integer or when the value is too large to
be stored as an integer.

A variable holding a string of no characters is referred to as a null string and is treated as a special
case in many operations. Users familiar with SQL type environments should take care to distinguish
the multivalue database meaning of the word null from its SQL meaning.

OpenQM572

2.6-6

A string variable may hold any number of characters. The actual total limit for all strings in a
program is imposed by the disk space available for paging and is typically many megabytes.
Although QMBasic avoids copying strings unnecessarily whenever it can, operations involving very
large strings are likely to have a detrimental effect on performance.

A variable may hold many other types of information. For example, a file variable holds a
reference to an open file and is used in all statements that refer to that file. A subroutine variable
contains a fast reference to a catalogued subroutine that has been loaded into memory. Users cannot
directly create subroutine variables, they are the result of transforming a string variable holding the
subroutine name when it is first called. Until otherwise determined, variables are initially
unassigned. Reference to an unassigned variable (where no value has yet been stored) will cause a
run time error.

Constants

Constant values may be numbers or strings.

Numeric constants are written as a sequence of digits, optionally preceded by a sign or containing
a decimal point. If a sign is used, there must be no space between it and the first digit.

QMBasic also allows hexadecimal numbers in equated tokens and most expressions. These are
written with a prefix of 0x as used in the C programming language (e.g. 0x23 is decimal 35).

String constants are sequences of characters enclosed by delimiters. Valid delimiter characters are
the single quote ('), the double quote (") and the back slash (\). The delimiter at the start and end of
the string value must be the same but there is no difference in the internal treatment of the
delimiters.

The compiler imposes no limit on the length of a string literal value though it may not extend from
one line to the next. Very long strings can be constructed by concatenating component substrings.

The mark characters are available as @FM, @VM, @SM, @TM and @IM. These are described in
a later section.

QMBasic 573

2.6-6

QMBasic - Scalars, matrices and dynamic arrays

QMBasic provides support for both scalar and matrix variables. A scalar variable is a simple
value referenced by its name alone. It may contain data of any type.

A matrix variable is a one or two dimensional array of values. Matrices must be declared by use of
the DIMENSION (more usually DIM) statement. Because memory for matrices is allocated
dynamically, the DIM statement must be executed at program run time before the variable is used
in any other way.

A one dimensional matrix of ten elements is defined by a statement of the form

DIM A(10)

For a two dimensional matrix with 5 rows of 8 columns this becomes

DIM B(5,8)

A single dimensional matrix is effectively a two dimensional matrix with one column. Thus
references of the forms A(B) and A(B,1) are totally interchangeable.

By default, all matrices have an additional element, the zero element, which is used by some
QMBasic statements. This is referred to as A(0) or B(0,0). The $MODE compiler directive can be
used to create Pick style matrices which do not have a zero element. Note that, in a two dimensional
matrix, this is a single element, not a complete row 0 and column 0.

The elements of a matrix may be of differing types (numbers, strings, file variables, etc).

A variable holding a string value may be considered as a dynamic array, the mark characters being
used to divide it into fields, values and subvalues. Such a string may correspond to a record in a
data file or may be totally internal to the program. Special operations are provided in QMBasic to
manipulate dynamic arrays. These include sorted and unsequenced searching, insertion, deletion,
replacement and extraction as well as some extremely powerful operations to build or decompose
dynamic arrays.

A dynamic array in which each field, value or subvalue contains a numeric value is known as a
numeric array. Many of the arithmetic operations operate on numeric arrays by processing
corresponding elements in turn. For example, a statement

A = B + C

adds B and C together, storing the result in A. Where B and C are simple numeric values or strings
that can be converted to numbers, this operation behaves as in most other computer languages. If B
and C are dynamic arrays the operation handles each corresponding pair of values in turn.

B = "1" : @FM : "2" : @VM : "3" : @FM : "4"
C = "5" : @FM : "6" : @VM : "7" : @FM : "8"
A = B + C

The result of this operation would be to set A to 6FM8VM10FM12. The effect of operations on numeric
arrays where the placement of fields, values and subvalues do not match exactly is determined by
the use of the REUSE() function.

OpenQM574

2.6-6

QMBasic - Common blocks

Variables are normally available to all statements within a single QMBasic program or subroutine.
Although the language provides an internal subroutine call through the GOSUB statement, this
does not automatically bring in the concept of the internal subroutine having its own variables or
any other aspect of variable scope found in other languages.

QMBasic extends the language definition by adding the concept of variables that are private to an
internal subroutine. This is achieved by use of the LOCAL statement and the associated
PRIVATE variable declaration statement. Variables declared in this way are private to the one
internal subroutine and cannot be accessed by other parts of the program. Furthermore, they are
stacked if the subroutine calls itself, either directly or indirectly via another intermediate subroutine.
For more information, see the description of the LOCAL statement.

QMBasic provides common blocks for data which is to be shared between two or more programs.
These are declared by a statement of the form

COMMON /name/ var1, var2, var3,...

where name is the name by which the common block is to be known. A common block may contain
any number of variables and is created when it is first referenced. It remains in existence until the
user leaves QM. Once a common block is created, subsequent programs using the same common
block name access the same data. The number of variables in the common block may not be
increased by later definition but programs can define fewer variables than in the actual common
block. Normally, the structure of a common block is best defined in an include file so that the same
definition is used by all parts of the application.

Where programs use separate COMMON statements to reference the same block, note that the
variables are defined by their position in the list, not the names used. Thus it would be valid (but
not a good idea) for one program to have

COMMON /MYCOMMON/ A, B, C

and another program

COMMON /MYCOMMON/ D, E, F

where the data stored in B by the first program would be visible to the second program as E.

The name of a common block must conform to the same rules as a variable name. There is also an
unnamed common (sometimes known as blank or unlabelled common) which is defined by a
COMMON statement without a name:

COMMON A, B, C

This operates in exactly the same way except that each command processor level has its own
unnamed common. Thus, an EXECUTE statement used to run one program from within another
would result in a new unnamed common block being created for the executed program, the original
being restored on return.

The variables in a common block are initialised to integer zero when the block is created. It is thus
possible to include QMBasic code to perform further initialisation just once by statements of the
form

COMMON /MYCOMMON/ INITIALISED,
 VAR1,
 VAR2,
 VAR3,...etc...
IF NOT(INITIALISED) THEN

QMBasic 575

2.6-6

 do initialisation tasks
 INITIALISED = @TRUE
END

Note how the names of the variables within the common block may extend from one line to the next.
The compiler will continue the common block definition over multiple lines wherever the line ends
with a comma.

The same common block could be defined as

COMMON/MYCOMMON/ VAR1
COMMON/MYCOMMON/ VAR2
COMMON/MYCOMMON/ VAR3
...etc...

The compiler assumes that definitions of variables with the same common block name are a
continuation of the previous definitions.

Common blocks may also contain matrices. These are defined by including the row and column
bounds in the COMMON statement, for example

COMMON /MYCOMMON/ MAT1(5,3)

Except when using Pick style matrices, the size of a matrix in common may be changed by a later
DIM statement. The size given in the COMMON declaration is the initial size of the matrix.

OpenQM576

2.6-6

QMBasic - Labels

Any statement of a QMBasic program may be labelled. A label may take one of three formats; a
name of the same format as a variable name followed by a colon, a sequence of digits and periods
followed by a colon, or a sequence of digits and periods with no trailing colon.

The following are all valid label names.

REDISPLAY:
100
12.9.6:

The label must appear as the first item on the source line. Labels and variables may have the same
name though this may lead to some confusion when maintaining a program.

Statements that reference the label (e.g. GOSUB) may optionally include the colon after the label
name. This is not recommended as it can make using an editor to search for a label in a program
more difficult as the search will also find references to the label.

Numeric labels are provided for compatibility with other products. Use of numeric labels is
discouraged as the "names" do not impart any information about the role of the label. For example,
a statement such as

GOSUB 9600

gives the reader no clue about the action performed by the subroutine at label 9600 whereas

GOSUB GET.CUSTOMER.ID

suggests what the subroutine does.

QMBasic 577

2.6-6

QMBasic - Expressions and operators

A QMBasic expression consists of one or more data items (constants or variables) linked by
operators.

constant Use constant value (string or numeric)

var Use value of named variable

var[s,n] Use n character substring starting at character s of variable

var[n] Use last n characters of string

var<f> Use field f of dynamic array variable

var<f,v> Use field f, value v of dynamic array variable

var<f,v,s> Use field f, value v, subvalue s of dynamic array variable

func(args) Use value of function which may take arguments

In all cases above, var may be a matrix reference, for example

var(r,c)[s,n]

where r and c are expressions which evaluate to the desired matrix index values.

There is also a special conditional item of the form

IF conditional.expr THEN expr.1 ELSE expr.2

where conditional.expression is evaluated to determine whether the overall value is that of expr.1
or expr.2.

The boolean (true/false) values used by QMBasic are that any value other than zero or a null string
is treated as true, zero or a null string being treated as false. An expression returning a boolean
value returns the integer value 1 for true, zero for false. The boolean values are available as
@TRUE and @FALSE for use in programs.

The substring extraction operation x[s,n] extracts n characters starting at character s of the string x.
Character positions are numbered from one. Thus

A = "abcdefghijkl"
Z = A[5,3]

sets Z to the string "efg".

If the bounds of the substring extend beyond the end of the string from which it is to be extracted,
the result is truncated. Trailing spaces are not added to make up the shortfall. A start position of
less than one is treated as one.

The trailing substring extraction operation x[n] extracts the last n characters of the string x. Thus

A = "abcdefghijkl"
Z = A[3]

sets Z to the string "jkl".

If the length of the substring to be extracted is greater than the length of the source string, the entire
source string is returned.

OpenQM578

2.6-6

The field extraction operator x<f,v,s> extracts field f, value v, subvalue s from the source string x.
If s is omitted or zero, field f, value v is extracted. If v is omitted or zero, field f is extracted. Thus

x<2> extracts field 2
x<2,7> extracts field 2, value 7
x<2,7,3> extracts field 2, value 7, subvalue 3

The operators of QMBasic are set out in the table below. The numbers in the right hand column are
the operator precedence, the lower valued operators taking precedence in execution. Operations of
equal precedence are processed left to right with the exception of the exponentiation operator which
is processed right to left. Round brackets may be used to alter the order of execution or to improve
readability of complex expressions.

< > Dynamic array extraction 1

[] Substring extraction 1

** or ^ Exponentiation (raising to power) 2

* Multiplication 3

/ Division 3

// Integer division 3

+ Addition 4

- Subtraction 4

Implicit format (See FMT() function) 5

: Concatenation 6

< Less than 7

> Greater than 7

= Equal to 7

Not equal to 7

<= Less than or equal to 7

>= Greater than or equal to 7

MATCHES Pattern match (see below) 7

AND Logical and 8

OR Logical or 8

The following alternative logical and relational operator formats may be used

< LT

> GT

= EQ

NE <> ><

<= LE =< #>

>= GE => #<

MATCHES MATCH

AND &

QMBasic 579

2.6-6

OR !

The relational operators are defined such that, if the two items to be compared can both be treated
as numbers, a simple numeric comparison is performed. If one or both items cannot be treated as
numbers, they are compared as left aligned character strings. The COMPARE() function can be
used to force a string comparison.

Note: The language syntax includes an ambiguity with the use of the < and > characters as both
relational operators and in dynamic array references. For example, the statement

A = B<C> + 0

could be extracting field C from dynamic array B and adding zero to it (to force it to be stored as a
numeric value) or it could be testing whether B is less than C and the result of this comparison is
greater than zero. In cases such as this, the compiler looks at the overall structure of the statement
and takes the most appropriate view. Use of brackets when mixing relational operators with field
references will always avoid possible misinterpretation.

The MATCHES operator matches a string against a pattern consisting of one or more
concatenated items from the following list.

... Zero or more characters of any type
0X Zero or more characters of any type
nX Exactly n characters of any type
n-mX Between n and m characters of any type
0A Zero or more alphabetic characters
nA Exactly n alphabetic characters
n-mA Between n and m alphabetic characters
0N Zero or more numeric characters
nN Exactly n numeric characters
n-mN Between n and m numeric characters
"string" A literal string which must match exactly. Either single or double quotation marks

may be used. Backslashes may not be used as string quotes in this context.

The values n and m are integers with any number of digits. m must be greater than or equal to n.

The 0A, nA, 0N, nN and "string" patterns may be preceded by a tilde (~) to invert the match
condition. For example, ~4N matches four non-numeric characters such as ABCD (not a string
which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, 0N, their inverses (~0A, etc) and "".

The 0X and n-mX patterns match against as few characters as necessary before control passes to
the next pattern. For example, the string ABC123DEF matched against the pattern 0X2N0X
matches the pattern components as ABC, 12 and 3DEF.

The 0N, n-mN, 0A, and n-mA patterns match against as many characters as possible. For example,
the string ABC123DEF matched against the pattern 0X2-3N0X matches the pattern components as
ABC, 123 and DEF.

The pattern string may contain alternative templates separated by value marks. The MATCHES
operator tries each template in turn until one is a successful match against the string.

As an example of the MATCHES operator, the statement

OpenQM580

2.6-6

IF S MATCHES "1N0N'-'1N0N" THEN PRINT "OK"

would print OK when S contains one or more digits followed by a hyphen and one or more digits.
Note the use of 1N0N to ensure that at least one digit is present.

See also:
Pattern Matching

QMBasic 581

2.6-6

QMBasic - Assignment statements

Variables may be assigned values by statements of the following forms

var op expr Assign expr to var

var[s,n] = expr Assign expr to substring of var

var[d,i,n] = expr Assign expr to delimited substring of var

var<f> = expr Assign expr to field f of var

var<f,v> = expr Assign expr to field f, value v of var

var<f,v,s> = expr Assign expr to field f, value v, subvalue s of var

In all cases, var may be a dimensioned matrix element.

The var op expr format allows the following operators.

= Simple assignment

+= Add expr to original value

-= Subtract expr from original value

*= Multiply original value by expr

/= Divide original value by expr

:= Concatenate expr as string to original value

Additionally, many other statements set values into variables.

Substring Assignment

The substring assignment operator is

var[s,n] = expr

In the default compiler modes, substring assignment overlays an existing portion of a string. If the
substring bounds extend beyond the end of the actual value stored in the string, the excess data is
lost. If the value of expr is longer than the substring to be set, the trailing characters are lost. If the
value of expr is shorter than the substring to be set, the remainder is filled with spaces.

Two alternative implementations are provided for compatibility with various Pick style multivalue
environments. Use of the PICK.SUBSTR option of the $MODE compiler directive extends the
definition above such that the original string is extended if the region to be overwritten extends
beyond the end of the current string value.

Use of the PICK.SUBSTR.ASSIGN option of the $MODE compiler directive changes the
behaviour of substring assignment considerably. If the value of s is negative, the new contents of
var are formed by copying the value or expr, adding -s spaces, skipping n characters of the original
value of var and copying the remainder. If the value of s is greater than or equal to zero, the new
value of var is formed by copying s-1 characters of the original value of var, adding spaces if
necessary, skipping n characters, inserting the value of expr and then copying any remaining
characters from the original var.

OpenQM582

2.6-6

Delimited Substring Assignment

Delimited substring assignment replaces or inserts a portion of a string which is divided into
substrings by use of a delimiter character. This character does not have to be one of the mark
characters. The first character of string d is taken as the delimiter character. Starting at substring i,
n substrings are replaced by the value of the assignment expression. For full details of delimited
substring assignment, see the description of the FIELDSTORE statement.

Field Assignment

Field (or value, or subvalue) assignment replaces an existing field (or value, or subvalue) with the
result of the expression. If the specified field, value or subvalue does not already exist within the
string, mark characters are added as necessary. When adding a new field at the end of a string, the
syntax

Z<-1> = expr

can be used. The QMBasic language will add a new field to receive the result. Similarly, the
operations

Z<5,-1> = expr
Z<5,3,-1> = expr

would add a new value or subvalue to the end of existing data.

The way in which the append operation is performed depends on the setting of the
COMPATIBLE.APPEND option of the $MODE compiler directive.

By default, QM prefixes the appended data with a field, value or subvalue mark unless the string,
field or value in which the item is being appended is completely null.
Thus, if S = "ABCFMDEFVMFMXYZFM"

S<-1> = "ghi" sets S to "ABCFMDEFVMFMXYZFMFMGHI"
S<1,-1> = "ghi" sets S to "ABCVMGHIFMDEFVMFMXYZFM"
S<2,-1> = "ghi" sets S to "ABCFMDEFVMVMGHIFMXYZFM"

Setting the COMPATIBLE.APPEND mode modifies the behaviour such that a mark character is
not inserted if the final element of the portion of the dynamic array to which data is being appended
is null. This is the how other multivalue database products work and results in

S<-1> = "ghi" sets S to "ABCFMDEFVMFMXYZFMGHI"
S<1,-1> = "ghi" sets S to "ABCVMGHIFMDEFVMFMXYZFM"
S<2,-1> = "ghi" sets S to "ABCFMDEFVMGHIFMXYZFM"

This same rule applies to the INS statement and the INSERT() and REPLACE() functions.
Dictionary I-type expressions that use INSERT() or REPLACE() always adopt the default QM
behaviour.

Note that the S<-1> syntax should not be used when working with an association because it can
lose the relation between the members of the association. Suppose we are working with an inventory
in which we are associating a part number, description, and a comment. Every item has a part
number and description but the comment i snot always present. If we write

PART.NO<-1> = part number
DESCRIPTION<-1> = description
COMMENT<-1> = text

QMBasic 583

2.6-6

the COMMENT field will not not be updated as expected if the text item is a null string. Next time
these items are updated, the associations may get out of step.

To avoid this problem, use the field assignment or the REPLACE() function in code such as this:

PART.NO<N> = part number
DESCRIPTION<N> = description
COMMENT<N> = text

where N is the dynamic array filed position to be updated. This will ensure that any null values are
inserted correctly, so that the association between the values will also be correctly maintained.

OpenQM584

2.6-6

QMBasic - Type conversion

QMBasic variables are of variant type, the stored type being determined by the context in which the
value was set and conversion being carried out on a temporary basis wherever necessary to perform
processing. For example, the following program fragment

A = 962
S = A[2,1]

would result in A containing the integer value 962 and S containing the digit 6 as a string. The type
conversion from integer to string is implicit in the use of the substring extraction on the second line.

Where a variable is accessed a very large number of times, there may be performance benefits to be
obtained from ensuring that it is stored in an appropriate type thus minimising implicit temporary
conversions. The QMBasic language does not have any specific type conversion functions as the
automatic type variant nature of the language is adequate for most purposes. Where a variable is to
be forced to be a number, this can be achieved by adding zero

A = A + 0

or, more typically, combined with some other operation such as

NUM.INVOICES = CLI.REC<C.INV.CT> + 0

Similarly, data can be forced to string format by appending a null string

A = A : ""

This is a much less common operation in real programs.

QMBasic 585

2.6-6

File Processing

QMBasic programs usually need to access database files. This section discusses the various
techniques available. Further information can be found by following the links to detailed sections.

The QM file system supports two distinct types of file:

· Hashed files use a mathematical approach to locate data such that, when correctly
configured, it should be possible to read any record with just one disk access regardless of the
number of records in the file. For more information on the creation and configuration of these
files see the section on dynamic files.

· Directory files do not offer the high performance of hashed files but allow access to their
data from outside of the QM environment. For this reason, they are typically used for data
interchange between applications. They are also ideal for storing extremely large records. For
more information on the creation of these files, see the section on directory files.

Directory files also allow data to be processed in a line by line manner or as a simple byte stream.
There are also special program operations to simplify reading and writing comma separated data as
used, for example, by some spreadsheet packages. For more information on this style of access, see
sequential file i/o.

Opening Files

Before a file can be processed, it must be opened. This is normally done using the OPEN statement,
identifying the file by referencing the name of the corresponding F-type VOC record. By having this
level of indirection, the physical location of the file can be changed without affecting the
application; all that is necessary is to edit the VOC record to reference the new file location. There
are three special file name syntaxes available to reference files in other accounts without needing a
Q-type VOC record:

Implicit Q-pointer account:file
Implicit QMNet pointer server:account:file
Pathname PATH:pathname

Because these syntaxes potentially weaken the security provided by the VOC indirection, their
availability is determined by a system configuration parameter, FILERULE.

It is also possible for an application to open files directly by pathname using the OPENPATH
statement. This should only be used where the normal VOC indirection is not appropriate.

A typical application may open many files simultaneously and it is therefore necessary to have a
way to determine which file is being referenced by subsequent data transfer operations. This link is
provided by the OPEN and OPENPATH statements setting up a file variable which is then used
in other operations on the same file. The file remains open so long as the file variable remains in
place. Overwriting the file variable will implicitly close the file that it referenced. Exit from the
program will discard local variables and hence close the file.

Most applications adopt a convention for the names of variables. Many examples in this
documentation use a convention where the file name is contracted to three of four characters and a
suffix of .F is added to form the file variable name. Thus a file named ORDERS might be
referenced via a file variable named ORD.F. It is common to continue the convention into other
variables so that, for example, ORDERS file record ids would be stored in ORD.ID and records
would be read from the file into the ORD.REC variable. These are examples only. There is no
restriction on naming imposed by QM itself.

OpenQM586

2.6-6

A file variable may be copied, just like any other variable. In this case, the file remains open until
the last file variable referencing it is discarded or overwritten.

There are two factors that limit the number of files that can be open at one time. Firstly, QM has an
internal file table that contains a reference to every distinct file open on the system by all QM
processes. The size of this table is set by the NUMFILES configuration parameter. If several users
all open the same file, that only requires one entry in the table. If a program attempts to open a file
when the table is full, the operation will fail, taking the ELSE clause to allow the program to report
an error. The LIST.FILES command can be used to monitor how close a system is to reaching this
configuration limit.

The second limit is imposed by the operating system. On some systems this may be configurable, on
others it is fixed. QM tries to hide this limit by implementing a mechanism whereby, if the limit is
reached, the file that has not been accessed for longest is closed internally to make room for the new
file. Subsequent access to the file that has been closed will automatically reopen it, probably closing
something else to make space. Although this mechanism is totally automatic and gives the developer
the illusion that there is no limit, the impact on performance can be quite serious.

Opening a file is a complex process. Although QM maintains a file cache to improve the situation,
developers should avoid continually re-opening the same file. One useful way to achieve this is to
place the file variable in a common block so that is is not discarded when the program or subroutine
exits. By using this technique it is possible for a program to open all of its main data files as it
starts up and to keep them open for the entire life of the application. Keeping large numbers of files
open will require careful configuration of NUMFILES and the corresponding operating system
parameters.

Reading, Writing and Deleting Data

Programs read data using the QMBasic READ statement. With a hashed file, the internal
processing of this statement applies the hashing process to read just the group that would contain
the requested record and then locates the record within that group. If it is not found, it is not in the
file and there is no need to look elsewhere. This process ensures that hashed files give best
performance. For a directory file, QM uses operating system functions to locate and read the
requested item. This will not give the performance of hashed files as it requires a scan of the
directory to locate the item.

The READ statement returns a variable that contains a dynamic array representing the data of the
requested record. The program can then use the various dynamic array operations such as field
extraction to access the data in the record.

If the record is to be updated by the application, it is essential to ensure that other processes cannot
update the record at the same time. This protection is provided by QM's locking mechanisms and
corresponding QMBasic statements, most importantly READU. A program should never write or
delete a record unless it owns a lock to protect it. There is a configuration parameter,
MUSTLOCK, that allows administrators to enforce strong locking rules. Unfortunately, this
cannot be made the default behaviour as there is much software which does not use locking because
the developer knew that there could never be an interaction with other processes.

A data record is written to the file using the QMBasic WRITE statement. If the record already
exists in the file, the new version replaces the previous one. If the record does not already exist, the
write operation adds it to the file. The record lock is automatically released when the write
completes.

QMBasic 587

2.6-6

A data record is deleted from the file using the QMBasic DELETE statement. The record lock is
automatically released after the record has been deleted.

The QMBasic statements named above work with dynamic arrays. There is an alternative style of
file i/o that uses dimensioned matrices. For details, see Matrix File I/O.

Select Lists and Alternate Key Indices

The READ statement requires that the program knows the id of the record it needs to read. To
process a file sequentially or to process only records that meet a specific condition, programs use a
select list. This list may be generated by executing a query processor SELECT operation or by use
of the QMBasic SELECT statement. Whichever method is used, the program then reads items
from the list using the READNEXT statement, typically in a loop that then uses READ or one of
its locking variants to process each record from the list.

Building a select list requires the system to traverse the entire file, examining every record. For
situations where only a small number of records are to be selected, an alternate key index can give
substantial performance improvements. Effectively, this is a set of pre-built select lists based on the
content of a specific field or the result of evaluating an I-type expression. The index is
automatically updated whenever a change is made to the file. The cost of this additional update on
write is usually significantly outweighed by the performance improvement of being able to go
directly to the desired set of records.

The ON ERROR Clause

Most of the QMBasic file handling statements have an optional ON ERROR clause. This is rarely
needed by applications but allows a program to trap an error that would otherwise cause QM to
abort the program. If an ON ERROR clause is present, the program can take its own recovery
action or display alternative diagnostic messages. Developers should avoid using the ON ERROR
clause simply to condition an ABORT statement as this will usually give less diagnostic
information than would have appeared if no ON ERROR clause had been present.

Examples

OPEN 'CLIENTS' TO CLI.F ELSE STOP 'Cannot open CLIENTS'
LOOP
 DISPLAY 'Enter client number: ' :
 INPUT CLI.ID
UNTIL CLI.ID = ''
 READ CLI.REC FROM CLI.F, CLI.ID THEN
 DISPLAY CLI.REC<2>
 END ELSE
 DISPLAY 'Client not found'
 END
REPEAT

This short program opens the CLIENTS file and then enters a loop in which it prompts for a client
number, reads the client record and displays the content of field 2. The loop continues until the user
enters a blank client number.

OpenQM588

2.6-6

This example shows why direct use of field numbers in programs is a bad idea. Anyone reading this
program has no idea what information about the client is being displayed. A better approach is to
use the EQUATE statement to define names for each field (typically in an include record). The
data display statement might then become

DISPLAY CLI.REC<CLI.NAME>

which suggests to anyone reading the program that it is displaying the client's name. The
GENERATE command can be used to construct an include record of field names from the file
dictionary rather than having to maintain two separate descriptions of the data.

SELECT @VOC TO 1
LOOP
 READNEXT ID FROM 1 ELSE EXIT
 READ VOC.REC FROM @VOC, ID THEN
 IF VOC.REC[1,1] = 'F' THEN
 OPEN ID TO TEST.F ELSE
 DISPLAY 'File ' : ID : ' cannot be opened'
 END
 END
 END
REPEAT

This program uses the system defined file variable @VOC to reference the VOC instead of opening
it explicitly. The SELECT statement builds a list of all records in the file into select list 1 which is
then processed in the loop. For each item in the list, the record is read from the VOC and, if it is an
F-type record, the program attempts to open the file. If it cannot be opened, an error message is
displayed.

Note the use of EXIT to exit from the loop when the list is exhausted. Some multivalue
environments do not support this statement and require developers to devise alternative exit schemes
that are generally not as efficient.

Note also that the file opened to variable TEST.F is not explicitly closed. Each OPEN will
implicitly close the previous file as the file variable is overwritten. The final file opened will remain
open until the program terminates.

This program has needed to include a test to process only F-type VOC records. Alternatively, the
program could use the query processor to build a list of F-type records and then process all records
in this list:

EXECUTE "SELECT VOC WITH TYPE = 'F' TO 1"
LOOP
 READNEXT ID FROM 1 ELSE EXIT
 READ VOC.REC FROM @VOC, ID THEN
 OPEN ID TO TEST.F ELSE
 DISPLAY 'File ' : ID : ' cannot be opened'
 END
 END
REPEAT

Although this approach may look simpler and does not require the unwanted records to be read, it is
actually less efficient than the first method as the query processor will need to read every record and
the loop then re-reads the records of interest. In the previous example, use of the QMBasic
SELECT actually only sets a pointer to the start of the file and the subsequent READNEXT reads
each group when it needs to process the first record from the group, effectively reading the file only

QMBasic 589

2.6-6

once. This exposes an interesting problem that is highlighted in the next example.

OPEN 'CLIENTS' TO CLI.F ELSE STOP 'Cannot open CLIENTS'
SELECT CLI.F TO 1
LOOP
 READNEXT CLI.ID FROM 1 ELSE EXIT
 READU CLI.REC FROM CLI.F, CLI.ID THEN
 RECORDLOCKU CLI.F, '0':CLI.ID
 WRITE CLI.REC TO CLI.F, '0':CLI.ID
 DELETE CLI.F, CLI.ID
 END
 END
REPEAT

The above program might be used to convert a CLIENTS file to add a zero on the front of each
record id, perhaps to allow more clients on a system where the application requires fixed length ids.
Because it is the READNEXT that actually traverses the file rather than the SELECT statement,
new records written to higher numbered groups would be seen by a later READNEXT and get
processed for a second time. For example, if the record for client number 1234 was in group 6 and
the new version of this record with id 01234 hashed to group 10, it would appear in the list
constructed when processing reaches group 10 and the record would be renamed once more to
become 001234.

Although programs that might suffer from this problem are rare, we need to force completion of the
record selection before entering the loop. One way to do this would be to use the query processor
SELECT instead of the QMBasic equivalent:

EXECUTE 'SELECT CLIENTS TO 1'

Note the use of RECORDLOCKU to set an update lock on the record to be added to the file.
Although this is probably strictly unnecessary in this example because the new record will not
already exist, it does ensure compliance with the locking rules.

OpenQM590

2.6-6

Matrix File I/O

QMBasic has two styles of file i/o that may be freely mixed within an application. Using READ
and WRITE to transfer data using dynamic arrays is simpler and usually faster for programs that
do little processing of the data. For programs that perform a significant amount of processing of the
data in a record, it may be worth the cost of breaking the fields into separate elements of a
dimensioned matrix using MATREAD and MATWRITE.

These statement have the same locking variants as their dynamic array counterparts. They also
share an almost identical syntax where the prefix MAT is used to select the matrix version of the
operation and the variable representing the database record must be a dimensioned array. For
example, the dynamic array read:

READ var FROM filevar, id

becomes

MATREAD array FROM filevar, id

The MATREAD statement places each field of the record into a separate element of the array,
keeping values and subvalues together as these are instances of the same data item.

For example, if a record has three fields, the second of which is multivalued:

AFMB1VMB2FMC

using MATREAD to read this into a three element (plus the zero element) matrix would result in:

0

1 A

2 B1VMB2

3 C

The MATWRITE operation joins together each element of the matrix, inserting field marks
between them and writes this to the file.

If the matrix has more elements than there are fields in the record, the excess elements are set to null
strings:

0

1 A

2 B1VMB2

3 C

4

5

The INMAT() function can be used to determine how many fields the record had. The
MATWRITE operation ignores all trailing empty fields so that above situation would not write
two empty fields at the end of the record.

QMBasic 591

2.6-6

If the matrix has fewer elements than there are fields in the record, the zero element is used to store
the excess data. Consider the a record with five fields and an array with three elements:

0 DFME

1 A

2 B1VMB2

3 C

The MATWRITE operation adds the contents of the zero element to the record formed from the
remaining elements of the matrix, reconstructing the correctly formed data. The zero element thus
acts as an "overflow bucket" allowing programs that did not expect to find the excess data to
function correctly.

Pick style matrices do not have a zero element. In this case, the excess data is stored in the final
element of the matrix:

1 A

2 B1VMB2

3 CFMDFME

This is likely to cause the program to malfunction if it updates element 3 where it expected only to
find the third field of the database record. To avoid this, Pick style programmers usually ensure that
the matrix has at least one more element than they expect it to need, effectively moving the
"overflow bucket" to the end of the matrix.

OpenQM592

2.6-6

Sequential File I/O

Directory files are so called because they are represented by an operating system directory. The
records in these files are represented by operating system files in the directory. These files do not
give the high performance of hashed files but they allow access to the data from outside of QM.
They are therefore particularly useful for data interchange.

Records in directory files are sometimes very large and may consist of a number of lines of textual
information with a fixed layout. In such cases, it may be useful to process the data line by line. QM
provides statements to perform sequential reading or writing of text data. These can only be used
with directory files.

An item is opened for sequential processing using the OPENSEQ statement. This has two forms,
one that opens a record in a directory file by name:

OPENSEQ file, id TO filevar

the other opens a file by pathname:

OPENSEQ pathname TO filevar

In both forms, the statement takes the optional ON ERROR, LOCKED, THEN and ELSE
clauses. At least one of the THEN and ELSE clauses must be present. Because the OPENSEQ
operation is effectively opening a record, it applies a lock to this record to prevent other users
overwriting it.

The OPENSEQ statement will take the ELSE clause for three reasons:
· The file does not exist.
· The file exists but is not a directory file.
· The file exists as a directory file but the record does not exist.

The last of these three situations would be an error in a program that is intending to read the item
but is usually not an error in a program that will write to the item. The STATUS() function can be
used to determine which of the above three conditions exist as discussed in the detailed OPENSEQ
statement description.

OPENSEQ also has options to open the item in read-only mode, append to an existing item, or
overwrite an existing item.

The QMBasic statements that can be used to access the sequential item are:

READSEQ Read text line by line

READBLK Read a given number of bytes

WRITESEQ Write text line by line

WRITESEQF Write text line by line, flushing to disk before continuing

WRITEBLK Write a given number of bytes

READCSV Read comma separated variable (CSV) format data

WRITECSV Write comma separated variable format data

SEEK Position within the sequential item

NOBUF Suppress buffering

WEOFSEQ Write end of file (truncate the item)

CLOSESEQ Close the sequential item, flushing buffers and releasing the lock.

QMBasic 593

2.6-6

Examples

OPENSEQ 'C:\PRICES' TO SEQ.F ELSE STOP 'Cannot open price data'
OPEN 'STOCK' TO STK.F ELSE STOP 'Cannot open STOCK'
LOOP
 READSEQ TEXT FROM SEQ.F ELSE EXIT
 STK.ID = TEXT[1,5]
 READU STK.REC FROM STK.F, STK.ID THEN
 STK.REC<STK.PRICE> = ICONV(TEXT[6,8], 'MD2')
 WRITE STK.REC TO STK.F, STK.ID
 END ELSE
 RELEASE STK.F, STK.ID
 DISPLAY 'Stock item ' : STK.ID : ' not found'
 END
REPEAT

This short program reads lines from a text file, C:\PRICES. Each line within this file has a stock
part number in the first five characters and a new price in external format in the next eight
characters. For each line, the program reads the corresponding STOCK file record and updates field
STK.PRICE to contain the internal form of the price value. The token STK.PRICE would typically
be defined in an include record.

OPENSEQ 'C:\IMPORT.CSV' TO SEQ.F ELSE STOP 'Cannot open import
file'
OPEN 'STOCK' TO STK.F ELSE STOP 'Cannot open STOCK'
LOOP
 READCSV FROM SEQ.F TO STK.ID, PRICE ELSE EXIT
 READU STK.REC FROM STK.F, STK.ID THEN
 STK.REC<STK.PRICE> = ICONV(PRICE, 'MD2')
 WRITE STK.REC TO STK.F, STK.ID
 END ELSE
 RELEASE STK.F, STK.ID
 DISPLAY 'Stock item ' : STK.ID : ' not found'
 END
REPEAT

This program is a variation on the first example where the import data contains comma separated
items as might have been written by a spreadsheet tool such as Excel. The READCSV statement
reads the first two comma separated items in each line of text into STK.ID and PRICE. Any
additional values on the line are discarded.

OPENSEQ 'C:\EXPORT.CSV' OVERWRITE TO SEQ.F ELSE
 IF STATUS() THEN STOP 'Cannot open export file'
END
OPEN 'STOCK' TO STK.F ELSE STOP 'Cannot open STOCK'
SELECT STK.F TO 1
LOOP
 READNEXT STK.ID FROM 1 ELSE EXIT
 READ STK.REC FROM STK.F, STK.ID THEN
 WRITECSV STK.ID, OCONV(STK.REC<STK.PRICE>, 'MD2'),
 STK.REC<STK.QOH> TO SEQ.F ELSE
 STOP 'Write error'
 END

OpenQM594

2.6-6

 END
REPEAT

This program creates a text item in C:\EXPORT.CSV where each line contains the stock part
number, the price and the quantity on hand as a comma separated list suitable for import into
spreadsheets such as Excel.

QMBasic 595

2.6-6

Multivalue Functions

The QMBasic language has many functions that provide multivalued equivalents of their more
commonly used single valued counterparts. In each case, these work element by element through the
dynamic arrays passed into the functions, performing the operation on each element in turn to
produce an equivalent dynamic array of results.

For example, if we have two dynamic arrays

A contains ABCFMDEFFMGHI
and

B contains 123FM456FM789

We can concatenate these two dynamic arrays in two ways:

C = A : B sets C to ABCFMDEFFMGHI123FM456FM789

C = CATS(A, B) sets C to ABC123FMDEF456FMGHI789

The main multivalued string functions are

CATS() Concatenate elements of a dynamic array

COUNTS() Multivalued variant of COUNT()

FIELDS() Multivalued variant of FIELD()

FMTS() Format elements of a dynamic array

ICONVS() Perform input conversion on a dynamic array

INDEXS() Multivalued equivalent of INDEX()

NUMS() Multivalued variant of NUM()

OCONVS() Perform output conversion on a dynamic array

SPACES() Multivalued variant of SPACE()

STRS() Multivalued variant of STR()

SUBSTRINGS() Multivalued substring extraction

TRIMBS() Multivalued variant of TRIMB()

TRIMFS() Multivalued variant of TRIMF()

TRIMS() Multivalued variant of TRIM()

There are also a number of multivalued logical functions. These provide equivalents to the
relational operators and other functions that return boolean values.

For example, the GTS(arr1, arr2) function takes two dynamic arrays and returns a new dynamic
array of true / false values indicating whether the corresponding elements of arr1 are greater than
those of arr2.

Thus, if A contains 11FM0VM17VMPQRFM2
and B contains 12FM0VM14VMACBFM2

C = GTS(A, B)

OpenQM596

2.6-6

Returns C as 0FM0VM1VM1FM0

The multi-valued logical functions are

ANDS() Multi-valued logical AND

EQS() Multi-valued equality test

GES() Multi-valued greater than or equal to test

GTS() Multi-valued greater than test

LES() Multi-valued less than test

LTS() Multi-valued less than or equal to test

NES() Multi-valued inequality test

NOTS() Multi-valued logical NOT

ORS() Multi-valued logical OR

The IFS() function returns a dynamic array constructed from elements chosen from two other
dynamic arrays depending on the content of a third dynamic array.

IFS(control.array, true.array, false.array)

where

control.array is a dynamic array of true / false values.

true.array holds values to be returned where the corresponding element of
control.array is true.

false.array holds values to be returned where the corresponding element of
control.array is false.

The IFS() function examines successive elements of control.array and constructs a result array
where elements are selected from the corresponding elements of either true.array or false.array
depending on the control.array value.

Example

A contains 1VM0VM0VM1VM1VM1VM0
B contains 6VM2VM3VM4VM9VM6VM3
C contains 2VM8VM5VM0VM3VM1VM3

D = IFS(A, B, C)

D now contains 6VM8VM5VM4VM9VM6VM3

QMBasic 597

2.6-6

Object Oriented Programming

QMBasic includes support for object orientated programming. Users familiar with other object
oriented languages will find that QM offers many of the same concepts but, because they are
integrated into an existing programming environment, there may be some significant differences in
usage.

What is an Object?

An object is a combination of data and program operations that can be applied to it. An object is
defined by a class module, a QMBasic program that is introduced by the CLASS statement and
contains the definitions of persistent data items and public subroutine and functions. An object is a
run time instance of the class, instantiated by use of the OBJECT() function

OBJ = OBJECT("MYCLASS")

where "MYCLASS" is the catalogue name of the class module. The OBJ variable becomes a
reference to an instance of the class.

A second use of the OBJECT() function with the same catalogue name will create a second
instance of the object. On the other hand, copying the object variable creates a second reference to
the same instance.

In other program types, data is stored either in local variables that are discarded on return from the
program, or in common blocks that persist and may be shared by many programs. A class module
has the additional concept of persistent data that is related to the particular instance of the object
and is preserved across repeated entry to the object. If an object is instantiated more than once, each
instantiation has its own version of the persistent data.

Persistent data is defined using the PRIVATE or PUBLIC statements:

PRIVATE A, B(5)
PUBLIC C, D(2,3)

These statements must appear at the start of the class module, before any executable program
statements. Data items defined as private are only accessible by program statements within the class
module. Data items defined as public can be accessed from outside of the class module (subject to
rules set out below). Private and public data items are frequently used to store what other object
oriented programming environments would term property values.

PRIVATE and PUBLIC variables are set to unassigned when the object is instantiated.

Public Functions and Subroutines

Another important difference between class modules and other program types is that a class module
usually has multiple entry points, each corresponding to a public function or public subroutine.
Indeed, simply calling the class module by its catalogue name will generate a run time error.

Just as with conventional QMBasic functions and subroutines, a public function must return a value
to its caller whereas a public subroutine does not (though it can do so by updating its arguments).

A public function is defined by a group of statements such as

PUBLIC FUNCTION XX(A,B,C)
 ...processing...

OpenQM598

2.6-6

 RETURN Z
END

where XX is the function name, A, B and C are the arguments (optional), and Z is the value to be
returned to the caller.

A public subroutine is defined by a group of statements such as

PUBLIC SUBROUTINE XX(A,B,C)
 ...processing...
 RETURN
END

where XX is the function name and A, B and C are the arguments (optional)

The number of arguments in a public function or subroutine is normally limited to 32 but this can
be increased using the MAX.ARGS option of the CLASS statement.

Both styles of public routine allow use of the VAR.ARGS qualifier after the argument list to
indicate that it is of variable length. Argument variables for which the caller has provided no value
will be unassigned. The ARG.COUNT() function can be used to find the actual number of
arguments passed. A special syntax of three periods (...) used as the final argument specifies that
unnamed arguments are to be added up to the limit on the number of arguments. These can be
accessed using the ARG() function and the SET.ARG statement. See the PUBLIC statement for
more details of this feature.

It is valid for a class module to contain combinations of a PUBLIC variable, PUBLIC
SUBROUTINE and PUBLIC FUNCTION with the same name. If there is a public subroutine of
the same name as a public variable, the subroutine will be executed when a program using the
object attempts to set the value of the public item. If there is a public function of the same name as
a public variable, the function will be executed when a program using the object attempts to retrieve
the value of the public item. If both are present, the public property variable will never be directly
visible to programs using the object.

Sometimes an application developer may wish a public variable to be visible to users of the class
for reading but not for update. Although this could be achieved by use of a dummy PUBLIC
SUBROUTINE that ignores updates or reports an error, public variables may be defined as
read-only by including the READONLY keyword after the variable declaration:

PUBLIC A READONLY
or

PUBLIC B(5) READONLY

Referencing an Object

References to an object require two components, the object variable and the name of a property or
method within that object. The syntax for such a reference is

OBJ->PROPERTY

or, if arguments are required,

OBJ->PROPERTY(ARG1, ARG2, ...)

When used in a QMBasic expression, for example,

ITEMS += OBJ->LISTCOUNT

the object reference returns the value of the named item, in this case LISTCOUNT. This may be a

QMBasic 599

2.6-6

public variable or the value of a public function. If the same name is defined as both, the public
function is executed.

When used on the left of an assignment, for example,

OBJ->WIDTH = 70

the object reference sets the value of the named item, in this case WIDTH. This may be a public
variable or the value of a public subroutine that takes the value to be assigned as an argument. If
the same name is defined as both, the public subroutine is executed.

This dual role of public variables and functions or subroutines makes it very easy to write a class
module in which, for example, a property value may be retrieved without execution of any program
statements inside the object but setting the value executes a subroutine to validate the new value.

All object, property and public routine names are case insensitive.

Using Dimensions and Arguments

Public variables may be dimensioned arrays. Subscripts for index values are handled in the usual
way:

OBJ->MODE(3) = 7

where MODE has been defined as a single dimensional array. If MODE has an associated public
subroutine, the indices are passed via the arguments and the new value as the final argument. Thus,
if MODE was defined as

PUBLIC SUBROUTINE MODE(A,B)

the above statement would pass in A as 3 and B as 7.

Execution of Object Methods

Other object oriented languages usually provide methods, subroutines that can be executed from
calling programs to do some task. QMBasic class modules do this by using public subroutines. The
calling program uses a statement of the form:

OBJ->RESET

where RESET is the name of the public subroutine representing the method. Again, arguments are
allowed:

OBJ->RESET(5)

This leads to an apparent syntactic ambiguity between assigning values to public properties and
execution of methods. Actually, there is no ambiguity but the following two statements are
semantically identical:

OBJ->X(2,3)
OBJ->X(2) = 3

Expressions as Property Names

All of the above examples have used literal (constant) property names. QMBasic allows expressions
as property names in all contexts using a syntax

OBJ->(expr)

OpenQM600

2.6-6

where expr is an expression that evaluates to the property name.

Object References in Subroutine Calls

Any reference to an object element in a subroutine call, for example

CALL SUBNAME(OBJ->VAR)

is considered to be read access. If the subroutine updates the argument, this will not update the
object property value.

The ME Token

Sometimes an object needs to reference itself. The reserved data name ME can be used for this
purpose:

ME->RESET

The CREATE.OBJECT Subroutine

When an object is instantiated using the OBJECT() function, part of this process checks whether
there is a public subroutine named CREATE.OBJECT and, if so, executes it. This can be used, for
example, to preset default values in public and private variables. Up to 32 arguments may be
passed into this subroutine by extending the OBJECT() call to include these after the catalogue
name of the class module.

The DESTROY.OBJECT Subroutine

An object remains in existence until the last object variable referencing it is discarded or
overwritten. At this point, the system checks for a public subroutine named DESTROY.OBJECT
and, if it exists, it is executed.

The UNDEFINED Name Handler

The optional UNDEFINED public subroutine and/or public function can be used to trap references
to the object that use property names that are not defined. This handler is executed if a program
using the object references a name that is not defined as a public item. The first argument will be
the undefined name. Any arguments supplied by the calling program will follow this. The
ARG.COUNT() and ARG() functions can be used to help extract this data in a meaningful way.

If there is no UNDEFINED subroutine/function, object references with undefined names cause a
run time error.

Inheritance

Sometimes it is useful for one class module to incorporate the properties and methods of another.
This is termed inheritance.

Use of the INHERITS clause of the CLASS statement effectively inserts declaration of a private
variable of the same name as the inherited class (removing any global catalogue prefix character)

QMBasic 601

2.6-6

and adds

 name = OBJECT(inherited.class)
 INHERIT name

to the CREATE.OBJECT subroutine.

Alternatively, inheritance can be performed during execution of the object by direct use of the
INHERIT statement.

The name search process that occurs when an object is referenced scans the name table of the
original object reference first. If the name is not found, it then goes on to scan the name tables of
each inherited object in the order in which they were inherited. Where an inherited object has itself
inherited further objects, the lower levels of inheritance are treated as part of the object into which
they were inherited. If the name is not found, the same search process is used to look for the
undefined name handler.

An inherited object can subsequently be disinherited using DISINHERIT.

Syntax Summary

CLASS name {INHERITS class1, class2...}
 PUBLIC A {READONLY}, B(3), C
 PRIVATE X, Y, Z

 PUBLIC SUBROUTINE SUB1(ARG1, ARG2) {VAR.ARGS}
 ...processing...
 END

 PUBLIC FUNCTION FUNC1(ARG1, ARG2) {VAR.ARGS}
 ...processing...
 RETURN RESULT
 END

 ...Other QMBasic subroutines...
END

See also:
CLASS, DISINHERIT, INHERIT, OBJECT(), PRIVATE, PUBLIC.

OpenQM602

2.6-6

6.2 QMBasic - Compiler Directives

Compiler directives control the way in which the compiler processes the QMBasic source programs.
They do not result directly in executable statements.

Directive names may be written with a # character in place of the $ character.

The available directives are

$CATALOG

$CATALOGUE

$DEBUG

$DEFINE

$EXECUTE

$IFDEF and $IFNDEF

$INCLUDE

$LIST

$MODE

$NOCASE.STRINGS

$QMCALL

QMBasic 603

2.6-6

$CATALOGUE compiler directive

$CATALOGUE name {GLOBAL | LOCAL}

The $CATALOGUE directive (or the American spelling $CATALOG) causes the compiler to
add the program to the system catalogue with the given call name if the compilation is successful. If
name is omitted, the source record name is used. When using this default name, an error will be
reported if the name is not the same as the name specified in the PROGRAM, SUBROUTINE,
FUNCTION or CLASS statement.

If the name does not follow the normal QMBasic name construction rules (e.g. a Pick user exit such
as 50BB) it should be enclosed in quotes. The rules for catalogue name format are described with
the CATALOGUE command.

Automatic cataloguing can also be performed using the CATALOGUE entry in the
$BASIC.OPTIONS record as described under the BASIC command. Use of the $CATALOGUE
compiler directive will override any alternative settings specified in the $BASIC.OPTIONS record.

See also:
$NO.CATALOGUE, $BASIC.OPTIONS

OpenQM604

2.6-6

$DEBUG compiler directive

$DEBUG

The $DEBUG directive compiles the program in debug mode. This is an alternative to use of the
DEBUGGING keyword to the BASIC command. The $DEBUG directive must appear before any
executable statements in the program.

See also:
QMBasic debugger

QMBasic 605

2.6-6

$DEFINE compiler directive

The $DEFINE directive is used to associate a value with a symbolic name at compile time. The
standard include records in the SYSCOM file contain many examples of $DEFINE.

The format of a $DEFINE directive is

$DEFINE name value

where name is the symbol to be used in the program and value is a constant.

The token QM is automatically defined and may be used to determine whether a program is being
compiled on the QM database. The token QM.WINDOWS, QM.LINUX, QM.FREEBSD,
QMMAC or QMPDA is defined corresponding to the underlying operating system. Because these
are only relevant at compile time, take care when using them in programs that may be moved
between platforms. The SYSTEM(1010) function can be used to determine platform type at run
time.

See also:
EQUATE

OpenQM606

2.6-6

$EXECUTE compiler directive

The $EXECUTE directive executes a command during program compilation.

The format of a $EXECUTE directive is

$EXECUTE "command"

where command is the command to be executed. This must be enclosed in quotes..

This directive can be useful, for example, when program generated include records are used.

QMBasic 607

2.6-6

$IFDEF and $IFNDEF compiler directives

The $IFDEF directive provides conditional compilation. The format of this directive is

$IFDEF name
...statements...
$ELSE
...statements...
$ENDIF

The $ELSE and associated statements are optional. Statements conditioned by the $IFDEF
directive are ignored if name has not been defined by a previous $DEFINE directive. Statements
under the $ELSE directive are ignored if name has been defined by a previous $DEFINE directive.

The $IFNDEF directive provides the inverse action of $IFDEF, compiling the following statements
if name has not been defined.

$IFDEF and $IFNDEF statements may be nested to any depth though nesting more than two deep
can make program maintenance very difficult.

OpenQM608

2.6-6

$INCLUDE compiler directive

The $INCLUDE directive is used to direct the compiler to include text from another record.
Include records may be in either directory or dynamic files.

$INCLUDE { filename } record.id

For compatibility with some other systems, $INSERT may be used as a synonym for $INCLUDE.

Examples

$INCLUDE SYSCOM ERR.H
$INCLUDE MYKEYS.H

The first example includes record ERR.H from the SYSCOM file. The second example, which has
no file name specified, includes MYKEYS.H from the same file as the source program.

Use of a .H suffix is recommended on include records as these will be skipped automatically by the
compiler when using a select list.

The file name in the first $INCLUDE is not strictly necessary as the compiler will always look in
SYSCOM if no file name is given and the include record is not found in the same file as the source
program.

Because directory files on non-Windows platforms have case sensitive record names, the compiler
will look for the record name as entered and then, if it has not been found, in uppercase. Thus
programs may be written in either upper or lowercase if the records are always stored with
uppercase name. The standard include records in the SYSCOM file follow this rule.

Include files may be nested (one included from within another) though this can lead to difficulties
when maintaining complex programs and is discouraged.

For compatibility with other multivalue databases, the $INCLUDE directive can also be written
without the $ prefix. Used in this way, it must be the only statement on the source line.

QMBasic 609

2.6-6

$LIST compiler directive

The $LIST directive can be used to start, suspend and resume generation of a listing of the
program and any associated error messages. The format of this directive is

$LIST {ON}

$LIST OFF

The listing is directed to a record of the same name as the program source but with a suffix of .LIS.
Any existing listing record is deleted by the compiler at the start of compilation regardless of
whether a new listing is to be produced.

A $LIST ON directive in the main program starts generation of a listing record from that point
onwards. The compiler LISTING option is equivalent to a $LIST ON at the start of the program.

A $LIST OFF directive stops generation of the listing record. If this is on an include record, listing
will resume on return to the source or include record from which it was entered.

A $LIST ON directive in an include record only resumes generation of the listing record if listing
was active when processing of the include record began.

OpenQM610

2.6-6

$MODE compiler directive

The $MODE directive enables language options for improved compatibility with other multi-value
databases.

$MODE option

where

option is the feature to be turned on

The available options are:

DEFAULT Turn off all options.

CASE.SENSITIVE Enables case sensitivity for names of labels, variables and
user defined functions.

COMPATIBLE.APPEND Modifies the behaviour of the append modes of the S<f,v,
sv> assignment operator, the INS statement and the
INSERT() and REPLACE() functions to match that of
other multivalue products.

COMPOSITE.READNEXT Modifies how a READNEXT statement handles exploded
select lists.

FOR.STORE.BEFORE.TEST Stores the new value of the control variable in a
FOR/NEXT construct before testing the end condition.

OPTIONAL.FINAL.END Suppresses the warning message if there is no END
statement at the end of the program.

PICK.ENTER Pick style processing of ENTER.

PICK.ERRMSG Pick style syntax for STOP and ABORT.

PICK.JUMP.RANGE Causes the ON GOSUB and ON GOTO statements to
continue at the next statement if the index value is out of
range.

PICK.MATRIX Create Pick style matrices. See the COMMON and
DIMENSION statements for a discussion of the
implications of this mode.

PICK.READ Causes READ, READL, READU, READV, READVU
and READVL statements to take on the Pick style
behaviour in which the target variable is left unchanged if
the record is not found.

PICK.SUBSTR Causes substring assignment operations to take on the
Pick style behaviour in which the variable is extended by
adding trailing spaces if the region to be overwritten is
beyond the end of the current string value.

PICK.SUBSTR.ASSIGN Causes substring assignment operations to take on the full
Pick style behaviour as described under Assignment
Statements. Setting this mode overrides the
PICK.SUBSTR mode.

QMBasic 611

2.6-6

PRCLOSE.DEFAULT.0 PRINTER CLOSE defaults to printer 0 rather than
closing all printers.

SELECTV Changes the action of SELECT to be as for SELECTV.

STRING.LOCATE Numeric data in right aligned LOCATE is not treated as
a special case.

TRAP.UNUSED Displays a warning about variables that are assigned a
value but never used.

UNASSIGNED.COMMON Variables in common blocks are created unassigned
instead of being initialised to zero.

UV.LOCATE UniVerse Ideal / Reality flavour style LOCATE.

Prefixing a mode name (other than DEFAULT) with a minus sign turns off the named option.

Default modes can be set by creating a record named $BASIC.OPTIONS in the source file or in the
VOC. Details of how to do this can be found with the description of the BASIC command.

Examples

$MODE TRAP.UNUSED
FUNCTION INV.CLI(INV.REC)
 CLEINT.NO = INV.REC<4>
 IF CLIENT.NO = '' THEN CLIENT.NO = INV.REC<18>
 RETURN CLIENT.NO
END

The above program contains a typographical error in the spelling of the first use of CLIENT.NO.
Because it has been compiled with the TRAP.UNUSED option, the compiler will display a warning
message that the CLEINT.NO variable is assigned but never used.

PROGRAM INVOICE
FOR I = 1 TO 3
NEXT I
DISPLAY "I on exit = " : I
END

The above program displays the loop exit value as being 3 whereas the program below uses the
FOR.STORE.BEFORE.TEST mode and displays the loop exit value as being 4.

$MODE FOR.STORE.BEFORE.TEST
PROGRAM INVOICE
FOR I = 1 TO 3
NEXT I
DISPLAY "I on exit = " : I
END

OpenQM612

2.6-6

$NO.CATALOGUE compiler directive

$NO.CATALOGUE

The $NO.CATALOGUE directive (or the American spelling $NO.CATALOG) specifies that a
QMBasic program is not to be catalogued where the $BASIC.OPTIONS record includes a
CATALOGUE entry that would otherwise cause the module to be catalogued automatically.

See also:
$CATALOGUE, $BASIC.OPTIONS

QMBasic 613

2.6-6

$NOCASE.STRINGS compiler directive

$NOCASE.STRINGS

Compiles the program using case insensitive string operations. This directive must appear before
any executable statements in the program source and applies to the entire program module.

Selecting case insensitive string mode affects the relational operators (=, #, <, >, <=, >=), their
multivalue function equivalents (EQS(), NES(), LTS(), GES(), LES(), GES()), the CHANGE(),
CONVERT(), COUNT(), DCOUNT(), FIELD(), INDEX() and SWAP() functions and the
CONVERT, FIND, FINDSTR and LOCATE statements.

OpenQM614

2.6-6

$QMCALL compiler directive

For processes running with the QMCLIENT configuration parameter set to 2, this directive makes
the subroutine in which it appears available for calling using the QMClient API QMCall function.

By using the QMCLIENT configuration parameter and this directive, it is possible to restrict the
actions of a QMClient session thus allowing tighter control of QMClient security.

QMBasic 615

2.6-6

6.3 QMBasic Limits

Number of local variables or elements in a matrix
Dependant on system swap file size.

Maximum file size
Dynamic files may have up to 2147483647 groups (16384Gb with 8kb group size) unless a
lower limit is imposed by the underlying operating system.

Maximum string size
There is effectively no limit imposed by QMBasic. The actual limit will be determined by the
total dynamic memory size which must be mapped to the swap file.

Number of open files
The underlying operating system may impose a limit on the number of files which may be open
simultaneously. QMBasic provides an automated file sharing scheme whereby files may be
closed at the operating system level if the limit is reached. QMBasic will save details of the file
which has been closed and will reopen it automatically when required.

This scheme provides access to a virtually unlimited number of files but can have severe
performance effects when many files are used in frequent rotation.

Maximum precision
14 decimal places

Maximum variable name or statement label length
No limit

Maximum characters in a string constant
No limit though long string constants are broken into fragments of no more than 255 characters
by the compiler and reassembled at run time.

Maximum arguments to a subroutine
255

Maximum labels in an ON GOSUB or ON GOTO
65535

Maximum characters in a catalogue call name
63 (32 for trigger functions)

Maximum characters in a record id
Default 63 but can be increased up to 255 using the MAXIDLEN configuration parameter.

OpenQM616

2.6-6

6.4 QMBasic Statements and Functions by Name

@(x,y) Terminal cursor movement and control
ABORT Abort to command prompt
ABORTE Abort to command prompt with Pick style message handling
ABORTM Abort to command prompt with Information style message

handling
ABS() Absolute value
ABSS() Multi-valued absolute value
ACCEPT.SOCKET.CONNECTION() Accept an incoming connection on a server socket
ACOS() Arc-cosine
ALPHA() Test if string holds only alphabetic characters
ANDS() Multi-valued logical AND
ARG() Returns an argument variable based on its argument list position
ARG.COUNT() Returns the number of arguments passed into a subroutine
ASCII() Convert an EBCDIC string to ASCII
ASIN() Arc-sine
ASSIGNED() Test whether variable is assigned
ATAN() Arc-tangent
BEGIN TRANSACTION Start a new transaction
BINDKEY() Set, remove, query, save or restore key bindings
BITAND() Bitwise logical AND operation
BITNOT() Bitwise logical NOT operation
BITOR() Bitwise logical OR operation
BITRESET() Turn off specified bit
BITSET() Turn on specified bit
BITTEST() Test specified bit
BITXOR() Bitwise logical exclusive OR operation
BREAK Enable or disable break key handling
CALL Call an external subroutine
CASE Perform statements according to multiple conditions
CATALOGUED() Check catalogue entry
CATS() Concatenate elements of a dynamic array
CHAIN Terminate program and execute a command
CHANGE() Replace substring in a string
CHAR() Get ASCII character for a given collating sequence value
CLASS Declare a class module
CLEAR Set all local variables to zero
CLEARCOMMON Set all unnamed common variables to zero
CLEARDATA Clear DATA queue
CLEARFILE Clear a file, deleting all records and releasing disk space
CLEARINPUT Clear keyboard type-ahead
CLEARSELECT Clear one or all select lists
CLOSE Close a file
CLOSESEQ Close a record opened for sequential access
CLOSE.SOCKET Close a socket
COL1() Start of substring position from FIELD()
COL2() End of substring position from FIELD()
COMMIT Commit transaction updates
COMMON Define a common block
COMPARE() Compare strings
CONFIG() Returns the value of a configuration parameter
CONNECT.PORT() Connect a serial port to a phantom process

QMBasic 617

2.6-6

CONTINUE Continue next iteration of a loop
CONVERT Substitute characters with replacements
CONVERT() Substitute characters with replacements
COS() Cosine
COUNT() Count occurrences of substring in string
COUNTS() Multi-valued variant of COUNT()
CREATE Create an empty sequential file record
CREATE.FILE Create a file
CREATE.SERVER.SOCKET() Open a server socket
CROP() Remove redundant mark characters
CRT Synonym for DISPLAY
CSVDQ() Dequote a CSV string
DATA Save text in DATA queue
DATE() Return the current date as a day number
DCOUNT() Count delimited substrings in string
DEBUG Enter debugger
DECRYPT() Decrypt text
DEFFUN Define a function
DEL Delete a field, value or subvalue
DELETE Delete record from a file
DELETE() Delete a field, value or subvalue
DELETELIST Delete a saved select list
DELETESEQ Delete an operating system file
DELETEU Delete record from a file preserving locks
DIM Synonym for DIMENSION
DIMENSION Set matrix dimensions
DISINHERIT Disinherit an object
DISPLAY Output to the display
DIR() Return the contents of a directory
DIV() Divide
DOWNCASE() Convert string to lowercase
DPARSE Split elements of a delimited string
DPARSE.CSV Split elements of a CSV format delimited string
DQUOTE() Synonym for QUOTE()
DTX() Convert a number to hexadecimal
EBCDIC() Convert an EBCDIC string to ASCII
ECHO Enable or disable input echo
ENCRYPT() Encrypt data
END Terminate program or statement group
END TRANSACTION Terminate a transaction
ENTER Synonym for CALL
ENV() Retrieve an operating system environment variable
EQS() Multi-valued equality test
EQUATE Define a symbolic name for a constant or matrix element
ERRMSG Display a Pick style message from the ERRMSG file
EXECUTE Execute a command
EXIT Leave a loop
EXP() Exponential
EXTRACT() Extract a field, value or subvalue
FIELD() Extract delimited fields
FIELDS() Multi-valued variant of FIELD()
FIELDSTORE() Replace or insert delimited fields
FILE Open a file and access data by field name
FILEINFO() Return information about an open file

OpenQM618

2.6-6

FILELOCK Lock a file
FILEUNLOCK Unlock a file
FIND Find a string in a dynamic array element
FINDSTR Find a substring in a dynamic array element
FLUSH Flush sequential file data to disk
FMT() Format a string
FMTS() Format a dynamic array
FOLD() Break a string into sections, splitting at spaces where possible
FOLDS() Multi-valued variant of FOLD()
FOOTING Set footing text
FOR / NEXT Iterative loop construct
FORMLIST Create a select list from a dynamic array
FUNCTION Declare function name and arguments
GES() Multi-valued greater than or equal to test
GETLIST Restore a saved select list
GET.MESSAGES() Retrieve messages from the message queue
GET.PORT.PARAMS() Get serial port parameters
GETNLS() Get national language support parameter value
GETPU Get a characteristic of a print unit
GETREM() Get remove pointer position
GO / GOTO Jump to a label
GOSUB Enter an internal subroutine
GTS() Multi-valued greater than test
HEADING Set heading text
HUSH Suppress or enable display output
ICONV() Perform input conversion
ICONVS() Perform input conversion on a dynamic array
IDIV() Integer division
IF / THEN / ELSE Perform conditional statements
IFS() Multi-valued conditional expression
INDEX() Locate occurrence of substring within a string
INDEXS() Multi-valued equivalent of INDEX()
INDICES() Return information about alternate key indices
INHERIT Inherit an object
INMAT() Return status of matrix operations
INPUT Input a string from the keyboard or data queue
INPUT @ Input a string from the keyboard or data queue
INPUTCLEAR Synonym for CLEARINPUT
INPUTCSV Input CSV format data
INPUTERR Synonym for PRINTERR
INPUTFIELD Input a string with function key handling
INS Insert a field, value or subvalue
INSERT() Insert a field, value or subvalue
INT() Truncate value to integer
ITYPE() Execute a compiled I-type
KEYCODE() Input a single keystroke from the keyboard with terminfo

translation
KEYEDIT Define editing keys for INPUT @
KEYEXIT Define exit keys for INPUT @
KEYIN() Input a single keystroke from the keyboard
KEYINC() Input a single keystroke from the keyboard with case inversion
KEYINR() Input a single keystroke from the keyboard in raw mode (no

internal processing)
KEYREADY() Test for keyboard input

QMBasic 619

2.6-6

KEYTRAP Define trap keys for INPUT @
LEN() Return length of a string
LENS() Multi-valued equivalent of LEN()
LES() Multi-valued less than test
LISTINDEX() Return position of an item in a delimited list
LN() Natural log
LOCATE Locate string in dynamic array
LOCATE() Locate string in dynamic array
LOCK Set task lock
LOGMSG Add an entry to the system error log
LOOP / REPEAT Define a loop to be repeated
LOWER() Convert delimiters to lower level
LOCAL Declares an internal subroutine or function that has private local

variables
LTS() Multi-valued less than or equal to test
MARK.MAPPING Control field mark translation in directory files
MAT Matrix initialisation or copy
MATBUILD Build a dynamic array from matrix elements
MATCHFIELD() Return portion of string matching pattern
MATPARSE Break a dynamic array into matrix elements
MATREAD Read a record, parsing into a matrix
MATREADCSV Read a CSV format text item into a matrix
MATREADL Read a record setting a read lock, parsing into a matrix
MATREADU Read a record setting an update lock, parsing into a matrix
MATWRITE Write a record from matrix elements
MATWRITEU Write a record from matrix elements, retaining any lock
MAX() Returns the greater of two values
MAXIMUM() Find the greatest value in a dynamic array
MIN() Returns the lesser of two values
MINIMUM() Find the lowest value in a dynamic array
MOD() Modulus value from division
MODS() Multi-valued modulus value from division
NAP Suspend program for a short period
NEG() Arithmetic inverse
NEGS() Multi-valued arithmetic inverse
NES() Multi-valued inequality test
NOBUF Turn off buffering for a record opened using OPENSEQ
NOT() Logical NOT
NOTS() Multi-valued logical NOT
NULL No operation
NUM() Test if string holds a numeric value
NUMS() Multi-valued variant of NUM()
OBJECT() Instantiates an object
OBJINFO() Returns information about an object variable
OCONV() Perform output conversion
OCONVS() Perform output conversion on a dynamic array
ON GOSUB Jump to one of a list of labels selected by value
ON GOTO Enter one of a list of internal subroutines selected by value
OPEN Open a file
OPENPATH Open a file by pathname
OPENSEQ Open a record for sequential access
OPEN.SOCKET() Open a socket connection
ORS() Multi-valued logical OR
OS.ERROR() Return operating system error information

OpenQM620

2.6-6

OS.EXECUTE Execute an operating system command
OUTERJOIN() Fetch data from a file using an "outer join"
PAGE Start a new page
PAUSE Pause execution until awoken by another process
PERFORM Synonym for EXECUTE
PRECISION Set number of decimal places in numeric conversion
PRINT Output to a logical print unit
PRINTER CLOSE Close a print unit
PRINTER DISPLAY Associate a print unit with the display
PRINTER FILE Associate a file with a print unit
PRINTER NAME Associate a print device with a print unit
PRINTER OFF Disable print unit zero
PRINTER ON Enable print unit zero
PRINTER RESET Reset default print unit and display
PRINTER SETTING Set a print unit parameter
PRINTER.SETTING() Set or retrieve a print unit parameter
PRINTERR Display an error message
PRIVATE Declare private variables in a local subroutine or a class modules
PROCREAD Read data from the PROC primary input buffer
PROCWRITE Write data to the PROC primary input buffer
PROGRAM Declare program name
PROMPT Set the input prompt character
PUBLIC Declare public properties in a class module
PWR() Raise value to power
QUOTE() Enclose a string in quotes
RAISE() Convert delimiters to higher level
RDIV() Rounded integer division
READ Read a record from a file
READBLK Read bytes from a sequential file
READCSV Read a CSV format text item
READL Read a record from a file, setting a read lock
READLIST Save a select list in a dynamic array
READNEXT Read a record id from a select list
READSEQ Read from a sequential file
READU Read a record from a file, setting an update lock
READV Read a field from a record in a file
READVL Read a field from a record in a file, setting a read lock
READVU Read a field from a record in a file, setting an update lock
READ.SOCKET() Read data from a socket
RECORDLOCKED() Test if record is locked
RECORDLOCKL Set a read lock on a record
RECORDLOCKU Set an update lock on a record
RELEASE Release record or file locks
REM() Remainder value from division
REMARK Alternative syntax for comments
REMOVE Remove an item from a dynamic array
REMOVE() Remove an item from a dynamic array
REPLACE() Replace a field, value or subvalue
RESTORE.SCREEN Restore screen image data
RETURN Return from program or subroutine
RETURN TO Return from program or subroutine to a specific label
REUSE() Reuse element of numeric arrays in mathematical functions
RND() Generate random number
ROLLBACK Discard transaction updates

QMBasic 621

2.6-6

RQM Synonym for SLEEP
RTRANS() Fetch data from a file
SAVE.SCREEN() Save screen image data
SAVELIST Save a select list in the $SAVEDLISTS file
SEEK Position a sequential file
SELECT Build a select list of all records in an open file
SELECTE Transfer select list 0 to a select list variable
SELECTINDEX Build a select list from an alternate key index
SELECTINFO() Return information regarding a select list
SELECTLEFT Scan left through an alternate key index
SELECTN Build a numbered select list of all records in an open file
SELECTRIGHT Scan right through an alternate key index
SELECTV Build a select list variable of all records in an open file
SENTENCE() Returns the command line that started the current program
SEQ() Get collating sequence value for a given ASCII character
SERVER.ADDR() Find the IP address for a given server name
SET.ARG Sets an argument variable based on its argument list position
SET.EXIT.STATUS Set final exit status value
SET.PORT.PARAMS() Set serial port parameters
SET.SOCKET.MODE() Set mode of a socket
SETLEFT Set alternate key index scan position to leftmost
SETNLS() Set national language support parameter value
SETPU Set a characteristic of a print unit
SETRIGHT Set alternate key index scan position to rightmost
SETREM Set remove pointer position
SHIFT() Perform bit shift
SIN() Sine
SLEEP Suspend program to / for given time
SOCKET.INFO() Retrieve information about a socket
SOUNDEX() Form a soundex code value for a string
SOUNDEXS() Multi-valued variant of SOUNDEX()
SPACE() Create a string of spaces
SPACES() Multi-valued variant of SPACE()
SPLICE() Concatenates elements of two dynamic arrays, inserting a string

between the items.
SQRT() Square root
SQUOTE() Enclose a string in single quotes
SSELECT Build a sorted select list of all records in an open file
STATUS() Return status from previous operation
STATUS Returns a dynamic array of information about an open file
STOP Terminate program
STOPE Terminate program with Pick style message handling
STOPM Terminate program with Information style message handling
STR() Create a string from a repeated substring
STRS() Multi-valued variant of STR()
SUBR() Call a subroutine as a function
SUBROUTINE Declare subroutine name and arguments
SUBSTITUTE() Multi-valued substring replacement
SUBSTRINGS() Multi-valued substring extraction
SUM() Sum lowest level elements of a numeric array
SUMMATION() Sum all elements of a numeric array
SWAP() Synonym for CHANGE()
SWAPCASE() Invert case of alphabetic characters in a string
SYSTEM() Return system information

OpenQM622

2.6-6

TAN() Tangent
TCLREAD Returns the sentence that started the current program
TERMINFO() Retrieve information from the terminfo database
TIME() Return the current time
TIMEDATE() Return the date and time as a string
TIMEOUT Sets a timeout for READBLK and READSEQ
TRANS() Fetch data from a file
TRANSACTION ABORT Abort a transaction
TRANSACTION COMMIT Commit a transaction
TRANSACTION START Start a new transaction
TRIM() Trim characters from string
TRIMB() Trim spaces from back of string
TRIMBS() Multi-valued variant of TRIMB()
TRIMF() Trim spaces from front of string
TRIMFS() Multi-valued variant of TRIMF()
TRIMS() Multi-valued variant of TRIM()
TTYGET() Get current terminal mode settings
TTYSET Set terminal modes
UNASSIGNED() Test whether variable is unassigned
UNLOCK Release task lock
UNTIL Leave loop if condition is met
UPCASE() Convert string to uppercase
VSLICE() Extract a value slice from a dynamic array
WAKE Restart execution of a process on a PAUSE
WEOFSEQ Write end of file position to sequential file
WHILE Leave loop unless condition is met
WRITE Write a record to a file
WRITEBLK Write bytes to a sequential file
WRITECSV Write CSV format data to a sequential file
WRITESEQ Write to sequential file
WRITESEQF Write to sequential file, flushing to disk
WRITEU Write a record to a file, retaining any lock
WRITEV Write a field to a record in a file
WRITEVU Write a field to a record in a file, retaining any lock
WRITE.SOCKET() Write data to a socket
VOID Discard the result of evaluating an expression
XLATE() Synonym for TRANS()
XTD() Convert a hexadecimal number

QMBasic 623

2.6-6

@(x,y) Function

The @(x, y) function is used to control the format of displayed output.

Format

@(col {, line}) Cursor movement
@(mode {, arg}) Device control functions

where

col evaluates to a display column position.

line evaluates to a display line position.

mode evaluates to a mode value as described below.

arg provides qualifying information for use with some mode values.

The @(x, y) functions return string values which can be used in the same way as any other strings.
They only take effect when the string is used in a CRT, DISPLAY or PRINT statements directed
to the display. The actual value returned by the function is a control code to be sent to the terminal
and is dependant on the type of terminal in use (see the TERM command).

When output is directed to a printer or to a file for later printing rather than to the display, escape
sequences relevant to the printer may be used for formatting, etc. Because the @(x,y) function
returns codes specific for the terminal in use, it is unlikely that these codes are relevant for printers.

Cursor Positioning

The @(col {, line}) format specifies that subsequent output is to appear at the given column and,
optionally, line position. Columns and lines are numbered from zero where the top left of the screen
is line 0, column 0. The effect of attempting to move to a cursor position outside the display area is
undefined.

Use of the @(col {, line}) function disables screen pagination (automatic display of the "Press
return to continue" prompt after each screen of output). Pagination remains disabled until the
program executes the PRINTER RESET statement or return to the command prompt.

Use of the EXECUTE statement enables screen pagination, executes the command(s) and then
restores pagination to its state when the EXECUTE was performed.

Special Functions

@(x, y) functions with negative values of x are used to provide a variety of control functions. These
are largely in common with the functions defined for other systems. The token names shown in the
table below are defined in the KEYS.H include record in the SYSCOM file.

Functions not supported by the terminal device in use return a null string and hence will be ignored.

OpenQM624

2.6-6

Note that individual terminal types may place restrictions on use of display attributes such as
flashing, underline, colour, etc. For example, although each attribute has a corresponding start and
end control code pair, many terminals can only apply a single attribute to any particular screen
region.

Display attributes are also implemented in two fundamentally distinct ways. Most modern terminals
maintain an attribute for each character position on the display and data is stored by the terminal
using the currently active attributes regardless of any intervening cursor movements. On some other
terminals, the code sent by an @() function to set or clear an attribute occupies a character position
on the screen. Starting at the top left of the screen and working row by row through each character
position, the attributes of any particular character are determined by the most recent attribute
setting encountered.

For example,
DISPLAY @(-1):@(-15):'ABC':@(-16):'DEF'

on a terminal that stores the attribute for each character position would result in a display of
ABCDEF

whereas a terminal that uses a character cell to store the attribute would display
ABC DEF

Furthermore, if the program then executed
DISPLAY @(3,0):'X'

the first terminal would display
ABCXEF

but the second would display
ABCXDEF

with the underline extending to the end of the screen or the next cell holding an attribute setting.

Value Token Function Argument

-1 IT$CS Clear screen

-2 IT$CAH Cursor home

-3 IT$CLEOS Clear to end of screen

-4 IT$CLEOL Clear to end of line

-5 IT$SBLINK Start flashing text

-6 IT$EBLINK End flashing text

-9 IT$CUB Backspace No of characters (default 1)

-10 IT$CUU Cursor up No of lines (default 1)

-11 IT$SHALF Start half brightness

-12 IT$EHALF End half brightness

-13 IT$SREV Start reverse video

-14 IT$EREV End reverse video

-15 IT$SUL Start underline

-16 IT$EUL End underline

-17 IT$IL Insert line No of lines (default 1)

-18 IT$DL Delete line No of lines (default 1)

-19 IT$ICH Insert character No of characters (default 1)

QMBasic 625

2.6-6

-22 IT$DCH Delete character No of characters (default 1)

-23 IT$AUXON Turn on printer

-24 IT$AUXOFF Turn off printer

-29 IT$E80 Set 80 column mode

-30 IT$E132 Set 132 column mode

-31 IT$RIC Reset inhibit cursor

-32 IT$SIC Inhibit cursor

-33 IT$CUD Cursor down No of lines (default 1)

-34 IT$CUF Cursor forward No of characters (default 1)

-37 IT$FGC Set foreground colour Colour

-38 IT$BGC Set background colour Colour

-54 IT$SLT Set line truncation

-55 IT$RLT Reset line truncation

-58 IT$SBOLD Set bold mode

-59 IT$RBOLD Reset bold mode

-100 to
-107

User definable via the u0 to u7 terminfo keys

-108 IT$ACMD Asynchronous command Command to execute

-109 IT$SCMD Synchronous command Command to execute

-250 IT$STYLUS Enable/disable stylus taps 0 = disable, 1 = enable (PDA)

-251 IT$KEYS Display/hide screen
keyboard

0 = hide, 1 = display (PDA)

Descriptions

IT$CS (Clear screen)
The screen is cleared to the current background colour. The cursor is positioned at the top left of the
screen (position 0,0).

IT$CAH (Cursor home)
The cursor is positioned at the top left of the screen (position 0,0).

IT$CLEOS (Clear to end of screen)
All screen positions between the current cursor position and the end of the screen are cleared. Some
terminal devices/emulators set the cleared character positions to have the current background
colour.

IT$CLEOL (Clear to end of line)
All screen positions between the current cursor position and the end of the line are cleared. Some
terminal devices/emulators set the cleared character positions to have the current background
colour.

IT$CUB (Backspace)
The cursor moves left by the number of positions specified in the second argument which defaults to

OpenQM626

2.6-6

one or until the left edge of the screen is reached.

IT$CUU (Cursor up)
The cursor moves up by the number of lines specified in the second argument which defaults to one
or until the top line of the screen is reached.

IT$SHALF (Start half brightness)
Displays subsequent data in half brightness (dim) mode.

IT$EHALF (End half brightness)
Terminates half brightness (dim) mode.

IT$SREV (Start reverse video)
If not already in reverse video mode, the foreground and background colours are interchanged for
subsequent output. Selecting this mode does not directly affect any data which is already displayed.

IT$EREV (End reverse video)
If in reverse video mode, this operation reverts to the normal display colours for subsequent text
output.

IT$IL (Insert line)
The number of lines specified in the second argument (default value one) are inserted at the current
cursor position. Data at the bottom of the screen will be lost. The newly inserted lines are set to the
background colour.

IT$DL (Delete line)
The number of lines specified in the second argument (default value one) are deleted at the current
cursor position. Blank lines are inserted at the bottom of the screen.

IT$ICH (Insert character)
The number of characters specified in the second argument (default value one) are inserted at the
current cursor position. Data at the right of the screen will be lost.

IT$DCH (Delete character)
The number of characters specified in the second argument (default value one) are deleted at the
current cursor position. Blanks are inserted at the right edge of the screen.

IT$AUXON (Turn on printer)
For terminals with attached printers, this mode directs output to the printer. The mc5 terminfo entry
must be set correctly for this to work.

IT$AUXOFF (Turn off printer)
For terminals with attached printers, this mode turns off output to the printer. The mc4 terminfo
entry must be set correctly for this to work.

IT$E80 (Set 80 column mode)
The display window is set to be 80 characters wide.

IT$E132 (Set 132 column mode)
The display window is set to be 132 characters wide.

IT$RIC (Reset inhibit cursor)
The cursor is displayed if it was previously inhibited.

QMBasic 627

2.6-6

IT$SIC (Inhibit cursor)
Display of the cursor is inhibited. All cursor positioning functions continue to work whilst the
cursor is not visible.

IT$CUD (Cursor down)
The cursor moves down by the number of lines specified in the second argument which defaults to
one or until the bottom line of the screen is reached.

IT$CUF (Cursor forward)
The cursor moves right by the number of positions specified in the second argument which defaults
to one or until the right edge of the screen is reached.

IT$FGC (Set foreground colour)
The foreground colour is set according to the value of the second argument. This may be set using
the tokens listed below from the KEYS.H record of the SYSCOM file.

IT$BLACK 0
IT$BLUE 1
IT$GREEN 2
IT$CYAN 3
IT$RED 4
IT$MAGENTA 5
IT$BROWN 6
IT$WHITE 7
IT$GREY 8
IT$BRIGHT.BLUE 9
IT$BRIGHT.GREEN 10
IT$BRIGHT.CYAN 11
IT$BRIGHT.RED 12
IT$BRIGHT.MAGENTA 13
IT$YELLOW 14
IT$BRIGHT.WHITE 15

Some terminal emulators provide the ability to map these colour values to an alternative colour
palette. The terminfo COLOURMAP setting can be used to translate the internal QM values listed
above to an alternative set relevant to a specific terminal emulator.

IT$BGC (Set background colour)
The background colour is set according to the value of the second argument. This may be set using
the tokens from the KEYS.H record of the SYSCOM file as listed above.

IT$SLC (Set line truncation)
With this mode enabled, the cursor does not automatically move to a new line when data is
displayed in the final column of the screen. Any further output on the line will overwrite the final
character.

IT$RLT (Reset line truncation)
Clears line truncation mode so that the cursor automatically moves to a new line when data is
displayed in the final column of the screen.

IT$ACMD (Asynchronous command)
Executes the given command on the client system without suspending the QM session. This
operation depends on correct setting of the terminfo u8 token.

OpenQM628

2.6-6

IT$SCMD (Synchronous command)
Executes the given command on the client system, suspending the QM session until the command
completes. This operation depends on correct setting of the terminfo u9 token.

IT$STYLUS (Enable/disable stylus taps)
Applicable only to QM on a PDA, this operation allows an application to receive stylus taps via
input operations. When enabled, a stylus tap appears as char(200) (K$MOUSE) followed by the
column and row coordinates separated by a comma and terminated with a carriage return. Set the
second argument to a non-zero value to enable stylus taps, zero to disable them. Stylus input is
disabled by default when QM starts.

IT$KEYS (Display/hide screen keyboard)
Applicable only to QM on a PDA, this operation displays or hides the on screen keyboard. Set the
second argument to a non-zero value to show the keyboard, zero to hide it.

Examples

DISPLAY @(IT$CS) : @(34,10) : "Please wait" :

This statement clears the screen and displays "Please wait" .

DISPLAY @(ITFGC, ITBRIGHT.RED) : "Error " : STATUS()

This statement displays the value of the STATUS() function in bright red. Further output to the
display will continue to be in this colour until the foreground colour is reset.

QMBasic 629

2.6-6

ABORT

The ABORT statement terminates the current program, returning to the command prompt.
ABORTE and ABORTM provide compatibility with other multivalue database products.

Format

ABORT {print.list}

where

print.list evaluates to the message to be displayed. This is of the form described under
the DISPLAY statement.

If an ON.ABORT paragraph is defined in the VOC, this will be executed before the command
prompt is issued.

The program location at which the abort was generated will be reported unless the
SUPPRESS.ABORT.MSG option has been set using the OPTION command.

Because ABORT terminates all active programs, menus, paragraphs, etc., it should only be used to
handle error conditions.

The Pick syntax of ABORT can be enabled by including a line

$MODE PICK.ERRMSG

in the program before the first ABORT statement. In this syntax, the ABORT statement becomes

ABORT {msg.id {, arg...}}

where

msg.id evaluates to the id of a record in the ERRMSG file which holds the message to
be displayed. If this id is numeric, it will be copied to
@SYSTEM.RETURN.CODE.

arg... is an optional comma separated list of arguments to be substituted into the
message.

See the ERRMSG statement for a description of the ERRMSG file message format.

The ABORTE statement always uses Pick style message handling and the ABORTM statement
always uses Information style message handling, regardless of the setting of the PICK.ERRMSG
option.

Examples

IF NO.OF.ENTRIES = 0 THEN ABORT

OpenQM630

2.6-6

This statement aborts to the command prompt if the value of the variable NO.OF.ENTRIES is
zero. No error message is printed. ABORT statements without error text messages can result in
difficult diagnostic work to locate faults.

OPEN "STOCK.FILE" TO STOCK ELSE
 ABORT "Cannot open STOCK.FILE - Error " : STATUS()
END

This program fragment attempts to open a file named STOCK.FILE. If the open fails, the program
displays an error message and aborts to the command prompt.

See also:
STOP

QMBasic 631

2.6-6

ABS()

The ABS() function returns the absolute (positive) value of a numeric expression.

The ABSS() function is similar to ABS() but operates on successive elements of a dynamic array,
returning a similarly structured dynamic array of results.

Format

ABS(expr)

where

expr evaluates to a number or a numeric array.

The ABS() function returns the absolute value of expr. If expr is positive or zero, the value of
ABS(expr) is expr. If expr is negative, the value of ABS(expr) is -expr.

If expr is a numeric array (a dynamic array where all elements are numeric), the ABS() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Examples

DIFF = ABS(A - B)

This statement assigns DIFF to the difference in value of A and B. The result is positive regardless
of which value is the greater.

A contains 11FM-2VM-8VM4

B = ABS(A)

B now contains 11FM2VM8VM4

OpenQM632

2.6-6

ACCEPT.SOCKET.CONNECTION()

The ACCEPT.SOCKET.CONNECTION() function opens a data socket on a server to handle an
incoming connection.

Format

ACCEPT.SOCKET.CONNECTION(srvr.skt, timeout)

where

srvr.skt is the server socket created by an earlier use of CREATE.SERVER.SOCKET.

timeout is the timeout period in milliseconds. A value of zero implies no timeout.

The ACCEPT.SOCKET.CONNECTION() function waits for an incoming connection on a
previously created server socket and returns a new data socket for this connection.

If the action is successful, the function returns a socket variable that can be used to read and write
data using the READ.SOCKET() and WRITE.SOCKET() functions. The STATUS()function
will return zero.

If the socket cannot be opened, the STATUS() function will return an error code that can be used to
identify the cause of the error. If no connection arrives before the timeout period expires, the error
code will be ER$TIMEOUT as defined in the SYSCOM ERR.H include record.

Example

SRVR.SKT = CREATE.SERVER.SOCKET("", 0)
IF STATUS() THEN STOP 'Cannot initialise server socket'
SKT = ACCEPT.SOCKET.CONNECTION(SRVR.SKT, 0)
IF STATUS() THEN STOP 'Error accepting connection'
DATA = READ.SOCKET(SKT, 100, SKT$BLOCKING, 0)
CLOSE.SOCKET SKT
CLOSE.SOCKET SRVR.SKT

This program fragment creates a server socket, waits for an incoming connection, reads a single
data packet from this connection and then closes the sockets.

See also:
CLOSE.SOCKET, CREATE.SERVER.SOCKET(), OPEN.SOCKET(), READ.SOCKET(),
SERVER.ADDR(), SET.SOCKET.MODE(), SOCKET.INFO(), WRITE.SOCKET()

QMBasic 633

2.6-6

ACOS()

The ACOS() function returns the arc-cosine (inverse cosine) of a value.

Format

ACOS(expr)

where

expr evaluates to a number or a numeric array.

The ACOS() function returns the arc-cosine of expr. Angles are measured in degrees.

If expr is a numeric array (a dynamic array where all elements are numeric), the ACOS() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Examples

ANGLE = ACOS(ADJ / HYP)

This statement finds the angle with cosine equal to the value of ADJ / HYP and assigns this to
variable ANGLE.

See also:
ASIN(), ATAN(), COS(), SIN(), TAN()

OpenQM634

2.6-6

ALPHA()

The ALPHA() function tests whether a string contains only alphabetic characters.

Format

ALPHA(string)

where

string evaluates to the string to be tested.

The ALPHA() function returns true (1) if string contains only alphabetic characters (A to Z, a to
z). The function returns false (0) for a null string or a string that contains non-alphabetic
characters.

Use of ALPHA() is equivalent to using pattern matching against a pattern of "1A0A".

Example

LOOP
 DISPLAY "Enter surname ":
 INPUT NAME
WHILE NOT(ALPHA(NAME))
 PRINTERR "Name is invalid"
REPEAT

This program fragment prompts for and inputs a name. If the name is null or contains
non-alphabetic characters, an error message is displayed and the prompt is repeated.

QMBasic 635

2.6-6

ANDS()

The ANDS() function performs a logical AND operation on successive elements of a dynamic
array, returning a similarly structured dynamic array of results.

Format

ANDS(expr1, expr2)

where

expr1, expr2 are the dynamic arrays to be processed.

The ANDS() function performs the logical AND operation between corresponding elements of the
two dynamic arrays and constructs a similarly structured dynamic array of results as its return
value. An element of the returned dynamic array is 1 if both of the corresponding elements of expr1
and expr2 are true. Any value other than zero or a null string is treated as true.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as false.

Examples

A contains 1VM1SM0VM0VM1FM0VM1
B contains 1VM0SM1VM0VM1FM1VM0

C = ANDS(A, B)

C now contains 1VM0SM0VM0VM1FM0VM0

See also:
EQS(), GES(), GTS(), IFS(), LES(), LTS(), NES(), NOTS(), ORS(), REUSE()

OpenQM636

2.6-6

ARG ()

The ARG() function returns and argument value based on its position in the argument list. It is
intended for use with subroutines declared with the VAR.ARGS option.

Format

ARG(n)

where

n is the argument list position, numbered from one.

Subroutines declared with the VAR.ARGS option may have a variable number of arguments.
Although each argument must have a name assigned to it in the SUBROUTINE statement, it is
often useful to be able to process a series of arguments by indexing this list.

The ARG() function returns the value of argument n. The actual number of arguments passed may
be determined using the ARG.COUNT() function. Use of an argument position value less than one
or greater than the number of arguments causes the program to abort.

Example

FUNCTION AVG(A,B,C,D,E) VAR.ARGS
 TOTAL = 0
 FOR I = TO ARG.COUNT()
 TOTAL += ARG(I)
 NEXT I
 RETURN TOTAL / ARG.COUNT()
END

The above function returns the average of the supplied arguments. Because this function is declared
with the VAR.ARGS option, the ARG.COUNT() function is used to determine the actual number
of arguments and the ARG() function is used to access each argument by its position.

See also:
ARG.COUNT(), SET.ARG

QMBasic 637

2.6-6

ARG.COUNT()

The ARG.COUNT() function returns the number of arguments passed into the current subroutine.
It is intended for use with subroutines declared with the VAR.ARGS option.

Format

ARG.COUNT()

When a program calls a subroutine that has been declared with the VAR.ARGS option, the actual
number of arguments passed may be fewer than the number of argument variables in the subroutine
definition. The unused argument variables will be left unassigned. The ARG.COUNT() function
allows a subroutine to determine the number of arguments that have been passed. See the ARG()
function for a way to access arguments by their position in the argument list.

When used in a function, the value returned by ARG.COUNT() excludes the hidden return
argument.

Example

FUNCTION AVG(A,B,C,D,E) VAR.ARGS
 TOTAL = 0
 FOR I = TO ARG.COUNT()
 TOTAL += ARG(I)
 NEXT I
 RETURN TOTAL / ARG.COUNT()
END

The above function returns the average of the supplied arguments. Because this function is declared
with the VAR.ARGS option, the ARG.COUNT() function is used to determine the actual number
of arguments and the ARG() function is used to access each argument by its position.

See also:
ARG(), SET.ARG

OpenQM638

2.6-6

ASCII()

The ASCII() function converts an EBCDIC string to ASCII.

Format

ASCII(expr)

where

expr evaluates to the string to be converted.

The ASCII() function returns the ASCII equivalent of the supplied EBCDIC string. Characters that
have no ASCII equivalent are returned as question marks.

See also:
EBCDIC()

QMBasic 639

2.6-6

ASIN()

The ASIN() function returns the arc-sine (inverse sine) of a value.

Format

ASIN(expr)

where

expr evaluates to a number or a numeric array.

The ASIN() function returns the arc-sine of expr. Angles are measured in degrees.

If expr is a numeric array (a dynamic array where all elements are numeric), the ASIN() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

ANGLE = ASIN(OPP / HYP)

This statement finds the angle with sine equal to the value of OPP / HYP and assigns this to
variable ANGLE.

See also:
ACOS(), ATAN(), COS(), SIN(), TAN()

OpenQM640

2.6-6

ASSIGNED()

The ASSIGNED() function tests whether a variable is assigned.

Format

ASSIGNED(var)

where

var is the variable to be tested.

All QMBasic variables except those in common blocks are initially unassigned. Any attempt to use
the contents of the variable in an expression would cause a run time error until such time as a value
has been stored in it. The ASSIGNED() function allows a program to test whether a variable has
been assigned, returning true (1) if it is assigned or (0) if it is unassigned.

Example

SUBROUTINE VALIDATE(ACCOUNT.CODE, ERROR)
 IF ASSIGNED(ACCOUNT.CODE) THEN
 ERROR = 0
 …processing code…
 END ELSE
 ERROR = 1
 END
 RETURN
END

This program fragment validates an account code. The use of the ASSIGNED() function prevents
an abort if the variable has not been assigned.

See also:
UNASSIGNED()

QMBasic 641

2.6-6

ATAN()

The ATAN() function returns the arc-tangent (inverse tangent) of a value.

Format

ATAN(expr)

where

expr evaluates to a number or a numeric array.

The ATAN() function returns the arc-tangent of expr. Angles are measured in degrees.

If expr is a numeric array (a dynamic array where all elements are numeric), the ATAN() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

ANGLE = ATAN(OPP / ADJ)

This statement finds the angle with tangent equal to the value of OPP / ADJ and assigns this to
variable ANGLE.

See also:
ACOS(), ASIN(), COS(), SIN(), TAN()

OpenQM642

2.6-6

BEGIN TRANSACTION

The BEGIN TRANSACTION statement marks the start of a new transaction.

Format

BEGIN TRANSACTION
{statements}
COMMIT / ROLLBACK
...

END TRANSACTION

A transaction is a group of updates that must either be performed in their entirety or not at all. The
BEGIN TRANSACTION statement starts a new transaction. All updates until a corresponding
END TRANSACTION are cached and only applied to the database when a COMMIT statement
is executed. Execution of the program then continues at the statement following the END
TRANSACTION.

The ROLLBACK statement discards any cached updates and continues at the statement following
the END TRANSACTION. A rollback is implied if the program executes the END
TRANSACTION directly.

Deletes and writes inside a transaction will fail unless the program holds an update lock on the
record or the file. All locks obtained inside the transaction are retained until the transaction
terminates and are then released. Locks already owned when the transaction begins will still be
present after the transaction terminates, even if the record is updated or deleted within the
transaction.

Closing a file inside a transaction appears to work in that the file variable is destroyed though the
actual close is deferred until the transaction terminates and any updates have been applied to the
file. Rolling back the transaction will not reinstate the file variable.

Access to indices using SELECTINDEX, SELECTLEFT or SELECTRIGHT inside a
transaction will not reflect any updates within the transaction as these have not been committed.

Updates to sequential records opened using OPENSEQ are not affected by transactions.

Transactions may be nested. If the BEGIN TRANSACTION statement is executed inside an
active transaction, the active transaction is stacked and a new transaction commences. Termination
of the new transaction reverts to the stacked transaction.

The following operations are banned inside transactions:
CLEARFILE
PHANTOM

Example

BEGIN TRANSACTION
 READU CUST1.REC FROM CUST.F, CUST1.ID ELSE ROLLBACK
 CUST1.REC<C.BALANCE> -= TRANSFER.VALUE

QMBasic 643

2.6-6

 WRITE CUST1.REC TO CUST.F, CUST1.ID

 READU CUST2.REC FROM CUST.F, CUST2.ID ELSE ROLLBACK
 CUST2.REC<C.BALANCE> += TRANSFER.VALUE
 WRITE CUST2.REC TO CUST.F, CUST2.ID
 COMMIT
END TRANSACTION

The above program fragment transfers money between two customer accounts. The updates are
only committed if the entire transaction is successful.

OpenQM644

2.6-6

BINDKEY()

The BINDKEY() function sets, removes, queries, saves or restores key bindings.

Format

BINDKEY(key.string, action)

where

key.string The character sequence for the key to be bound, unbound or queried.

action identifies the action to be performed:
>= 0 Bind key to this code (0 to 255)
-1 Remove binding for key.string.
-2 Query binding for key.string.
-3 Save bindings.
-4 Restore bindings from key.string.
-5 Disables lone Esc key handling in KEYCODE().
-6 Re-enables lone Esc key handling in KEYCODE().

The BINDKEY() function used with an action value in the range 0 to 255 binds the key sequence
in key.string to the given action value. This is the underlying mechanism of the KEYEDIT,
KEYEXIT and KEYTRAP statements used to set up keys for special handling by INPUT@ and
INPUTFIELD. If successful, the function returns true (1) and the STATUS() function would
return zero. If an error occurs, the function returns false(0) and the STATUS() function can be
used to find the cause of the error:

1 Invalid key.string
2 Invalid action
3 Key.string conflicts with an existing binding

An action value of -1 removes any defined binding for key.string. Used in this mode, the function
always returns true (1) even if there was no binding for this key.string.

An action value of -2 returns the action number bound to the given key.string. If there is no
binding, the function returns -1.

An action value of -3 returns a string that contains all defined key bindings. The value of key.string
is ignored. Programs should make no assumption about the format of this string as it may change
between releases of QM.

An action value of -4 restores the bindings define in a key.string that was returned by a previous
call to BINDKEY() with an action of -3. This action also restores the state of lone Esc key
handling to its setting at the time when the key bindings were saved.

Actions -5 and -6 control whether the KEYCODE() function returns char(27) on detection of an
incoming Escape character that is not followed by further characters. When this mode is enabled
(which is the default), the Esc is returned by KEYCODE(). When disabled, the Esc is always
treated as the start of a control sequence. These two action codes return true (1) if lone Esc key
handling was previously enabled, or false (0) if it was previously disabled.

QMBasic 645

2.6-6

Because retrieval of a key binding returns -1 if the key is not bound, it is easy to save and restore a
single key binding:

OLD.BINDING = BINDKEY(KEY.STRING, -2)
IF BINDKEY(KEY.STRING, NEW.ACTION) THEN ...

To restore the original binding, unbinding the key if there was no previous binding:
X = BINDKEY(KEY.STRING, OLD.BINDING)

To save and subsequently restore all bindings:
SAVED.KEYS = BINDKEY('', -3)
...rebind some keys and do some processing...
X = BINDKEY(SAVED.KEYS, -4)

See also:
INPUT@, INPUTFIELD, KEYCODE(), KEYEDIT, KEYEXIT, KEYTRAP

OpenQM646

2.6-6

BITAND()

The BITAND() function forms the bitwise logical AND of two integer values.

Format

BITAND(expr1, expr2)

where

expr1 and expr2 evaluate to integers

The BITAND() function converts expr1 and expr2 to 32 bit integers and performs a bit-by-bit
logical AND to form a new integer value as the result.

The value of each bit in the result is 1 if same bit position in both of expr1 and expr2 is 1.

Example

IF BITAND(N, 1) THEN N += 1

This statement adds one to N if the least significant bit is 1. The effect is to round N to an even
integer.

See also:
BITNOT(), BITOR(), BITRESET(), BITSET(), BITTEST(), BITXOR(), SHIFT()

QMBasic 647

2.6-6

BITNOT()

The BITNOT() function forms the bitwise logical NOT of an integer value.

Format

BITNOT(expr)

where

expr evaluates to an integer.

The BITNOT() function converts expr to a 32 bit integer and forms a result value by inverting
each bit.

Example

N = BITNOT(A)

This statement sets N to the logical inverse of A.

See also:
BITAND(), BITOR(), BITRESET(), BITSET(), BITTEST(), BITXOR(), SHIFT()

OpenQM648

2.6-6

BITOR()

The BITOR() function forms the bitwise logical OR of two integer values.

Format

BITOR(expr1, expr2)

where

expr1 and expr2 evaluate to integers

The BITOR() function converts expr1 and expr2 to 32 bit integers and performs a bit-by-bit
logical OR to form a new integer value as the result.

The value of each bit in the result is 1 if same bit position in one or both of expr1 and expr2 is 1.

Example

FLAGS = BITOR(FLAGS, 8)

This statement sets the bit with integer value 8 in the FLAGS variable.

See also:
BITAND(), BITNOT(), BITRESET(), BITSET(), BITTEST(), BITXOR(), SHIFT()

QMBasic 649

2.6-6

BITRESET()

The BITRESET() function turns off a specified bit in an integer value.

Format

BITRESET(expr, bit)

where

expr evaluates to the value in which the bit is to be reset.

bit evaluates to the bit position (0 to 31).

The BITRESET() function converts expr to a 32 bit integer and turns off (sets to 0) the bit
identified by bit to form a new integer value as the result. Bits are numbered from 0 to 31 from the
least significant end of the value. The effect of this function with a bit value outside this range is
undefined.

Example

FLAGS = BITRESET(FLAGS, 2)

This statement turns off bit 2 in the FLAGS variable.
See also:
BITAND(), BITNOT(), BITOR(), BITSET(), BITTEST(), BITXOR(), SHIFT()

OpenQM650

2.6-6

BITSET()

The BITSET() function turns on a specified bit in an integer value.

Format

BITSET(expr, bit)

where

expr evaluates to the value in which the bit is to be set.

bit evaluates to the bit position (0 to 31).

The BITSET() function converts expr to a 32 bit integer and turns on (sets to 1) the bit identified
by bit to form a new integer value as the result. Bits are numbered from 0 to 31 from the least
significant end of the value. The effect of this function with a bit value outside this range is
undefined.

Example

FLAGS = BITSET(FLAGS, 2)

This statement turns on bit 2 in the FLAGS variable.

See also:
BITAND(), BITNOT(), BITOR(), BITRESET(), BITTEST(), BITXOR(), SHIFT()

QMBasic 651

2.6-6

BITTEST()

The BITTEST() function tests the state of a specified bit in an integer value.

Format

BITTEST(expr, bit)

where

expr evaluates to the value in which the bit is to be tested.

bit evaluates to the bit position (0 to 31).

The BITTEST() function converts expr to a 32 bit integer and tests the state of the bit identified
by bit, returning true (1) if it is set and false (0) if it is reset. Bits are numbered from 0 to 31 from
the least significant end of the value. The effect of this function with a bit value outside this range is
undefined.

Example

IF BITTEST(FLAGS, 2) THEN DISPLAY(IT$CS) :

This statement clears the screen if bit 2 is set in the FLAGS variable.

See also:
BITAND(), BITNOT(), BITOR(), BITRESET(), BITSET(), BITXOR(), SHIFT()

OpenQM652

2.6-6

BITXOR()

The BITXOR() function forms the bitwise logical exclusive-OR of two integer values.

Format

BITXOR(expr1, expr2)

where

expr1 and expr2 evaluate to integers

The BITXOR() function converts expr1 and expr2 to 32 bit integers and performs a bit-by-bit
logical exclusive-OR to form a new integer value as the result.

The value of each bit in the result is 1 if same bit position in one and only one of expr1 and expr2 is
1.

Example

FLAGS = BITXOR(FLAGS, 8)

This statement inverts the bit with integer value 8 in the FLAGS variable.

See also:
BITAND(), BITNOT(), BITOR(), BITRESET(), BITSET(), BITTEST(), SHIFT()

QMBasic 653

2.6-6

BREAK

The BREAK statement allows the action of the break key to be disabled during program execution.

Format

BREAK {KEY} OFF
BREAK {KEY} ON
BREAK {KEY} CLEAR
BREAK {KEY} expr

where

expr evaluates to a number.

QM maintains a break inhibit counter which is set to zero before the command prompt is first
displayed. This counter is incremented by the BREAK OFF statement and decremented by
BREAK ON though it cannot become negative. Use of the break key whilst the counter is non-zero
will not cause a break action to occur. Instead, the break is remembered and will be handled when
the counter returns to zero. Multiple use of the break key will not result in more than one break
event being handled. The BREAK CLEAR statement cancels any deferred break event.

The BREAK expr format of this statement is equivalent to BREAK OFF if the value of expr is
zero, BREAK ON if expr is positive and BREAK CLEAR if expr is negative.

Example

BREAK OFF
GOSUB UPDATE.FILES
BREAK ON

This program fragment inhibits use of the break key while the internal subroutine UPDATE.FILES
is executed.

OpenQM654

2.6-6

CALL, ENTER

The CALL statement calls a catalogued subroutine. The ENTER statement is a synonym for
CALL unless the PICK.ENTER option of the $MODE directive is used.

Format

CALL name {(arg.list)}
CALL @var {(arg.list)}

where

name is the name of the subroutine to be called.

@var is the name of a variable holding the name of the subroutine to be called.

arg.list is the list of arguments to the subroutine.

A subroutine with no arguments is equivalent to a program. A whole matrix can be passed as an
argument by prefixing it with MAT.

Direct calls

Placing the subroutine name in the CALL statement is referred to as a direct call. QM will search
for the subroutine as described below when any CALL statement referencing the subroutine is first
executed in the program or subroutine. For CALL statements which occur within catalogued
subroutines the search will take place every time the calling subroutine itself is called. QM includes
an object code caching mechanism to minimise the performance impact of this repeated search.

Indirect calls

Executing a CALL statement using a variable to hold the subroutine name is referred to as an
indirect call. In this case, QM will search for the subroutine as described below when the first
CALL statement is executed. Indirect calls allow an application to call a subroutine where the
name of the routine was not known at compile time. This might be of use, for example, in menu
systems.

When an indirect call is executed, the variable containing the subroutine name is modified to
become a subroutine reference. This can still be used as a string in the program but also contains a
pointer to the memory resident copy of the subroutine. The subroutine will remain in memory so
long as one or more subroutine references point to it. Overwriting the variable will destroy the
subroutine link and may make the subroutine a candidate for removal from the object code cache.

One advantage of indirect calls is that, by placing the variable in a common block where it is
accessible by all modules of the application and will not be discarded, the catalogue search need
only be performed once even when the CALL is in a subroutine which itself may be called many
times. A direct call works in a similar way but the variable in which the subroutine reference is
placed is local to the program containing the CALL and is thus lost when the program terminates.

QMBasic 655

2.6-6

Searching for the subroutine

Subroutines to be executed using CALL must be placed in the catalogue using the CATALOGUE
command or the equivalent automated cataloguing from within the QMBasic compiler.

Subroutine names must conform to the QMBasic name formats except that two special prefix
characters are allow. An exclamation mark prefix character is used on all standard globally
catalogued subroutines provided as part of QM that are intended for user use. An asterisk prefix
may be used on user written globally catalogued subroutines for compatibility with other products.

Unless the subroutine name commences with one of the global catalogue prefix characters, QM
goes through a series of steps when a CALL statement searches for a subroutine:

· The local catalogue is checked. This consists of a VOC record of the form
Field 1 V
Field 2 CS
Field 3 Runfile pathname

· The private catalogue file is checked.

· The global catalogue is checked.

Note that subsequent calls to the same subroutine where the subroutine reference has not been reset
will continue to use the original catalogued routine even if it has been deleted from the catalogue or
replaced.

The argument list may contain up to 255 items. If a subroutine has no arguments, the brackets may
be omitted.

Each argument is
A constant CALL SUB("MY.FILE")
An expression CALL SUB(X + 7)
A variable name CALL SUB(X)
An indexed matrix element name CALL SUB(A(5,2))
A matrix name prefixed by MAT CALL SUB(MAT A)

Where the argument is a reference to a variable, a matrix element or a whole matrix, the subroutine
may update the values in these variables. Except when passing a whole matrix, the calling program
can effectively prevent this by forcing the argument to be passed by value rather than by reference
by enclosing it in brackets, thus making the argument into an expression.

Pick Style ENTER

By default, the ENTER statement is a synonym for CALL. Use of the PICK.ENTER option of
the $MODE compiler directive causes ENTER to behave in the same way as its equivalent in Pick
style multivalue database products.

In this mode, use of ENTER terminates the current program and replaces it with the named
program. This new program may not take arguments. If the ENTER statement is performed in a
program that was started using the EXECUTE statement, or a subroutine called from such a
program, the ENTER does not discard the program containing the EXECUTE.

Examples

OpenQM656

2.6-6

COMMON /COM1/ INITIALISED, SUB1
IF NOT(INITIALISED) THEN
 SUB1 = "SUBR1"
 INITIALISED = @TRUE
END

This program fragment declares a common block to hold subroutine call references. When the
program is first executed, the conditional statements will be performed as common block variables
are initially zero. This path sets the name of the subroutine SUBR1 into common variable SUB1.

Later in the program, perhaps in a different subroutine from that in which the common was
initialised, a statement of the form

CALL @SUB1(ARG1, ARG2)

will call the SUBR1, changing the common variable to be a subroutine reference for fast access on
subsequent calls.

A statement of the form

CALL SUBR1(ARG1, ARG2)

would call the same subroutine but does not use the common block variable. If this call was in a
subroutine, the catalogue search would be performed for the first call each time the calling
subroutine is entered.

QMBasic 657

2.6-6

CASE

The CASE statement provides conditional execution dependant on the result of expression
evaluation.

Format

BEGIN CASE
CASE expr

statement(s)
CASE expr

statement(s)
END CASE

where

expr is an expression which can be resolved to a numeric value

statement(s) is a group of QMBasic statements. There may be any number of
statements in the group (including zero).

The expressions are evaluated in turn until one evaluates to true. The statements associated with
that test expression are then executed and control passes to the statement following the END CASE
. Only one of the statement groups is executed. If none of the test expressions evaluates to true, no
statements are executed.

It is frequently useful to execute a default set of statements where no specific test expression results
in non-zero result. This can be achieved by a case of the form

CASE 1

which makes use of the fact that 1 is the value of the boolean True. This must be the final element
of the CASE statement.

Example

N = DCOUNT(ITEMS, @VM)
BEGIN CASE
 CASE N = 0
 DISPLAY "There are no items"
 CASE N = 1
 DISPLAY "There is 1 item"
 CASE 1
 DISPLAY "There are " : N : " items"
END CASE

This program fragment displays a message indicating the number of values in the ITEMS variable.
Note the use of the CASE 1 construct.

OpenQM658

2.6-6

CATALOGUED()

The CATALOGUED() function determines whether a subroutine can be found using the search
process described for the CALL statement.

Format

CATALOGED(name)

where

name is the calling name of the program

The CATALOGUED() function returns
0 the subroutine is not catalogued
1 the subroutine is catalogued locally as a V type VOC entry
2 the subroutine is catalogued privately
3 the subroutine is catalogued globally

Where a subroutine name appears in more than one catalogue form, the search order is as in the list
above and the value returned reflects the first entry found.

The return value from the CATALOGUED() function can be treated as a boolean (true/false)
value if the application merely wants to determine if a subroutine is catalogued and does not need to
know in which format.

Example

IF NOT(CATALOGUED('MYPROG')) THEN DISPLAY 'Not catalogued'

This statement displays a message if MYPROG is not in the system catalogue.

See also:
CATALOGUE, CALL

QMBasic 659

2.6-6

CATS()

The CATS() function concatenates corresponding elements of a dynamic array.

Format

CATS(string1, string2)

where

string1 is the string to which string2 is to be concatenated.

string2 is the concatenation string.

The CATS() function returns the result of concatenating corresponding dynamic array components
(fields, values and subvalues) from the supplied strings.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as null strings.

Example

S1 = "ABC":@fm:"DEF"
S2 = "123":@vm:"456":@fm:"789"
X = CATS(S1,S2)

The above code fragment concatenates elements of the two strings yielding a result in X of
"ABC123VM456FMDEF789"

OpenQM660

2.6-6

CHAIN

The CHAIN statement terminates the current program and executes a command.

Format

CHAIN expr

where

expr evaluates to a command.

The current program terminates immediately, discarding local variables but retaining common
variables. The command defined by expr is executed as though it replaced the sentence which
invoked the program in which the CHAIN statement occurs. If this sentence is in a paragraph, the
remainder of the paragraph will be executed when the CHAIN'ed program terminates.

The exact behaviour of CHAIN when executed from a program started by a PROC depends on the
VOC record type of the target item referenced by expr. If this is a further PROC, any stacked
PROCs leading up to the program that performed the CHAIN are discarded. If the target is not a
PROC, control will return to the PROC that executed the program performing the CHAIN when
the chained command terminates.

The unnamed common block is discarded on execution of a CHAIN unless the
CHAIN.KEEP.COMMON mode of the OPTION command is active.

CHAIN is provided primarily for compatibility with other systems. The same effect can usually be
better achieved using EXECUTE.

Examples

CHAIN "RUN PROGRAM2"

This program fragment terminates the current program and executes PROGRAM2 in its place.

QMBasic 661

2.6-6

CHANGE()

The CHANGE() function replaces occurrences of a substring within a string by another substring.
The synonym SWAP() can be used.

Format

CHANGE(string, old, new{, occurrence{, start}})

where

string is the string in which the replacement is to occur.

old evaluates to the substring to be replaced.

new evaluates to the substring with which old is to be replaced.

occurrence evaluates to the number of occurrences of old to be replaced. If omitted or
specified as a value of less than one, all occurrences are replaced.

start specifies the first occurrence to be replaced. If omitted or specified as a value
of less than one it defaults to one.

The CHANGE() function replaces the specified occurrences of old within string by new.

If old is a null string, the function returns string unchanged. If new is a null string, all occurrences
of old are removed.

If the $NOCASE.STRINGS compiler directive is used, matching of old against string is case
insensitive.

Examples

PRINT CHANGE("ABRACADABRA", "A", "a", 3, 2)

This statement results in printing the string "ABRaCaDaBRA".

See also:
CONVERT()

OpenQM662

2.6-6

CHAR()

The CHAR() function returns the character with a given ASCII value.

Format

CHAR(seq)

where

seq evaluates to an integer in the range 0 to 255.

The CHAR() function returns a single character string containing the ASCII character with value
seq. It is the inverse of the SEQ() function.

Only the least significant 8 bits of the integer value of seq are used. Values outside the range 0 to
255 may behave differently on other systems and should not be relied on.

Example

DISPLAY CHAR(7):

This statement outputs character 7 of the ASCII character set to the display. Character 7 is the
BELL character and causes the audible warning to sound. This is similar to use of the
@SYS.BELL variable except that CHAR(7) is not affected by use of the BELL OFF verb and will
always work.

See also:
SEQ()

QMBasic 663

2.6-6

CLASS

The CLASS statement declares a class module.

Format

CLASS name {MAX.ARGS limit} {INHERITS class.list}

where

name is the name of the module.

limit is the maximum number of arguments allowed in public function and subroutines
within the class module. This defaults to 32 and cannot exceed 255.

class.list is a comma separated list of the catalogue names of classes to be inherited by this
class. These should not be enclosed in quotes.

QMBasic programs should commence with a PROGRAM, SUBROUTINE, FUNCTION or
CLASS statement. If none of these is present, the compiler behaves as though a PROGRAM
statement had been used with name as the name of the source record.

The CLASS statement must appear before any executable statements. For more details, see Object
Oriented Programming.

The name need not be related to the name of the source record though this eases program
maintenance but it must comply with the QMBasic name format rules.

A class module contains the components of a QMBasic object. The general structure of this is

CLASS name
 PUBLIC A, B(3), C
 PRIVATE X, Y, Z

 PUBLIC SUBROUTINE SUB1(ARG1, ARG2) {VAR.ARGS}
 ...processing...
 END

 PUBLIC FUNCTION FUNC1(ARG1, ARG2) {VAR.ARGS}
 ...processing...
 RETURN RESULT
 END

 ...Other QMBasic subroutines...
END

The MAX.ARGS option can be used to increase the default limit on the number of arguments
permitted in a public function or subroutine within the class module. This has a small effect on
performance and should only be used where the default value of 32 needs to be exceeded.

The INHERITS option causes the named class or classes to be inherited automatically by this class

OpenQM664

2.6-6

when it is instantiated.

See also:
Object oriented programming, DISINHERIT, INHERIT, OBJECT(), PRIVATE, PUBLIC.

QMBasic 665

2.6-6

CLEAR

The CLEAR statement sets all local variables to zero.

Format

CLEAR

All local variables, including all elements of matrices, are set to zero. Files associated with local file
variables will be closed. The value of variables in common areas are not affected.

OpenQM666

2.6-6

CLEARCOMMON

The CLEARCOMMON statement sets all variables in the unnamed common area to zero.

Format

CLEARCOMMON

CLEAR COMMON

All variables in the unnamed common area are set to zero. Other variables are not affected.

See also:
COMMON

QMBasic 667

2.6-6

CLEARDATA

The CLEARDATA statement clears any data stored by previous DATA statements or DATA
verbs and not yet processed by INPUT statements.

Format

CLEARDATA

The data queue is cleared. Any keyboard type-ahead is not affected by this statement. The
CLEARDATA statement is most useful when recovering from error situations where the data
queue could cause problems.

Stored data is cleared automatically on return to command prompt.

Example

ERROR.LABEL:
 CLEARDATA
 ABORT "A fatal error has occurred"

This program fragment could be used to ensure that the data queue is empty when aborting at some
error condition.

OpenQM668

2.6-6

CLEARFILE

The CLEARFILE statement clears a file previously opened using the OPEN statement, deleting
all records.

Format

CLEARFILE file.var {ON ERROR statement(s)}

where

file.var is a file variable for an open file.

The file associated with the file variable will be cleared. All records are deleted from the file,
contracting the file to its minimum modulus size and releasing disk space.

The ON ERROR clause is executed if the file cannot be cleared for any reason. The STATUS()
function may be used to find the cause of such an error.

Note that the CLEARFILE statement executes the clear file trigger function, not the delete trigger
function if one is defined.

This statement may not be used inside a transaction.

Example

OPEN "STOCK.FILE" TO STOCK THEN
 CLEARFILE STOCK
 CLOSE STOCK
END
ELSE ABORT "Cannot open file"

This program fragment opens a file, clears it and then closes the file.

QMBasic 669

2.6-6

CLEARINPUT

The CLEARINPUT statement clears any keyboard data that has been entered but not yet
processed by INPUT or KEYIN() statements.

The synonym INPUTCLEAR may be used in place of CLEARINPUT.

Format

CLEARINPUT

CLEAR INPUT

Any type-ahead data is cleared. Data stored by the DATA statement is not affected.

Example

ERROR.LABEL:
 CLEARINPUT
 ABORT "A fatal error has occurred"

This program fragment could be used to ensure that data entered at the keyboard is cleared when
aborting at some error condition.

OpenQM670

2.6-6

CLEARSELECT

The CLEARSELECT statement clears one or all select lists.

Format

CLEARSELECT {list.no}

CLEARSELECT ALL

where

list.no evaluates to the number of the select list to be cleared. If omitted, select list zero is
cleared.

Select lists are numbered from 0 to 10. Where no list number is specified, the default is to use select
list 0.

The CLEARSELECT statement clears the select list if it was active. Use of the ALL keyword
causes all select lists to be cleared.

Example

CLEARSELECT 2

This statement clears select list number 2.

QMBasic 671

2.6-6

CLOSE

The CLOSE statement closes a file previously opened using the OPENor OPENPATH statement.

Format

CLOSE file.var {ON ERROR statement(s)}

where

file.var is a file variable for an open file.

The file associated with the file variable will be closed. Any other file variable which refers to the
same file, either from a separate OPEN or from copying the file variable, will be unaffected.

The ON ERROR clause is provided for source program compatibility with other systems and will
never be executed by QMBasic programs.

Files do not always need to be closed explicitly. Local variables are released when a program or
subroutine returns and files associated with local file variables are closed automatically. File
variables in common areas will not be affected.

Closing a file inside a transaction destroys the file variable but defers the actual close until the
transaction ends. Rolling back the transaction will not reinstate the file variable.

Example

OPEN "STOCK.FILE" TO STOCK ELSE ABORT "Cannot open file"
...further statements...
CLOSE STOCK

This program fragment opens a file, processes it and then closes the file.

OpenQM672

2.6-6

CLOSESEQ

The CLOSESEQ statement closes an item previously opened using OPENSEQ.

Format

CLOSESEQ file.var {ON ERROR statement(s)}

where

file.var is the file variable previously associated with the directory file record or device
by use of the OPENSEQ statement.

statement(s) are statement(s) to be executed if the close action fails.

The directory file record or device is closed.

The ON ERROR clause is provided for source program compatibility with other systems and will
never be executed by QMBasic programs.

The CLOSESEQ and CLOSE statements can be interchanged without adverse effect in QMBasic
programs, however, care should be taken to use the correct statement if portability to other systems
is required.

Example

CLOSESEQ STOCK.LIST

This statement closes a directory file record previously opened using OPENSEQ and associating it
with STOCK.LIST as the file variable.

See also:
NOBUF, OPENSEQ, READBLK, READSEQ, SEEK, WEOFSEQ WRITEBLK,
WRITESEQ, WRITESEQF

QMBasic 673

2.6-6

CLOSE.SOCKET

The CLOSE.SOCKET statement closes a socket.

Format

CLOSE.SOCKET skt

where

skt is the socket variable corresponding to the socket to be closed.

The socket previously opened using ACCEPT.SOCKET.CONNECTION(),
CREATE.SERVER.SOCKET() or OPEN.SOCKET() is closed.

See also:
ACCEPT.SOCKET.CONNECTION, CREATE.SERVER.SOCKET(), OPEN.SOCKET(),
READ.SOCKET(), SERVER.ADDR(), SET.SOCKET.MODE(), SOCKET.INFO(),
WRITE.SOCKET()

OpenQM674

2.6-6

COL1()

The COL1() function returns the character position immediately preceding the substring extracted
by the last FIELD() function.

Format

COL1()

The COL1() function is used after a FIELD() function to find the character position of the
character immediately preceding the extracted substring.

The value of the COL1() function is maintained on a per-program basis. If an external subroutine
is called between the FIELD() and COL1() functions, the value returned relates to the last use of
FIELD() in the current program. Any FIELD() functions executed by the subroutine will have no
effect on the COL1() value.

COL1() returns zero if

No FIELD() function has been executed by this program

The last field extracted was at the start of the string

The delimiter to the last FIELD() function was a null string

The field number of the last FIELD() function was beyond the end of the string

Example

S = "A*BB*CCC*DDDD*EEEEE"
X = FIELD(S, "*", 3, 2)
N = COL1()

This program fragment extracts the string "CCC*DDDD" to variable X. The COL1() function
returns 5 and assigns this to N.

See also:
COL2(), FIELD()

QMBasic 675

2.6-6

COL2()

The COL2() function returns the character position immediately following the substring extracted
by the last FIELD() function.

Format

COL2()

The COL2() function is used after a FIELD() function to find the character position of the
character immediately following the extracted substring.

The value of the COL2() function is maintained on a per-program basis. If an external subroutine
is called between the FIELD() and COL2() functions, the value returned relates to the last use of
FIELD() in the current program. Any FIELD() functions executed by the subroutine will have no
effect on the COL2() value.

COL2() returns zero if

No FIELD() function has been executed by this program

The field number of the last FIELD() function was beyond the end of the string

Example

S = "A*BB*CCC*DDDD*EEEEE"
X = FIELD(S, "*", 3, 2)
N = COL2()

This program fragment extracts the string "CCC*DDDD" to variable X. The COL2() function
returns 14 and assigns this to N.

See also:
COL1(), FIELD()

OpenQM676

2.6-6

COMMON

The COMMON statement declares variables in a common block.

Format

COMMON {/name/} var1 {,var2...}

where

name is the name of the common block

var1, etc are variable names

The COMMON statement is used to define variables as being in common blocks, that is, memory
areas that may be used to pass data between different programs and subroutines.

The variable names may extend over multiple lines by splitting the statement after a comma. For
example

COMMON /VARS/ VAR1, VAR2,
 VAR3, VAR4

The same common block could be defined as

COMMON/VARS/ VAR1
COMMON/VARS/ VAR2
COMMON/VARS/ VAR3
COMMON/VARS/ VAR4

The compiler assumes that definitions of variables with the same common block name are a
continuation of previous definitions in the same block.

Common blocks are identified by the name that is used in the COMMON statement. The name of a
common block must conform to the same rules as a variable name. Multiple programs in the same
process using the same name share the same variables. Named common blocks are created on the
first reference to the name and remain in existence until exit from QM. There is also a common
block with no name (unnamed common) which may be referred to by a COMMON statement of
the form

COMMON var1, var2
or

COMMON // var1, var2

The unnamed common block is associated with a single command and is discarded on termination
of the command that created it. Use of the EXECUTE statement saves and removes any current
unnamed common and restores it on completion of the executed command.

A common block may contain any number of variables but the number of variables may not be
increased by later redefinition. It is valid for a program to define fewer variables than in the original
common block declaration. This is useful if a new item has been added at the end of a common
block but not all programs have yet been recompiled.

QMBasic 677

2.6-6

Variables within a common block are referenced internally by position, not by name. Thus it would
be possible (though not recommended) for different programs to use different names when accessing
the same common block. Normally, the structure of a common block is best defined in an include
record so that the same definition is used by all parts of the application.

By default, the variables in a common block are initialised to integer zero when the block is created.
It is thus possible to include QMBasic code to perform further initialisation just once by statements
of the form

COMMON /MYCOMMON/ INITIALISED,
 VAR1,
 VAR2,
 VAR3,...etc...
IF NOT(INITIALISED) THEN
 ...do initialisation tasks...
 INITIALISED = @TRUE
END

For compatibility with some other systems, the UNASSIGNED.COMMON option of the $MODE
compiler directive can be used to specify that common blocks are to be created with their
component variables left unassigned instead of being set to zero. This directive only affects the
program that actually creates the common block (i.e. the first program executed that references the
common). It has no effect if the common has already been created. It is possible for an application
to mix assigned and unassigned common by careful placement of the $MODE directive.

Common blocks may contain matrices. These are defined by including the row and column bounds
in the COMMON statement, for example

COMMON /MYCOMMON/ MAT1(5,3)

QM supports two styles of matrix with different characteristics. The $MODE compiler directive
can be used to select Pick style matrices.

The default style of matrix includes a zero element and is resizeable. A matrix of this type in a
common block can be redimensioned by a later DIM statement.

Pick style matrices do not have a zero element and cannot be resized. A matrix of this type in a
common block is equivalent to a series of simple variables. Thus, although not recommended, three
programs could use very different views of the same five element common block.

COMMON A,B(3),C
COMMON X(2),Y,Z(2)
COMMON P,Q,R,S,T

OpenQM678

2.6-6

COMPARE()

The COMPARE() function compares two strings using the same rules as the LOCATE statement
and the SORT verb.

Format

COMPARE(string1, string2 {, justification})

where

string1, string2 evaluate to the strings to be compared.

justification evaluates to a string where the first character is "L" for left justified
comparison or "R" for right justified comparison. If omitted or invalid, left
justification is used.

The COMPARE() function compares the two strings and returns

1 string1 is greater than string2

0 string1 is equal to string2

-1 string1 is less than string2

For a left justified comparison, characters are compared one by one and the function return value is
determined by the relative ASCII character set positions of the characters at which the first
mismatch occurs. If the strings are of different lengths and match up to the end of the shorter, the
longer string is treated as the greater.

For a right justified comparison, the COMPARE() function behaves as though sufficient spaces
were inserted at the start of the shorter string to match the length of the longer string. Characters are
then compared one by one and the function return value is determined by the relative ASCII
character set positions of the characters at which the first mismatch occurs.

The COMPARE() function is not affected by the setting of the $NOCASE.STRINGS compiler
directive and can therefore be used to force a case sensitive comparison in otherwise case insensitive
programs..

Examples

A = 0
B = '00'
DISPLAY A = B
DISPLAY COMPARE(A,B)

In the above example, use of the relational equals operator will see A and B as equal because both
items can be treated as numbers. B is converted to a number (0) and a numeric comparison is
performed. Use of the COMPARE() function always treats the items as character strings. A is
converted to a string and the two items are compared as left aligned strings, reporting that they are
unequal.

QMBasic 679

2.6-6

DIM ITEM(100)
ITEMS = 0
LOOP
 INPUT NEW.ITEM
WHILE LEN(NEW.ITEM)
 * Find position to insert new item
 I = 1
 LOOP
 WHILE I <= ITEMS
 IF COMPARE(NEW.ITEM, ITEM(I)) < 0 THEN EXIT
 I += 1
 REPEAT

 * Insert item at position I
 FOR J = ITEMS TO I STEP - 1
 ITEM(J + 1) = ITEM(J)
 NEXT J
 ITEM(I) = NEW.ITEM
 ITEMS += 1
REPEAT

This program fragment creates a matrix, ITEMS, and then enters a loop to read NEW.ITEM values
from the keyboard until a blank line is entered. Each item read is inserted into the matrix in its
correct position to maintain the matrix in ascending collating sequence order. Additional statements
to detect and handle matrix overflow would be useful in a full application.

OpenQM680

2.6-6

CONFIG()

The CONFIG() function returns the value of a configuration parameter.

Format

CONFIG(param)

where

param is the name of the parameter to be retrieved.

The CONFIG() function can be used to retrieve the value of configuration parameters defined in
the QM configuration file. The STATUS() function will return zero if successful.

If param is not recognised as a configuration parameter name, the function returns a null string and
the STATUS() function will return ER$NOT.FOUND.

Example

GS = CONFIG("GRPSIZE")

This statement returns the value of the GRPSIZE configuration parameter, the default group size
used when creating a dynamic file.

QMBasic 681

2.6-6

CONNECT.PORT()

The CONNECT.PORT() function converts a phantom process into an interactive session, using a
serial port as its terminal device.

This function is only available on Windows.

Format

CONNECT.PORT(port, baud, parity, bits, stop)

where

port is the name of the serial port to be used (e.g. COM1).

baud evaluates to the data rate (e.g. 9600).

parity specifies the parity setting for the connection (0 = none, 1 = odd, 2 = even).

bits specifies the number of bits per byte.

stop specifies the number of stop bits (1 or 2).

The CONNECT.PORT() function enables an application to start a phantom process that then uses
a serial port as though it were a terminal device. The function returns true (1) if successful, false (0)
if it fails. The STATUS() function can be used to determine the cause of failure.

Once the connection has been created, the process changes from a phantom to an interactive session
and can use the normal QMBasic terminal i/o statements such as INPUT and PRINT to access the
port. If the program exits to the command processor, the connection can be used in exactly the same
way as if the user had logged in over the serial port. To terminate the session from within a
program, execute the QUIT command.

Because this function converts the phantom process into an interactive user, the process consumes a
licence. The CONNECT.PORT() function will fail if the user limit has been reached.

Example

IF NOT(CONNECT.PORT('COM1', 9600, 0, 8, 1)) THEN
 STOP 'Cannot open COMO1 port'
END

This program fragment, used in a phantom process, connects to the device on the COM1 port as the
command source, converting the process into an interactive session.

OpenQM682

2.6-6

CONTINUE

The CONTINUE statement continues execution of the next cycle of a LOOP/REPEAT or
FOR/NEXT structure.

Format

CONTINUE

The CONTINUE statement is equivalent to a jump to the REPEAT or NEXT statement of the
innermost loop structure.

Example

LOOP
 REMOVE ITEM FROM STOCK SETTING DELIM
 ...processing statements...
WHILE DELIM
 IF ITEM[1,1] = "A" THEN CONTINUE
 ...further statements...
REPEAT

This program fragment processes items extracted from the STOCK dynamic array. If the value of
ITEM commences with "A", the section marked ...further statements... is omitted.

See also:
EXIT, FOR/NEXT, LOOP/REPEAT

QMBasic 683

2.6-6

CONVERT

The CONVERT statement and CONVERT() function replace selected characters by others in a
string. The CONVERT statement performs this conversion in-situ; the CONVERT() function
leaves the source string unchanged and returns the modified value.

Format

CONVERT from.string TO to.string IN var

CONVERT(from.string, to.string, source.string)

where

from.string evaluates to a string containing the characters to be replaced.

to.string evaluates to a string containing the replacement characters.

var is the variable in which the replacement is to occur.

src.string is the string in which replacement is to occur.

The statement

S = CONVERT(X, Y, S)

is equivalent to

CONVERT X TO Y IN S

Characters taken from the from.string and to.string define character translations to be performed.
Each occurrence of a character from from.string in var (or src.string) is replaced by the character
in the same position in to.string. If to.string is shorter than from.string, characters for which there
is no replacement character are deleted. If to.string is longer than from.string the surplus characters
are ignored.

If a character appears more than once in from.string only the first occurrence is used.

If the $NOCASE.STRINGS compiler directive is used, matching of from.string against var is case
insensitive.

Examples

S = "ABCDEFGHIJK"
CONVERT "CGAGJ" TO "123" IN S

This program fragment replaces all occurrences of the letter "C" in S by "1", "G" by "2" and "A" by
"3". The second occurrence of "G" in the from.string is ignored. The letter "J" is deleted from S.
The result of this operation is to set S to "3B1DEF2HIK".

OpenQM684

2.6-6

PRINT CONVERT(" ", "#", S)

This statement prints the string S with all spaces replaced by # characters.

LOOP
 INPUT ISBN,13_:
UNTIL CONVERT('0123456789X-', '', ISBN) = ''
 INPUTERR 'Invalid ISBN'
REPEAT

The loop above verifies that the data entered by the user contains only digits, the letter X and
hyphens. The CONVERT() function is used to return a copy of the input data with all valid
characters removed. If the result string is not null, it must contain an invalid character.

See also:
CHANGE()

QMBasic 685

2.6-6

COS()

The COS() function returns the cosine of a value.

Format

COS(expr)

where

expr evaluates to a number or a numeric array.

The COS() function returns the cosine of expr. Angles are measured in degrees.

If expr is a numeric array (a dynamic array where all elements are numeric), the COS() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

ADJ = HYP * COS(ANGLE)

This statement finds the length of the adjacent side of a right angled triangle from the length of the
hypotenuse and the angle between these two sides.

See also:
ACOS(), ASIN(), ATAN(), SIN(), TAN()

OpenQM686

2.6-6

COUNT()

The COUNT() function counts occurrences of a substring within a string. The COUNTS()
function is similar to COUNT() but operates on successive elements of a dynamic array, returning
a similarly structured dynamic array of results.

Format

COUNT(string, substring)

COUNTS(string, substring)

where

string evaluates to the string in which substrings are to be counted.

substring evaluates to the substring to count.

The COUNT() function counts occurrences of substring within string. Substrings may not overlap,
thus

S = "ABABABABABAB"
N = COUNT(S, "ABA")

sets N to 3.

If substring is null, COUNT() returns the length of string.

Programs compiled with the $NOCASE.STRINGS compiler directive use case insensitive string
comparisons in the COUNT() and COUNTS() functions.

Example

MARKS = COUNT(REC, @FM)

This statement counts the field marks in REC.

See also:
DCOUNT()

QMBasic 687

2.6-6

CREATE

The CREATE statement creates an empty directory file record after a previous OPENSEQ has
reported that the record did not exist.

Format

CREATE file.var
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed depending on the outcome of the CREATE
.

The ON ERROR clause is taken in the event of a fatal error that would otherwise cause the
program to abort.

At least one of the THEN and ELSE clauses must be present. The THEN clause is executed if the
operation is successful. The ELSE clause is executed if the CREATE operation fails.

Example

OPENSEQ 'AUDIT', DATE() TO SEQ.F ELSE
 IF STATUS() THEN ABORT 'Error opening audit record'
 CREATE SEQ.F ELSE ABORT 'Error creating audit record'
END ELSE
 SEEK SEQ.F, 0, 2
END

This program fragment attempts to open a sequential file record. If the OPENSEQ fails because
the record does not exist, an empty record is created.

OpenQM688

2.6-6

CREATE.FILE

The CREATE.FILE statement creates the operating system representation of a directory or
dynamic hash file.

Format

CREATE.FILE path {DIRECTORY | DYNAMIC}
{GROUP.SIZE grpsz}
{BIG.REC.SIZE bigrec}
{MIN.MODULUS minmod}
{SPLIT.LOAD split}
{MERGE.LOAD merge}
{VERSION ver}
{ON ERROR statement(s)}

where

path evaluates to the pathname of the file to be created. The DIRECTORY or
DYNAMIC keywords determine the type of file to be created. One and only one of
these keywords must be present. The remaining options apply only to creation of a
dynamic file and, where included, must appear in the order shown above.

grpsz is the group size (1 - 8) in multiples of 1024 bytes.

bigrec is the large record size in bytes.

minmod is the minimum modulus value.

split is the split load percentage.

merge is the merge load percentage.

ver is the file version.

The CREATE.FILE statement creates the operating system representation of a directory or
dynamic hash file using the configuration information supplied via its optional parameters. Omitted
parameters take their system defined default values. Note that this statement does not create a
corresponding VOC entry.

Example

CREATE.FILE 'C:\MYFILE' DYNAMIC GROUP.SIZE 4

This statement creates a dynamic hash file with group size 4 (4096 bytes) as the C:\MYFILE
directory.

QMBasic 689

2.6-6

CREATE.SERVER.SOCKET

The CREATE.SERVER.SOCKET() function creates a server socket on which a program may
wait for incoming connections.

Format

CREATE.SERVER.SOCKET(addr, port)

where

addr is the address on which to listen for incoming connections. This may be an IP
address or a host name. A null string implies listen on any local port.

port is the port number on which to listen for incoming connections.

If the action is successful, this function returns the socket variable associated with the new server
port and the STATUS() function returns zero.

If unsuccessful, the STATUS() function returns an error code that can be used to determine the
cause of failure.

Example

SRVR.SKT = CREATE.SERVER.SOCKET("", 0)
IF STATUS() THEN STOP 'Cannot initialise server socket'
SKT = ACCEPT.SOCKET.CONNECTION(SRVR.SKT, 0)
IF STATUS() THEN STOP 'Error accepting connection'
DATA = READ.SOCKET(SKT, 100, SKT$BLOCKING, 0)
CLOSE.SOCKET SKT
CLOSE.SOCKET SRVR.SKT

This program fragment creates a server socket, waits for an incoming connection, reads a single
data packet from this connection and then closes the sockets.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, OPEN.SOCKET(),
READ.SOCKET(), SERVER.ADDR(), SET.SOCKET.MODE(), SOCKET.INFO(),
WRITE.SOCKET()

OpenQM690

2.6-6

CROP()

The CROP() function removes redundant mark characters from a string.

Format

CROP(string)

where

string evaluates to the string from which mark characters are to be removed.

The CROP() function removes redundant mark characters from string. These are all mark
characters after the final non-mark character, trailing subvalue marks within each value and trailing
value marks within each field.

Example

REC = CROP(REC)

This statement removes all redundant mark characters from REC.

QMBasic 691

2.6-6

CSVDQ()

The CSVDQ() function dequotes a CSV (comma separated variable) string.

Format

CSVDQ(string {, delimiter})

where

string is the string to be processed.

delimiter is the delimiter character separating the elements of the string. This defaults to a
comma if omitted.

The CSVDQ() function dequotes a CSV string, removing outer double quotes, handling embedded
quotes and returning the result as a dynamic array where each element of the original string is
represented by a separate field.

Example

S = 'ABC,"DEF","GHI,JKL","MN""O"'
DISPLAY CSVDQ(S)

The above program fragment would display
ABCFMDEFFMGHI,JKLFMMN"O

ABC was unquoted and remains unchanged.
DEF was quoted. The quotes have been removed.
GHI,JKL contains a comma that has been preserved after removal of the quotes.
MN"O contains an embedded quote that has been preserved.

OpenQM692

2.6-6

DATA

The DATA statement adds one or more items to the input data queue

Format

DATA expr{, expr...}

where

expr evaluates to the value to be added to the input data queue.

Where multiple expr clauses are present, they may be spread over successive lines by inserting a
newline between a comma and the subsequent item. Any number of expr clauses may be present.

The INPUT statement takes data provided by DATA statements in preference to reading from the
keyboard. Keyboard input is only used if there is no data from DATA statements remaining to be
processed. The KEYIN() function always takes its input from the keyboard.

The data stream generated by successive DATA statements is held in the @DATA.PENDING
variable which may be read by programs. This variable contains the individual data items separated
by item marks. For this reason, DATA statement items should not include item marks as these will
be taken as separators.

Example

DATA "123", "456"
DATA "789"
LOOP
 INPUT S
WHILE LEN(S)
 DISPLAY "'" : S : "'"
REPEAT

This program fragment would result in display of

123
456
789

and then echo data typed at the keyboard until a blank line is entered.

See also:
CLEARDATA

QMBasic 693

2.6-6

DATE()

The DATE() function returns the internal value of the current date.

Format

DATE()

The DATE() function returns the day number of the current date. Day numbers are defined such
that 31 December 1967 is day zero. Date values representing dates earlier than this are negative.

Example

INVOICE.REC<7> = DATE()

This statement assigns field 7 of INVOICE.REC with the internal date value of the current day.

OpenQM694

2.6-6

DCOUNT()

The DCOUNT() function counts delimited substrings within a string.

Format

DCOUNT(string, delimiter)

where

string evaluates to the string in which delimited substrings are to be counted.

delimiter evaluates to the single character substring delimiter.

The DCOUNT() function counts substrings delimited by delimiter within string. Substrings may
not overlap, thus

S = "ABABABABABABA"
N = DCOUNT(S, "BAB")

sets N to 4.

If string is null, DCOUNT() returns zero. In all other cases, DCOUNT() returns a value one
greater than the COUNT() function applied to the same string.

If substring is null, DCOUNT() returns the length of string.

Programs compiled with the $NOCASE.STRINGS compiler directive use case insensitive string
comparisons in the DCOUNT() function.

Example

FIELDS = DCOUNT(REC, @FM)

This statement counts the fields in REC.

See also:
COUNT()

QMBasic 695

2.6-6

DEBUG

The DEBUG statement enters the interactive debugger.

Format

DEBUG

The DEBUG statement enters debug mode for the program in which it was executed and all
programs called by it. This statement causes a compile time warning but is otherwise ignored if the
program is not complied with the DEBUGGING option or use of the $DEBUG compiler directive.

Example

IF @LOGNAME = 'mjones' THEN DEBUG

The above statement would enter the debugger if the user running the program is logged is as
mjones.

See also:
QMBasic debugger

OpenQM696

2.6-6

DECRYPT()

The DECRYPT() function decrypts data that has been encrypted for secure storage or
transmission.

Format

DECRYPT(data, key)

where

data is the string to be decrypted.

key is the encryption key to be used.

The DECRYPT() function applies the AES 128 bit encryption algorithm to the supplied data and
returns the decrypted text. The key string may be up to 64 characters in length and may contain any
character. It is automatically transformed into a form that is useable by the AES algorithm. For
optimum data security, the key should be about 16 characters.

The encrypted data is structured so that it can never contain characters from the C0 control group
(characters 0 to 31) or the mark characters. As a result of this operation, the encrypted data is
slightly longer than the resultant decrypted data.

Example

FUNCTION LOGIN()
 OPEN 'USERS' TO USR.F ELSE
 DISPLAY 'Cannot open USERS file'
 RETURN @FALSE
 END
 DISPLAY 'User name: ' :
 INPUT USERNAME, 20_:
 READ USER.REC FROM USR.F THEN
 FOR I = 1 TO 3
 DISPLAY 'Password: ' :
 INPUT PW,20_: HIDDEN
 IF PW = DECRYPT(USR.REC<1>, 'MySecretKey') THEN RETURN
@TRUE
 DISPLAY 'Password incorrect'
 NEXT I
 END
 RETURN @FALSE
END

The above function prompts for a user name and password, validating these against a record in the
USERS file. The password field of this file is encrypted.

See also:
Data encryption, ENCRYPT()

QMBasic 697

2.6-6

DEFFUN

The DEFFUN statement defines a function.

Format

DEFFUN name {(arg1 {,arg2 ...})} {CALLING "subr" | LOCAL} {VAR.ARGS} {KEY
key}

where

name is the name of the function.

arg1, arg2... are the function arguments.

subr is the catalogue name of the subroutine if different from name.

key is a key value to be passed into the subroutine as described below.

The DEFFUN statement defines a function that may be called from within the program. The
DEFFUN statement must appear before the first reference to the function. If the function name
matches the name of a built in function, any references to name before the DEFFUN will call the
intrinsic function and references after the DEFFUN will call the declared function.

If the LOCAL keyword is not present, the function must correspond to a catalogued item. A call to
this function call is effectively translated to a call to a subroutine with an additional hidden first
argument through which the result is returned. The optional CALLING component of the
DEFFUN statement allows the catalogue name of the function to be different from the name of the
function itself.

Use of the LOCAL keyword indicates that this function is internal to the program module and will
be defined later in the source by use of the LOCAL FUNCTION statement.

The argument names used in the DEFFUN statement are for documentation purposes only and have
no significance within the program except that the compiler counts them to verify correct use of the
function. The variables used in the actual call to the function are determined by the use of the
function. An argument may be defined to be a whole matrix in which case it should be prefixed by
the keyword MAT in the DEFFUN argument list.

The function is used in the same way as the intrinsic functions described in this manual. Although it
is not recommended, a function can update its argument variables.

The VAR.ARGS option indicates that compiler should not check the number of arguments in calls
to the function. It is of use with functions that take variable length argument lists. This option
cannot be used with local function.

The KEY option passes the key value as an additional argument before the first one named in calls
to the function. This enables construction of multiple functions that call a single catalogued item
with a mode key as the first argument. The !PCL() function provided in the BP file of the QMSYS
account uses this feature to implement the various PCL functions defined in the SYSCOM PCL.H
include record.

OpenQM698

2.6-6

Example

DEFFUN MATMAX(MAT A)
DIM VALUES(100)
...
MAX = MATMAX(MAT VALUES)

The program fragment above uses the MATMAX() function to find the maximum value of all the
elements of matrix VALUES.

See also:
FUNCTION, LOCAL

QMBasic 699

2.6-6

DEL

The DEL statement and DELETE() function delete a field, value or subvalue from a dynamic
array.

Format

DEL dyn.array<field {, value {, subvalue}}>

DELETE(dyn.array, field {, value {, subvalue}})

where

dyn.array is the dynamic array from which the item is to be deleted.

field evaluates to the number of the field to be deleted.

value evaluates to the number of the value to be deleted. If omitted or zero, the entire
field is deleted.

subvalue evaluates to the number of the subvalue to be deleted. If omitted or zero, the
entire value is deleted.

The specified field, value or subvalue is deleted from the dynamic array. The DEL statement
assigns the result to the dyn.array variable. The DELETE() function returns the result without
modifying dyn.array.

Example

DEL ITEMS<1,N>

This statement deletes field 1, value N from dynamic array ITEMS.

S = DELETE(ITEMS, 1, N)

This statement is similar to the previous example except that the result is assigned to S, leaving
ITEMS unchanged.

See also:
EXTRACT(), FIND, FINDSTR, INS, INSERT(), LISTINDEX(), LOCATE, LOCATE(),
REPLACE()

OpenQM700

2.6-6

DELETE

The DELETE statement deletes a record from an open file. The DELETEU statement is similar
but it preserves locks.

Format

DELETE file.var, record.id {ON ERROR statement(s)}

DELETEU file.var, record.id {ON ERROR statement(s)}

where

file.var is a file variable for an open file.

record.id evaluates to the id of the record to be deleted.

statement(s) are statements to be executed if the delete fails.

The specified record is deleted from the file. No error occurs if the record does not exist.

If the process performing the DELETE had a read or update lock on the record, the lock is
released. The DELETEU statement preserves any lock. Within a transaction, the lock is retained
until the transaction terminates and then released regardless of which statement is used. Attempting
to delete a record in a transaction will fail if the process does not hold an update lock on the record
or the file.

The STATUS() function can be used to determine the cause of execution of the ON ERROR
clause. A fatal error occurring when no ON ERROR clause is present will cause an abort to occur.

Example

DELETE STOCK, ITEM.ID

This statement deletes the record whose id is in ITEM.ID from the file associated with file variable
STOCK.

QMBasic 701

2.6-6

DELETELIST

The DELETELIST statement deletes a select list from the $SAVEDLISTS file.

Format

DELETELIST name

where

name is the name of the $SAVEDLISTS entry to be deleted.

The DELETELIST statement restores the previously saved select list identified by name from the
$SAVEDLISTS file. No error occurs if the list does not exist.

OpenQM702

2.6-6

DELETESEQ

The DELETESEQ statement deletes an operating system file.

Format

DELETESEQ filename, id {ON ERROR statement(s)} {THEN statement(s)} {ELSE
statement(s)}

or
DELETESEQ pathname {ON ERROR statement(s)} {THEN statement(s)} {ELSE
statement(s)}

where

filename evaluates to the VOC name of the directory file holding the record to be
deleted.

id evaluates to the name of the record to be deleted.

pathname evaluates to the operating system pathname of the record to be deleted.

statement(s) are statement(s) to be executed depending on the outcome of the
DELETESEQ statement.

At least one of the THEN and ELSE clauses must be present.

The DELETESEQ statement deletes the operating system file identified by filename and id or by
pathname. It is primarily intended as a counterpart to OPENSEQ but can be used to delete any
operating system file.

The THEN clause will be executed if the action is successful.

The ELSE clause will be executed for conditions that most likely relate to user or programming
errors such as the item to delete not existing or not having access rights to delete it. The STATUS()
function can be used to determine the cause of the error.

The ON ERROR clause will be executed if an internal error occurs during the delete and should
only be included if the program needs to continue execution rather than taking the default action of
aborting at such an error. The STATUS() function can be used to determine the cause of the error.

DELETESEQ cannot be used to delete a directory.

Note that DELETESEQ takes no part in the locking system. If locking is required, the directory
containing the file to be deleted must be opened as a directory type file and standard file processing
statements used.

QMBasic 703

2.6-6

DIMENSION

The DIMENSION statement is used to set the dimensions of a matrix. The short form DIM may
be used in place of DIMENSION.

Format

DIMENSION mat(rows {, cols})

where

mat is the name of the matrix.

rows evaluates to the number of rows in the matrix.

cols evaluates to the number of columns in a two dimensional matrix.

A matrix variable is a one or two dimensional array of values. Matrices must be declared by use of
the DIMENSION statement. The DIMENSION statement must be executed at program run time
before the variable is used in any other way.

A one dimensional matrix of ten elements is defined by a statement of the form

DIMENSION A(10)

For a two dimensional matrix with 5 rows of 8 columns this becomes

DIMENSION B(5,8)

By default, all matrices have an additional element, the zero element, which is used by some
QMBasic statements. This is referred to as A(0) or B(0,0). The $MODE compiler directive can be
used to select Pick style matrices which do not have a zero element.

The elements of a matrix may be of differing data types.

A matrix may be redimensioned at any time by a further DIMENSION statement though the
number of dimensions cannot be changed. Existing values of matrix elements will be retained in the
redimensioned matrix by copying elements on a row by row basis. If the matrix is enlarged , the
newly created elements will be unassigned. If it is smaller than before, any values in the excess
elements are discarded.

The INMAT() function may be used to check on the success of a DIMENSION statement. A
sequence such as

DIMENSION A(N)
IF INMAT() THEN ABORT "Insufficient memory"

will cause the program to abort if there is insufficient memory to hold the matrix. The INMAT()
function used in this way returns 0 if the DIMENSION statement was successful, 1 if it failed.
With the memory sizes found on modern systems, this test is probably totally unnecessary.

The INMAT() function can also be used to find the current dimensions of a matrix.

OpenQM704

2.6-6

Example

N = DCOUNT(REC, @FM)
DIM A(N)
MATPARSE A FROM REC, @FM

This program fragment creates an array with the correct number of elements to receive the result of
a MATPARSE operation on dynamic array REC and then performs the MATPARSE.

QMBasic 705

2.6-6

DISINHERIT

The DISINHERIT statement used in a class module removes an inherited object.

Format

DISINHERIT object

where

object is the object variable previously used in an INHERIT statement.

The DISINHERIT statement removes a previously inherited object from the name search used
when locating the variable or public function/subroutine for an object reference.

See also:
Object oriented programming, CLASS, INHERIT, OBJECT(), PRIVATE, PUBLIC.

OpenQM706

2.6-6

DISPLAY

The DISPLAY statement sends data to the display. The synonym CRT can be used in place of
DISPLAY.

Format

DISPLAY {print.list}

where

print.list is a list of items to be displayed.

The DISPLAY statement is equivalent to a PRINT statement directed to the display.

The print.list contains any number of items (including zero) but must all appear on a single source
program line. The individual items are expressions which can be evaluated and represented as
strings.

Where multiple items are present, they are separated by commas. The DISPLAY statement will
replace the comma by a TAB character, causing display to align to the next horizontal tabulation
column, initially set to columns 0, 10, 20, 30, etc. The same effect can be achieved by inserting
TAB characters in the data to be displayed.

A colon as the final token on the source line is not treated as a concatenation operator but as a
special symbol which causes the normal line feed and carriage return at the end of the DISPLAY
action to be suppressed.

When data is output to the display, QM will pause at the end of the screen and ask for confirmation
to continue.

Press RETURN to continue, A to abort, Q to Quit, S to suppress
pagination

Entering A will cause an abort to occur. Entering Q will quit from the current program or
command. Entering S will continue display and suppress this prompt at the end of subsequent
pages. Any other character causes display to continue up to the next prompt.

Pagination may be suppressed by use of any @(x, y) cursor positioning function. Note that this
does not have to be sent to the screen; use of the function is sufficient. Thus a statement such as

DUMMY = @(0,0)

will suppress pagination even though nothing is displayed by this statement. Pagination may be
turned on again by use of the PRINTER RESET statement.

Examples

DISPLAY "Error code " : STATUS()

This statement displays the literal string "Error code " and the value of the STATUS() function.
The cursor is then positioned at the start of the next line.

QMBasic 707

2.6-6

DISPLAY "Enter product code " :
INPUT PRODUCT

This program fragment displays a prompt for a product code to be entered. Note the use of the
trailing colon to suppress the line feed so that the cursor is left after the prompt ready for the
INPUT statement.

FOR I = 1 TO 10
 DISPLAY I, RATE(I), TOTAL(I)
NEXT I

This example displays a three column table, lining up the columns with horizontal tabulation
positions.

See also:
@(x,y), PRINT

OpenQM708

2.6-6

DIR()

The DIR() function returns the contents of an operating system directory.

Format

DIR(pathname)

where

pathname identifies the operating system directory to be processed.

The DIR() function returns a dynamic array with one field per entry in the specified directory. Each
field contains two items separated by value marks:

Value 1 The item name.

Value 2 The item type. This is F for a file or D for a directory.

The standard . and .. directory entries are not returned.

Applications should not assume that this structure will remain unchanged. Additional values may
appear in future releases.

QMBasic 709

2.6-6

DIV()

The DIV() function returns the quotient from a division operation.

Format

DIV(dividend, divisor)

where

dividend evaluates to a number.

divisor evaluates to a number.

The DIV() function returns the quotient from dividing dividend by divisor.

OpenQM710

2.6-6

DOWNCASE()

The DOWNCASE() function returns a string with all letters converted to lower case.

Format

DOWNCASE(string)

where

string evaluates to the string in which substitution is to occur.

The DOWNCASE() function returns the value of string with all letters converted to lower case. If
string is a variable rather than an expression, the value of the variable is not affected.

Example

REF.NO = "A12F635"
PRINT DOWNCASE(REF.NO)

This program fragment prints the string "a12f635".

See also:
UPCASE()

QMBasic 711

2.6-6

DPARSE and DPARSE.CSV

The DPARSE splits the elements of a delimited string into other variables. DPARSE.CSV is
similar but unquotes strings according to the rules in the CSV standard.

Format

DPARSE string, delimiter, var1, var2,...

DPARSE.CSV string, delimiter, var1, var2,...

where

string evaluates to the string to be processed.

delimiter evaluates to the substring delimiter. If this is more than one character, only the
first character is used.

var1,var2,... is a list of variables to receive the elements extracted from string. These may
be simple variables, matrix elements or field, value or subvalue references.

The DPARSE statement extracts successive elements delimited by delimiter within string into the
listed variables. A statement such as

DPARSE S, ",", A, B, C

is equivalent to

A = FIELD(S, ",", 1)
B = FIELD(S, ",", 2)
C = FIELD(S, ",", 3)

DPARSE.CSV extends this action by removing quotes that have been applied to meet the CSV
standard. CSV format allows optional double quotes around items and specifies that these must be
present when the item contains the delimiting character or a double quote. In the latter case, the
embedded double quote will be represented by two adjacent double quotes.

Examples

LOOP
 READSEQ LINE FROM SEQ.F ELSE EXIT
 STOCK.REC = ""
 DPARSE LINE, ",", PART.NO, STOCK.REC<1>, STOCK.REC<2>
 ...Processing...
REPEAT

This loop dismantles a comma separated string to extract three elements.

S = 'abc,"de""f"'
DPARSE S, ',', A, B
DISPLAY A,B
DPARSE.CSV S, ',', A, B

OpenQM712

2.6-6

DISPLAY A,B

This program will print
abc "de""f"
abc def

showing the difference between the DPARSE and DPARSE.CSV statements.

QMBasic 713

2.6-6

DTX()

The DTX() function converts a number to hexadecimal.

Format

DTX(expr {, expr})

where

expr evaluates to the number to be converted.

min.width specifies the minimum number of digits in the converted result.

The DTX() function converts the supplied expr value to hexadecimal. If the converted value is
shorter than min.width, leading zeros are added.

Examples

In each example, the DISPLAY statement is followed by the output that it would produce. Note
that DTX() treats the value as an unsigned 32 bit quantity and hence negative numbers will always
appear as 8 hexadecimal digits.

DISPLAY DTX(87)
57

DISPLAY DTX(87,4)
0057

DISPLAY DTX(-21,4)
FFFFFFEB

See also:
XTD()

OpenQM714

2.6-6

EBCDIC()

The EBCDIC() function converts an ASCII string to EBCDIC.

Format

EBCDIC(expr)

where

expr evaluates to the string to be converted.

The EBCDIC() function returns the EBCDIC equivalent of the supplied ASCII string. The action
of this function with non-ASCII characters is undefined.

See also:
ASCII()

QMBasic 715

2.6-6

ECHO

The ECHO statement enables or disables echoing of keyboard input.

Format

ECHO OFF

ECHO ON

ECHO expr

where

expr evaluates to a number.

Keyboard input is normally echoed to the display when it is processed by an INPUT statement. Use
of ECHO OFF will suppress this echo until a subsequent ECHO ON statement. Typically,
ECHO OFF is used to prevent display of passwords, etc.

The ECHO expr format of this statement is equivalent to ECHO ON if the value of expr is
non-zero and ECHO OFF if expr is zero.

Example

DISPLAY "Enter password " :
ECHO OFF
INPUT PASSWORD
ECHO ON

This program fragment requests entry of a password with echoing inhibited.

OpenQM716

2.6-6

ENCRYPT()

The ENCRYPT() function encrypts data for secure storage or transmission.

Format

ENCRYPT(data, key)

where

data is the string to be encrypted.

key is the encryption key to be used.

The ENCRYPT() function applies the AES 128 bit encryption algorithm to the supplied data and
returns the encrypted text. The key string may be up to 64 characters in length and may contain any
character. It is automatically transformed into a form that is useable by the AES algorithm. For
optimum data security, the key should be about 16 characters.

The encrypted data is post-processed so that it can never contain characters from the C0 control
group (characters 0 to 31) or the mark characters. As a result of this operation, the encrypted data
is slightly longer than the original source data.

Example

FUNCTION LOGIN()
 OPEN 'USERS' TO USR.F ELSE
 DISPLAY 'Cannot open USERS file'
 RETURN @FALSE
 END
 DISPLAY 'User name: ' :
 INPUT USERNAME, 20_:
 READ USER.REC FROM USR.F THEN
 FOR I = 1 TO 3
 DISPLAY 'Password: ' :
 INPUT PW,20_: HIDDEN
 IF ENCRYPT(PW, 'MySecretKey') = USR.REC<1> THEN RETURN
@TRUE
 DISPLAY 'Password incorrect'
 NEXT I
 END
 RETURN @FALSE
END

The above function prompts for a user name and password, validating these against a record in the
USERS file. The password field of this file is encrypted.

See also:
Data encryption, DECRYPT()

QMBasic 717

2.6-6

END

The END statement terminates a program, subroutine or a block of statements conditioned by the
THEN, ELSE, LOCKED or ON ERROR keywords.

Format

END

When used to terminate a program or subroutine, the END statement may not be followed by any
further executable statements; only comments and blank lines are allowed. An END statement is not
mandatory at the end of a program, subroutine or function but lack of an END will cause a warning
message to be displayed as this may be symptomatic of a structural problem elsewhere in the
program.

The compiler will generate a RETURN statement at the end of the program or subroutine which
will be executed if there is no RETURN or other program flow control statement immediately prior
to the END.

The END statement is also used to terminate a group of conditional statements. For details of the
use of END in this way, see the description of the QMBasic statement to which the conditional
element applies.

Example

READ REC FROM STOCK.FILE, ITEM THEN
 DISPLAY "Stock item " : ITEM
 GOSUB PROCESS.ITEM
END

This program fragment reads a record from a file, displays its record id and calls an internal
subroutine to process the record. The two indented statements are both conditioned so that they only
occur if the read was successful.

OpenQM718

2.6-6

ENV()

The ENV() function retrieves an operating system environment variable.

Format

ENV(var.name)

where
var.name is the name of the variable to be retrieved.

The ENV() function retrieves the named operating system environment variable, returning its value.
If the variable is not defined or var.name is invalid a null string is returned.

This function always returns a null string on the PDA version of QM.

QMBasic 719

2.6-6

EQS()

The EQS() function processes two dynamic arrays, returning a similarly structured result array
indicating whether corresponding elements are equal.

Format

EQS(expr1, expr2)

where

expr1and expr2 are the dynamic arrays to be compared.

The EQS() function compares corresponding elements of the dynamic arrays expr1 and expr2,
returning a similarly structured dynamic array of true / false values indicating the results of the
comparison.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as false.

Example

A contains 11FM0VM14VMABCFM2
B contains 12FM0VM14VMACBFM2

C = EQS(A, B)

C now contains 0FM1VM1VM0FM1

See also:
ANDS(), GES(), GTS(), IFS(), LES(), LTS(), NES(), NOTS(), ORS(), REUSE()

OpenQM720

2.6-6

EQUATE

The EQUATE statement defines a symbolic name to represent a constant or reference to a matrix
element.

Format

EQUATE name TO value

EQUATE name TO variable

EQUATE name TO matrix(index1 {, index2)

EQUATE name TO CHAR(seq)

where

name is the name to be attached to the value or matrix reference.

value is a number or a quoted string.

variable is the name of a variable (scalar or matrix) or an @-variable.

matrix is the name of a matrix.

index1 is a number representing the first index to matrix.

index2 is a number representing the second index to a two dimensional matrix.

seq is a character sequence number.

The first form of the EQUATE statement creates a symbolic name that can be used in place of the
constant value. The EQUATE statement can be used to eliminate constants for state variables, etc
from the main body of a program. Subsequent changes to the value thus only require a single
amendment and recompilation of all programs using name. A similar function can be performed
using the $DEFINE compiler directive.

The EQUATE statement can also be used to give names to specific elements of a matrix.
Declaration and dimensionality of the matrix are only checked when a reference to name is
encountered during program compilation. The matrix index values index1 and index2 must be
numbers. Reference to the zero element of a two dimensional matrix must include both index
values. The $DEFINE compiler directive cannot be used to define names for matrix elements.

The fourth form allows EQUATE to be used to assign names to specific (usually non-printing)
characters.

Multiple tokens may be equated on a single line by separating each definition by a comma. For
example:

EQUATE LOW TO 12, HIGH TO 20

Examples

EQUATE ADDRESS TO 1
EQUATE TEL.NO TO 2
...
READ REC FROM DATA.FILE, ID THEN
 PRINT "Address: " : REC<ADDRESS>

QMBasic 721

2.6-6

 PRINT "Telephone: " : REC<TEL.NO>
END

The above program fragment attaches name to two fields of a data record and then uses these when
the data is extracted for printing.

EQUATE ADDRESS TO REC(1)
EQUATE TEL.NO TO REC(2)
DIM REC(10)
...
MATREAD REC FROM DATA.FILE, ID THEN
 PRINT "Address: " : ADDRESS
 PRINT "Telephone: " : TEL.NO
END

This program fragment achieves the same as the previous example but uses the MATREAD
statement to separate the fields of the record read from the file into the elements of matrix REC.
The names defined in the EQUATE statements are then used to reference elements of this matrix

See also:
$DEFINE

OpenQM722

2.6-6

ERRMSG

The ERRMSG statement displays a Pick style message from the ERRMSG file.

Format

ERRMSG msg.id {, arg...}

where

msg.id evaluates to the id of a record in the ERRMSG file which holds the message to be
displayed. If this id is numeric, it will be copied to @SYSTEM.RETURN.CODE.

arg... is an optional comma separated list of arguments to be substituted into the
message.

A standard Pick ERRMSG file is supplied with QM. Many of the messages in this file are
irrelevant on QM. Users may modify this to add new messages or to change existing ones. QM only
uses this file through ERRMSG, STOP or ABORT statements in user written programs.

The ERRMSG file entry consists of one or more fields, each prefixed by an action code. The
message is built up and displayed by processing each code in turn. The codes are:

A{n} Display the next argument left aligned in a field of n characters. If n is omitted, the
argument is displayed without any additional spaces.

B Sound the terminal "bell".

D Outputs the system date in the form dd mmm yyyy.

E Outputs the msg.id enclosed in square brackets.

Htext Outputs the given text.

L{n} Outputs n newlines. The value of n defaults to 1 if omitted.

R{n} Display the next argument right aligned in a field of n characters. If n is omitted,
the argument is displayed without any additional spaces.

Sn Displays n spaces.

T Outputs the system time in the form hh:mm:ss.

The component parts of the message are output with no insertion of newlines except as explicitly
specified in the ERRMSG entry.

QMBasic 723

2.6-6

EXECUTE

The EXECUTE statement enables a QMBasic program to execute any command. The synonym
PERFORM can be used in place of EXECUTE.

Format

EXECUTE expr {TRAPPING ABORTS}
{CAPTURING var}
{PASSLIST {src.list }}
{RTNLIST tgt.list }
{SETTING status.var} or {RETURNING status.var}

where

expr evaluates to the command(s) to be executed. Multiple commands are separated by
field marks.

var is a variable to receive captured output.

src.list is a select list variable holding a list to be passed into the executed command as list
0. For compatibility with other multivalue environments, the PASSLIST clause is
ignored if src.list is omitted.

tgt.list is a variable to receive a returned select list. This variable may be used in a
subsequent READNEXT to extract items from the list.

status.var is a variable to receive the value of @SYSTEM.RETURN.CODE after the
command is executed.

The EXECUTE statement creates a new command level by starting a new version of the command
processor and passing it the command line to be executed. On completion of the command, the
command processor returns control to the calling program.

The value in expr may contain several commands delimited by field marks. These will be processed
as a paragraph and may include DATA and LOOP constructs, etc.

An abort occurring in the command(s) processed by the EXECUTE statement is normally trapped
at the highest command processor level that took its command input from the keyboard or
PHANTOMed paragraph. The TRAPPING ABORTS qualifier to the EXECUTE statement
causes aborts to return to the program issuing the EXECUTE without execution of the optional
ON.ABORT paragraph. The @ABORT.CODE variable may be used to determine whether the
command caused an abort to occur. This variable is initially zero and is reset to zero only by the
EXECUTE statement.

The CAPTURING clause captures output that would otherwise have gone to the terminal or
phantom log file, saving it in the named variable with field marks in place of newlines.

The PASSLIST clause passes the list in the named select list variable into the executed command
as list 0.

OpenQM724

2.6-6

The RTNLIST clause returns the content of the default select list in the named variable, removing
the active numbered select list.

The SETTING or RETURNING clause copies the value of @SYSTEM.RETURN.CODE to the
named variable after the command has been executed.

The unnamed common area is saved by the EXECUTE statement and the new command level may
define a new structure for this area. On return from the EXECUTE statement, the original
unnamed common area is restored. Named common areas are not affected by the EXECUTE
statement.

Application designers should carefully consider the possible impact of EXECUTE inside a
transaction.

Example

EXECUTE "LIST STOCK.FILE ITEMS QUANTITY"

This statement performs the LIST command from within the calling program. Control is returned to
the program once the LIST command is complete.

QMBasic 725

2.6-6

EXIT

The EXIT statement terminates execution of a LOOP/REPEAT or FOR/NEXT structure.

Format

EXIT

The EXIT statement is equivalent to a jump to the statement following the REPEAT or NEXT
statement of the innermost loop structure.

Example

LOOP
 REMOVE ITEM FROM STOCK SETTING DELIM
 ...processing statements...
WHILE DELIM
 IF ITEM[1,1] = "A" THEN EXIT
 ...further statements...
REPEAT

This program fragment processes items extracted from the STOCK dynamic array. If the value of
ITEM commences with "A", the program exits from the loop.

See also:
CONTINUE, FOR/NEXT, LOOP/REPEAT, WHILE, UNITL

OpenQM726

2.6-6

EXP()

The EXP() function returns the exponential (the natural anti-log) of a value.

Format

EXP(expr)

where

expr evaluates to a number or a numeric array.

The EXP() function returns the exponential of expr, that is, the mathematical constant e raised to
the power expr. The value of e is about 2.71828.

If expr is a numeric array (a dynamic array where all elements are numeric), the EXP() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

N = EXP(X)

This statement finds the natural anti-log of X and assigns this to N.

QMBasic 727

2.6-6

EXTRACT()

The EXTRACT() function extracts a field, value or subvalue from a dynamic array.

Format

EXTRACT(dyn.array, field {, value {, subvalue}})

where

dyn.array is the dynamic array from which the item is to be extracted.

field evaluates to the number of the field to be extracted.

value evaluates to the number of the value to be extracted. If omitted or zero, the
entire field is extracted.

subvalue evaluates to the number of the subvalue to be extracted. If omitted or zero, the
entire value is extracted.

The specified field, value or subvalue is extracted from the dynamic array and returned as the result
of the EXTRACT() function. This function is identical in effect to the alternative syntax of

dyn.array<field {, value {, subvalue}}>

Example

AMOUNT.DUE = EXTRACT(INVOICE.REC, 3)

This statement extracts field 3 from INVOICE.REC, assigning the result to variable
AMOUNT.DUE.

See also:
DEL, DELETE(), FIND, FINDSTR, INS, INSERT(), LISTINDEX(), LOCATE, LOCATE(),
REPLACE()

OpenQM728

2.6-6

FIELD()

The FIELD() function returns one or more delimited substrings from a string. The FIELDS()
function is similar to FIELD() but operates on a multi-valued string, returning a similarly
structured dynamic array of results.

Format

FIELD(string, delimiter, occurrence {, count})

where

string is the string from which substrings are to be extracted.

delimiter evaluates to the delimiter character.

occurrence evaluates to the position of the substring to be extracted. If less than one, the
first substring is extracted.

count evaluates to the number of substrings to be extracted. If omitted or less than
one, one substring is extracted.

The FIELD() function extracts count substrings starting at substring occurrence from string.
Substrings within string are delimited by the first character of delimiter. If delimiter is a null
string, the entire string is returned.

If the value of occurrence is greater than the number of delimited substrings in string, a null string
is returned.

If the value of count is greater than the number of delimited substrings in string starting at
substring occurrence, the remainder of string is returned. Additional delimiters are not inserted.

The COL1() and COL2() functions can be used to find the character positions of the extracted
substring.

Use of the $NOCASE.STRINGS compiler directive makes the delimiter case insensitive.

Example

A = "1*2*3*4*5"
S = FIELD(A, '*', 2, 3)

This program fragment assigns the string "2*3*4" to variable S.

See also:
COL1(), COL2(), FIELDSTORE()

QMBasic 729

2.6-6

FIELDSTORE()

The FIELDSTORE() function provides delimited substring assignment.

Format

FIELDSTORE(string, delimiter, i, n, rep.string)

where

string evaluates to the string in which replacement is to occur. If string is a variable
name, the contents of this variable are not changed unless it also appears on the
left hand side of the assignment statement in which the FIELDSTORE()
function appears.

delimiter evaluates to a string, the first character of which is used as the delimiter
separating the substrings within string. A null delimiter string will cause a run
time error.

i evaluates to the position of the first substring to be replaced. Substring
positions are numbered from one.

n evaluates to the number of substrings to be replaced.

rep.string evaluates to the new data to be inserted in string.

The value returned by the FIELDSTORE() function is the result of the replacement.

A statement of the form

S = FIELDSTORE(S, d, i, n, rep.string)

is equivalent to the delimited substring assignment operation

S[d, i, n] = rep.string

The action of FIELDSTORE() depends on the values of i and n and the number of substrings
within rep.string.

If the value of the position expression, i, is less than one, a value of one is assumed. If there are
fewer than i delimited substrings present in string, additional delimiters are added to reach the
required position.

If the value of the number of substrings expression, n, is positive, n substrings are replaced by the
same number of substrings from rep.string. If rep.string contains fewer than n substrings,
additional delimiters are inserted.

If the value of the number of substrings expression, n, is zero or negative, n substrings are deleted
from string and the whole of rep.string is inserted regardless of the number of substrings that it
contains.

OpenQM730

2.6-6

Use of the $NOCASE.STRINGS compiler directive makes the delimiter case insensitive.

Example

S = 1*2*3*4*5
A = FIELDSTORE(S, "*", 2, 3, "A*B")
B = FIELDSTORE(S, "*", 2, 3, "A*B*C")
C = FIELDSTORE(S, "*", 2, 3, "A*B*C*D")
D = FIELDSTORE(S, "*", 2, 0, "A*B")
E = FIELDSTORE(S, "*", 2, -3, "A*B")

This program fragment performs the FIELDSTORE() function on the string S using different
values for rep.string and n. The results are

A = 1*A*B**5 Note inserted delimiter as rep.string has only 2 substrings
B = 1*A*B*C*5 rep.string replaces substrings 2 to 5
C = 1*A*B*C*5 Final substring of rep.string is not inserted
D = 1*A*B*2*3*4*5 No substrings are deleted as n is zero
E = 1*A*B*5 Three substrings are deleted and rep.string is inserted

See also:
FIELD()

QMBasic 731

2.6-6

FILE

The FILE statement provides a way to reference data in files using field names defined in the
dictionary.

This statement is provided for compatibility with other systems and is not recommended.

Format

FILE name, ...

where

name is a comma separated list of files to be processed

The FILE statement opens the named files for processing in the current program. The QMBasic
compiler will process the associated dictionary to allow use of field names as described below. Note
that any change to the dictionary may require the program to be recompiled.

Note that the FILE statement has no error handling clause. If the file cannot be opened, any
subsequent access to it will fail.

After a file has been opened using the FILE statement, a record can be read using a modified form
of the READ statement:

READ name FROM id

where name is the file name in the FILE statement and id is the key of the record to be read. This
form of the READ statement take the same optional clauses as a normal READ. The locking
variants (READL and READU) are also supported.

After a record has been read, data from that record can be accessed using a construct:

name(field)

where name is the file name and field is a field name defined in the dictionary. Note that QMBasic
restricts this construct such that field must be a D-type item or an A or S-type item with no
correlative. Calculated values are not supported.

Records may be written to the file using a modified form of the WRITE (or WRITEU) statement:

WRITE name TO id

where name is the file name in the FILE statement and id is the key of the record to be written.

Apart from the above special cases, use of name in a file handling statement or function refers to
the file variable associated with the file. Use of name in any other context refers to the dynamic
array that will be used implicitly by READ or WRITE statements.

Use of the FILE statement is not recommended in new developments as it requires that the file is
opened separately in every program that will access it rather than using a file variable in a common
block for best performance. The syntax of the associated statements is also likely to be confusing as
the same name references either the file variable or the data depending on its context.

OpenQM732

2.6-6

Example

FILE 'ORDERS'
READ ORDERS FROM ORDER.NO THEN
 DISPLAY ORDERS(CUSTOMER.NO)
END

This program fragment opens the ORDERS file, reads the record for a given order number and
displays the customer number from this record.

QMBasic 733

2.6-6

FILEINFO()

The FILEINFO() function returns information about an open file.

Format

FILEINFO(file.var, key)

where

file.var is the file variable associated with the file.

key identifies the action to be performed.

Values for the key to the FILEINFO() function are defined in the KEYS.H record in the SYSCOM
file. These are

0 FL$OPEN Check if file is open. Returns true (1) if file.var is associated
with an open file, false (0) if it is not.

1 FL$VOCNAME Returns the VOC name used to open the file.

2 FL$PATH Returns pathname of open file.

3 FL$TYPE File type. Returns one of
FL$TYPE.DH (3) - Dynamic file
FL$TYPE.DIR (4) - Directory file
FL$TYPE.SEQ (5) - Sequential file
FL$TYPE.VFS (6) - Virtual file system

5 FL$MODULUS File modulus (dynamic files only)

6 FL$MINMOD Minimum modulus (dynamic files only)

7 FL$GRPSIZE Group size (dynamic files only)

8 FL$LARGEREC Large record size (dynamic files only)

9 FL$MERGE Merge load percentage (dynamic files only)

10 FL$SPLIT Split load percentage (dynamic files only)

11 FL$LOAD Current load percentage (dynamic files only)

13 FL$AK File has AK indices (dynamic files only)

14 FL$LINE Line to read or write next (sequential files only)

1000 FL$LOADBYTES Current load bytes (dynamic files only)

1001 FL$READONLY Returns true (1) is file is read-only

1002 FL$TRIGGER Returns trigger function name, null if none

1003 FL$PHYSBYTES Returns total size of file, excluding indices

1004 FL$VERSION Internal file version (dynamic files only)

1005 FL$STATS.QUERY Returns true (1) if file statistics gathering is enabled

1006 FL$SEQPOS File position (sequential files only)

1007 FL$TRG.MODES Returns mode flags for trigger function

OpenQM734

2.6-6

1008 FL$NOCASE Returns true (1) if the file uses case insensitive ids.

1009 FL$FILENO Returns the internal file number for file.var.

1011 FL$AKPATH Returns the pathname of the alternate key index directory.
This is a null string in the indices are in their default location.

1012 FL$ID Returns the id of the last record read from the file. Used with
a dynamic file that is configured for case insensitive record
ids, this will return the actual id as stored in the file, which
may differ in casing from that supplied in the associated
READ statement.

1013 FL$STATUS Returns a dynamic array as for the STATUS statement.

1014 FL$MARK.MAPPING Returns true if mark mapping is enabled, false if not
(directory files).

1015 FL$RECORD.COUNT Returns a count of the number of records in the file (dynamic
files only). This count may be incorrect if the file was not
closed in the event of an abnormal process termination such
as a system failure. The counter will be corrected by use of a
select operation during which there were no updates to the file
or by use of the QMFix utility. The value will be returned as
-1 until the count is set or for non-dynamic files.

1016 FL$PRI.BYTES Physical size of the primary subfile in bytes (dynamic files
only). This figure will include space previously used by
groups that have been discarded as the result of a merge
operation.

1017 FL$OVF.BYTES Physical size of the overflow subfile in bytes (dynamic files
only). This figure will include space previously used by
overflow blocks that are no longer active and are retained for
future use.

1018 FL$NO.RESIZE Is resizing inhibited on this file? See the description of
dynamic files for more information.

1019 FL$UPDATE Returns the file update counter. This counter, shared across
all users of the file, is initially set to 1 when a file is first
opened and is incremented by every write, delete or clear file
operation. It can be used to detect whether a file has been
updated by another process.

1020 FL$ENCRYPTED Returns true if the file uses encryption, false otherwise.

Example

IF FILEINFO(FVAR, FL$TYPE) # FL$TYPE.DH THEN
 ABORT "Dynamic file required"
END

This program fragment checks whether a file variable is associated with a dynamic file and, if not,
aborts.

See also:
STATUS

QMBasic 735

2.6-6

FILELOCK

The FILELOCK statement sets a file lock on a file.

Format

FILELOCK file.var {ON ERROR statement(s)} {LOCKED statement(s)}

where

file.var is the file variable associated with the file.

statement(s) are statements to be executed depending on the outcome of the operation.

The FILELOCK statement sets a file lock which prevents other users from obtaining read or
update locks on records within the file or a file lock on the whole file. File access operations that do
not obtain locks are can still be performed by other users. These are CLEARFILE, DELETE,
DELETEU, MATREAD, MATWRITE, MATWRITEU, READ, READV, WRITE,
WRITEU, WRITEV and WRITEVU. Correct application design avoids accidental deletion or
overwriting of locked records.

A file lock does not prevent access by the user that owns the lock.

The LOCKED clause is executed if another user holds a file lock or a read or update lock on any
record in the file. The STATUS() function will return the user id of a process holding a lock. If the
LOCKED clause is omitted, the program will wait for any lock to be released.

Example

FILELOCK STOCK
SELECT STOCK
TOTAL = 0
LOOP
 READNEXT ID ELSE EXIT
 READ REC FROM STOCK, ID ELSE ABORT "Cannot read " : ID
 TOTAL += REC<QTY>
REPEAT
FILEUNLOCK STOCK

This program fragment obtains a file lock on the file open as STOCK and then reads all records
from the file, forming a total of the values in the QTY field. The lock prevents other users obtaining
update locks when they might be updating this field in some record. The lock ensures that the total
value represents a true picture of the file when the file lock was obtained. The lock is released on
leaving the main processing loop.

See also:
Locking, FILEUNLOCK

OpenQM736

2.6-6

FILEUNLOCK

The FILEUNLOCK statement releases a file lock previously obtained using the FILELOCK
statement.

Format

FILEUNLOCK file.var {ON ERROR statement(s)}

where

file.var is the file variable associated with the file.

statement(s) are statements to be executed depending on the outcome of the operation.

The FILEUNLOCK statement releases a file lock, making the file available to other users. Read
and update locks on records from the file are not affected.

The ON ERROR clause is executed in the event of a fatal error. The STATUS() function will
return an error code giving the cause of the error.

Where the ON ERROR clause is not taken, the STATUS() function returns 0 if the file was
previously locked by this user, ER$LCK if the lock is held by another user or ER$NLK if no user
holds the lock.

Example

FILELOCK STOCK
SELECT STOCK
TOTAL = 0
LOOP
 READNEXT ID ELSE EXIT
 READ REC FROM STOCK, ID ELSE ABORT "Cannot read " : ID
 TOTAL += REC<QTY>
REPEAT
FILEUNLOCK STOCK

This program fragment obtains a file lock on the file open as STOCK and then reads all records
from the file, forming a total of the values in the QTY field. The lock prevents other users obtaining
update locks when they might be updating this field in some record. The lock ensures that the total
value represents a true picture of the file when the file lock was obtained. The lock is released on
leaving the main processing loop.

See also:
Locking, FILELOCK

QMBasic 737

2.6-6

FIND

The FIND statement searches a dynamic array for a given string in any position.

Format

FIND string IN dyn.array {, occurrence} SETTING field{, value {, subvalue}}
{THEN statement(s)}
{ELSE statement(s)}

where

string evaluates to the item to be located.

dyn.array is the dynamic array in which searching is to occur.

occurrence is the occurrence of string to be found. If omitted, the first occurrence is
located.

field is the variable to receive the field number at which string is found.

value is the variable to receive the value number at which string is found. If
omitted, only the field position is returned

subvalue is the variable to receive the subvalue number at which string is found. If
omitted, only the field and, optionally, value positions are returned

statement(s) are statements to be executed depending on the outcome of the FIND
action.

At least one of the THEN and ELSE clauses must be present.

The FIND statement searches dyn.array for a field, value or subvalue equal to string. If found, the
position of string within dyn.array is returned in the field, value, and subvalue variables and the
THEN clause is executed. If not found or dyn.array is a null string, the field, value, and subvalue
variables are unchanged and the ELSE clause is executed.

Use of the $NOCASE.STRINGS compiler directive makes the comparison case insensitive.

Example

Variable X contains AFMBVMCVMDFMEVMFSMG

FIND 'D' IN X SETTING F, V, S

The above FIND would return F = 2, V = 3, S = 1

See also:
DEL, DELETE(), EXTRACT(), FINDSTR, INS, INSERT(), LISTINDEX(), LOCATE,

OpenQM738

2.6-6

LOCATE(), REPLACE()

QMBasic 739

2.6-6

FINDSTR

The FINDSTR statement searches a dynamic array for a given substring in any position.

Format

FINDSTR string IN dyn.array {, occurrence} SETTING field{, value {, subvalue}}
{THEN statement(s)}
{ELSE statement(s)}

where

string evaluates to the item to be located.

dyn.array is the dynamic array in which searching is to occur.

occurrence is the occurrence of string to be found. If omitted, the first occurrence is
located.

field is the variable to receive the field number at which string is found.

value is the variable to receive the value number at which string is found. If
omitted, only the field position is returned

subvalue is the variable to receive the subvalue number at which string is found. If
omitted, only the field and, optionally, value positions are returned

statement(s) are statements to be executed depending on the outcome of the FINDSTR
action.

At least one of the THEN and ELSE clauses must be present.

The FINDSTR statement searches dyn.array for a field, value or subvalue containing string. This
need not be the entire field, value or subvalue. If found, the position of string within dyn.array is
returned in the field, value, and subvalue variables and the THEN clause is executed. If not found
or dyn.array is a null string, the field, value, and subvalue variables are unchanged and the ELSE
clause is executed.

Use of the $NOCASE.STRINGS compiler directive makes the comparison case insensitive.

Example

Variable X contains ABCFMDEFVMGHIVMJKLFMMNOVMPQRSMSTU

FINDSTR 'KL' IN X SETTING F, V, S

The above FINDSTR would return F = 2, V = 3, S = 1

See also:

OpenQM740

2.6-6

DEL, DELETE(), EXTRACT(), FIND, INS, INSERT(), LISTINDEX(), LOCATE,
LOCATE(), REPLACE()

QMBasic 741

2.6-6

FLUSH

The FLUSH statement flushes the internal buffers for a directory file record previously opened for
sequential access.

Format

FLUSH file.var
{THEN statement(s)}
{ELSE statement(s)}

where

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed depending on the outcome of the FLUSH.

At least one of the THEN and ELSE clauses must be present. The THEN clause is executed if the
operation is successful. The ELSE clause is executed if the FLUSH operation fails.

The sequential file buffers are automatically flushed periodically during file usage and on closing
the file. The FLUSH statement allows the programmer to ensure that data is flushed to disk at a
given point in the program

The WRITESEQF statement is the equivalent of a WRITESEQ followed by a FLUSH. Flushing
the buffers after every write may result in poor performance.

Example

LOOP
 LINE = REMOVE(LIST, CODE)
 WRITESEQ LINE TO SEQ.F ELSE ABORT "Write error"
WHILE CODE
REPEAT
FLUSH SEQ.F ELSE ABORT "Flush error"

This program fragment writes a series of text lines extracted from LIST to a sequential file and then
flushes the buffers to verify that the data has been written to disk.

See also:
CLOSESEQ, NOBUF, READBLK, READCSV, READSEQ, SEEK, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

OpenQM742

2.6-6

FMT()

The FMT() function performs data formatting according to a format template. It is typically used to
convert data for display or printing. The FMTS() function is identical to FMT() except that it
works on each element of a dynamic array in turn, returning the result in a similarly delimited
dynamic array.

Format

FMT(expr, fmt.spec)

FMTS(expr, fmt.spec)

where

expr evaluates to the data to be formatted

fmt.spec evaluates to the format specification.

The FMT() function sets the STATUS() function value to indicate whether the operation was
successful. Possible values are

0 Successful formatting.
1 Data to format was too long or invalid for the format specification.
2 The format specification was invalid.

Operations that result in a non-zero STATUS() value return expr as the function result.

Shortform Notation

The FMT() function action can also be performed in QMBasic programs (but not in I-type
dictionary entries) by use of a shortform notation in which the expr and fmt.spec are simply written
next to each other with no operator in between.

Thus
X = FMT(A, '8R')

can be written as
X = A '8R'

QMBasic 743

2.6-6

FOLD() and FOLDS()

The FOLD() function breaks a string into field mark delimited sections no longer than a given
width, placing breaks on spaces where possible.

Format

FOLD(string, width {, delim})

FOLDS(string, width {, delim})

where

string evaluates to the string to be formatted

width evaluates to the maximum length for each fragment.

delim evaluates to the delimiter character to appear between each fragment.

The FOLD() function breaks string into sections, placing the delim character between each section.
Each section is at most width characters in length with the break from one section to the next
occurring at a space where possible.

The width argument may be multivalued. In this case, the first value specifies the width for the first
fragment of the result, the second value specifies the width for the second fragment of the result and
so on. If there are more fragments in the result than there are width specifications, the final width is
used for the remaining data.

The delim argument is optional. If omitted, a field mark is used by default. Specifying delim as a
null string uses a value mark as the delimiter.

The FOLDS() function is similar to FOLD() but works on each field, value or subvalue of string
separately, returning a similarly structured dynamic array of folded strings

Example

S = 'The quick brown fox jumps over the lazy dog'
X = FOLD(S, 10)
LOOP
 CRT REMOVE(X, CODE)
WHILE CODE
REPEAT

The above program fragment prints

The quick
brown fox
jumps over
the lazy
dog

OpenQM744

2.6-6

FOOTING

The FOOTING statement defines text to be printed or displayed at the foot of each page of output.

Format

FOOTING {ON print.unit} text

where

print.unit identifies the logical print unit in the range -1 to 255 to which the footing text
is to be applied. If omitted, the default print unit (unit 0) is used.

text is the footing text. This may include control tokens as described below.

The FOOTING statement defines the text of a page footing and, optionally, control information
determining the manner in which the text is output. A page footing is output whenever the bottom of
the page is reached or on execution of a PAGE statement to terminate the current page.

The footing text may include the following control tokens enclosed in single quotes. Multiple tokens
may appear within a single set of quotes.

C Centres text on the line.

D Inserts the date. The default format is dd mmm yyyy (e.g. 24 Aug 2005) but can be
changed using the DATE.FORMAT command.

G Insert a gap. Spaces are inserted in the footing line at the position of each G control
token such that the overall length of the line is the same as the printer unit width. A
single use of the G token will right justify the subsequent text. Multiple G tokens will
distribute spaces as evenly as possible.

When a footing line uses both G and C, the footing is considered as a number of
elements separated by the G control options. The element that contains the C option
will be centered. The items either side of the centered element are processed separately
when calculating the number of spaces to be substituted for each G option.

Hn Sets horizontal position (column) numbered from one. Use of H with C or with a
preceding G token may have undesired results.

L Start a new line

N Inhibit automatic display pagination

O Reverses the elements separated by G tokens in the current line on even numbered
pages. This is of use when printing double sided reports.

Pn Insert page number. The page number is right justified in n spaces, widening the field if
necessary. If omitted, n defaults to four.

Sn Insert page number. The page number is left justified in n spaces, widening the field if

QMBasic 745

2.6-6

necessary. If omitted, n defaults to one.

T Inserts the time and date in the form hh:mm:ss dd mmm yyyy. The format of the date
component can be changed using the DATE.FORMAT command.

Unrecognised control tokens are ignored. A quotation mark may be inserted in the printed text by
using two adjacent quotation marks in the text string.

There is no limit to the length of a footing text. Each line will be truncated at the width of the print
unit. The effect of using a footing which will not fit on to the physical page is undefined.

See also:
HEADING

OpenQM746

2.6-6

FOR / NEXT

The FOR / NEXT statement defines a group of statements to be executed with an iterative control
variable.

Format

FOR var = start.expr TO limit.expr {STEP step.expr}
statement(s)

NEXT {var}

where

var is the loop control variable.

start.expr evaluates to the value to be placed in var for the first iteration of the loop.

limit.expr evaluates to the value beyond which var must not pass.

step.expr evaluates to the value by which var should be incremented between
iterations of the loop. If omitted, step.expr defaults to one.

statement(s) are statement(s) to be executed within the loop.

The FOR / NEXT statement executes statement(s) for values of var from start.expr to limit.expr
in increments of step.expr. If step.expr is positive, the loop continues while the value of var is less
than or equal to limit.expr. If step.expr is negative, the loop continues while the value of var is
greater than or equal to limit.expr. The value of var on leaving the loop is the last value for which
the loop was executed or start.expr if the initial value was already out of range.

The value of var should not be changed within the loop as this may lead to unexpected results.

Use of non-integer values for start.expr, limit.expr and step.expr is not recommended where
rounding errors in incrementing var and the loop termination comparison may lead to unexpected
effects.

For best performance, limit.expr and step.expr should be constants or simple variable references as
they are evaluated for every iteration of the loop.

If var is present in the NEXT statement it must be the same var as in the FOR statement at the
head of the loop. Use of var in the NEXT statement aids program readability and is checked by the
compiler for correct matching of FOR and NEXT statements.

The WHILE, UNTIL and EXIT statements can be used with the FOR / NEXT loop to provide
another loop termination control. The CONTINUE statement causes a jump to the start of the next
iteration.

FOR / NEXT loops may be nested to any depth.

The FOR.STORE.BEFORE.TEST option of the $MODE compiler directive can be used to modify
the behaviour of FOR/NEXT constructs to store the new value of the control variable before testing

QMBasic 747

2.6-6

for the end condition.

Examples

FOR I = 1 TO 10 STEP 2
 DISPLAY I
NEXT I

This program fragment displays the values 1, 3, 5, 7 and 9. The final value of I on leaving the loop
is 9.

FOR I = 1 TO 20
UNTIL A(I) < 0
 DISPLAY A(I)
NEXT I

This program fragment displays elements of matrix A. The loop terminates if an element is found
with a negative value.

See also:
CONTINUE, EXIT, LOOP/REPEAT, WHILE, UNITL

OpenQM748

2.6-6

FORMLIST

The FORMLIST statement creates a select list from a dynamic array.

Format

FORMLIST dyn.array {TO list.no}

where

dyn.array evaluates to the list of items to form the select list.

list.no evaluates to the select list number. If omitted, select list zero is created.

Any existing select list list.no is cleared and a new list is created from the elements of dyn.array.
This list may be separated by field marks, item marks or a mixture of both.

Example

READ LIST FROM ACCOUNTS, "OVERDUE" THEN FORMLIST LIST

This program fragment reads a list from record OVERDUE of file ACCOUNTS and creates select
list zero from the elements of this list.

QMBasic 749

2.6-6

FUNCTION

The FUNCTION statement introduces a user written.

Format

FUNCTION name{(arg1 {, arg2...}) {VAR.ARGS}}

where

name is the name of the function.

arg1, etc are the names of the arguments to the function.

QMBasic programs should commence with a PROGRAM, SUBROUTINE, FUNCTION or
CLASS statement. If none of these is present, the compiler behaves as though a PROGRAM
statement had been used with name as the name of the source record.

A function is a special form of subroutine. It returns a value to the calling program and can be
referenced in a QMBasic statement in the same way as the intrinsic functions described in this
manual, without the need for an explicit CALL statement. The FUNCTION statement is
equivalent to a SUBROUTINE statement with an additional hidden argument at the start which is
used to return the result.

The number of arguments in calls to the function must be the same as in the FUNCTION statement
unless the function is declared with the VAR.ARGS option. When VAR.ARGS is used, any
arguments not passed by the caller will be unassigned. The ARG.COUNT() function can be used
to determine the actual number of arguments passed, excluding the hidden return argument.

Function arguments are normally passed by reference such that changes made to the argument
variable inside a subroutine will be visible in the caller's variable referenced by that argument. A
function call allows arguments to be passed by value by enclosing them in brackets. The
FUNCTION statement also supports this dereferencing syntax. For example

FUNCTION CREDIT(P, (Q))

The FUNCTION statement must appear before any executable statements. The brackets are
optional if there are no arguments. The FUNCTION statement may be split over multiple lines by
breaking after a comma.

The name used in a FUNCTION statement need not be related to the name of the source record
though this eases program maintenance. The name must comply with the QMBasic name format
rules.

An argument may refer to a whole matrix. In this case the argument variable name must be
preceded by the keyword MAT and there must be a DIM statement following the function
declaration to indicate whether this is a one or two dimensional matrix. Alternatively, the
dimensions may be given after the variable name in the FUNCTION statement. In either case, the
actual dimension values are counted by the compiler but otherwise ignored. Use of a dimension
value of one emphasises to readers of the program that the value is meaningless. A matrix passed as
an argument cannot be redimensioned in the function.

OpenQM750

2.6-6

Programs that use the function must include a DEFFUN statement to define the function template.

Example

FUNCTION MATMAX(MAT A)
 DIM A(1)
 MAX = A(1)
 N = INMAT(A)
 FOR I = 1 TO N
 IF A(I) > MAX THEN MAX = A(I)
 NEXT I

 RETURN MAX
END

This function scans a one dimensional matrix and passes back the value of the largest element. The
first two lines could alternatively be written as

FUNCTION MATMAX(MAT A(1))

See also:
DEFFUN

QMBasic 751

2.6-6

GES()

The GES() function processes two dynamic arrays, returning a similarly structured result array
indicating whether elements of the first array are greater than or equal to corresponding elements of
the second array.

Format

GES(expr1, expr2)

where

expr1and expr2 are the dynamic arrays to be compared.

The GES() function compares corresponding elements of the dynamic arrays expr1 and expr2,
returning a similarly structured dynamic array of true / false values indicating the results of the
comparison.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as zero.

Example

A contains 11FM0VM14VMABCFM2
B contains 12FM0VM14VMACBFM2

C = GES(A, B)

C now contains 0FM1VM1VM1FM1

See also:
ANDS(), EQS(), GTS(), IFS(), LES(), LTS(), NES(), NOTS(), ORS(), REUSE()

OpenQM752

2.6-6

GETLIST

The GETLIST statement restores a select list from the $SAVEDLISTS file.

Format

GETLIST name {TO list.no}
{THEN statement(s)}
{ELSE statement(s)}

where

name is the name of the $SAVEDLISTS entry to be restored.

list.no is the select list number to which it is to be restored. If omitted, this defaults to
zero.

statement(s) are statements to be executed depending on the outcome of the operation.

The GETLIST statement restores the previously saved select list identified by name from the
$SAVEDLISTS file. The disk copy is not removed by this operation.

The @SELECTED variable can be examined to determine the number of items in the list.

At least one of the THEN and ELSE clauses must be present. If the list is successfully restored,
the THEN clause is executed. If the list does not exists or cannot be restored for any other reason,
the ELSE clause is executed.

QMBasic 753

2.6-6

GET.MESSAGES()

The GET.MESSAGES() function returns any messages currently queued for display.

Format

GET.MESSAGES()

The GET.MESSAGES() function allows an application to retrieve messages queued by the
MESSAGE command and display these in a convenient form. The returned string contains one
field for each message, in chronological order of message generation. Each field has two values; the
message text and the message origin header. The second value may not be present in all messages.

OpenQM754

2.6-6

GETNLS()

The GETNLS() function returns the value of a national language support parameter.

Format

GETNLS(key)

where

key identifies the parameter to be returned.

The GETNLS() function returns the value of the named national language support parameter. NLS
parameter name tokens are defined in the KEYS.H include record.

Available parameters are:

Parameter Key Meaning

1 NLS$CURRENCY Default currency symbol. Maximum 8 characters.

2 NLS$THOUSANDS Default thousands separator character.

3 NLS$DECIMAL Default decimal separator character.

QMBasic 755

2.6-6

GET.PORT.PARAMS()

The GET.PORT.PARAMS() function retrieves the communications parameters for a serial port.
This function is not available on the PDA version of QM.

Format

GET.PORT.PARAMS(fvar)

where

fvar is the file variable from the OPENSEQ statement that was used to open the port.

The GET.PORT.PARAMS() function returns a dynamic array containing the following data:

Field 1 Port name
Field 2 Baud rate
Field 3 Parity mode (0 = off, 1 = odd, 2 = even)
Field 4 Bits per byte
Field 5 Stop bits
Field 6 State of CTS (clear to send)
Field 7 State of DSR (data set ready)
Field 8 State of RING
Field 9 State of DCD (carrier detect)

Programs should be written to allow for the possibility of additional fields being added in future
releases.

Example

DISPLAY 'Baud rate = ' : GET.PORT.PARAMS(port)<2>

OpenQM756

2.6-6

GETPU()

The GETPU() function gets the characteristics of a print unit.

Format

GETPU(key, unit)

where

key identifies the parameter to retrieved. This may be:

1 PU$MODE Print unit mode

2 PU$WIDTH Characters per line

3 PU$LENGTH Lines per page

4 PU$TOPMARGIN Top margin size

5 PU$BOTMARGIN Bottom margin size

6 PU$LEFTMARGIN Left margin size

7 PU$SPOOLFLAGS Various print unit flags

9 PU$FORM Form name (not used by all spoolers)

10 PU$BANNER Banner page text

11 PU$LOCATION Printer / file name

12 PU$COPIES Number of copies to print

15 PU$PAGENUMBER Current page number

1002 PU$LINESLEFT Lines left on page

1003 PU$HEADERLINES Lines occupied by header

1004 PU$FOOTERLINES Lines occupied by footer

1005 PU$DATALINES Lines between header and footer

1006 PU$OPTIONS Options to be passed to the spooler

1007 PU$PREFIX Pathname of file holding prefix data to be added
to the start of the output

1008 PU$SPOOLER Spooler to be used (ignored on Windows)

1009 PU$OVERLAY Catalogued overlay subroutine name (see
SETPTR)

1010 PU$CPI Characters per inch (may be non-integer value)

1011 PU$PAPER.SIZE Paper size. See SYSCOM PCL.H

1012 PU$LPI Lines per inch

1013 PU$WEIGHT Font stroke weight. See SYSCOM PCL.H

1014 PU$SYMBOL.SET Symbol set. See SYSCOM PCL.H

1015 PU$STYLE Query processor style. See the Query processor
STYLE option for details.

unit evaluates to the print unit number.

QMBasic 757

2.6-6

The GETPU() function returns the print unit characteristic specified by key. It is closely related to
the !GETPU() subroutine.

Example

MODE = GETPU(PU$MODE, 3)

The above statement gets the mode of print unit 3, storing it in MODE.

OpenQM758

2.6-6

GETREM()

The GETREM() function returns the remove pointer position into a string.

Format

GETREM(string)

where

string is the string for which the remove pointer position is to be returned.

The GETREM() function returns the offset of the remove pointer into string. It is typically used
with SETREM to save and restore the remove pointer position. The remove pointer is positioned
on the mark character preceding the next fragment to be extracted. It is reset to zero when a new
value is assigned to the string.

Example

RMV.PTR = GETREM(S)
GOSUB PROCESS.DATA
SETREM RMV.PTR ON S

The above code fragment saves the remove pointer associated with string S and restores it after
execution of subroutine PROCESS.DATA which might change this remove pointer.

See also:
REMOVE, SETREM

QMBasic 759

2.6-6

GOSUB

The GOSUB statement calls an internal subroutine.

Format

GOSUB label{:}

GOSUB label{:}(args)

where

label is the label attached to the statement at the start of the internal subroutine.

args is a comma separated list of arguments to a subroutine defined with the LOCAL
SUBROUTINE statement.

The optional colon after the label has no effect on the action of the statement.

The program continues execution at the given label, saving the location of the GOSUB for a later
RETURN which will resume execution at the statement following the GOSUB. See also the
RETURN TO statement for details of alternate returns.

QMBasic defines two styles of internal subroutine. A conventional internal subroutine, as found in
other multivalue database products, has no formal start or end. The label may be any label defined
within the program or subroutine. It is the programmer's responsibility to ensure that internal
subroutines return correctly. Variables referenced in the internal subroutine are accessible across
the entire program module, requiring great care from the programmer to ensure that data in one part
of the module is not accidentally altered elsewhere by use of the same name. Loop counters in
FOR/NEXT loops are a good example of where this frequently happens. Calling this style of
internal subroutine recursively is possible but of limited use because the variables in one invocation
will be overwritten by the next.

The second style, referred to in QMBasic terminology as a local subroutine, is introduced by the
LOCAL statement and is terminated by END. Local subroutines may have arguments and may
have private local variables that are not visible outside the subroutine which are stacked if the
subroutine is called recursively.

Examples

IF STOCK.LEVEL <= REORDER.LEVEL THEN GOSUB REORDER

This program fragment checks if the value of STOCK.LEVEL has fallen to the
REORDER.LEVEL and, if so, calls internal subroutine REORDER.

LOCAL SUBROUTINE UPDATE.STOCK(PROD.NO, CHANGE)
 PRIVATE STOCK.REC
 READU STOCK.REC FROM STOCK.F, PROD.NO THEN
 STOCK.REC<STK.QOH> += CHANGE
 WRITE STOCK.REC TO STOCK.F, PROD.NO

OpenQM760

2.6-6

 END
 RETURN
END

The above local subroutine takes a record id and the amount by which a field is to be updated, reads
the corresponding record and applies the update. A real program would include statements to handle
the case where the record is not found.

QMBasic 761

2.6-6

GOTO

The GOTO statement continues program execution at a given label.

Format

GOTO label{:}
GO {TO} label{:}

where

label is the label attached to the statement at which execution is to continue.

The trailing colon is optional and has no effect on the action of the statement.

The program continues execution at the given label. The label may be any label defined within the
program or subroutine. Excessive use of GOTO and labels in place of other language constructs
(e.g. LOOP/REPEAT) can make programs difficult to maintain.

Example

IF REC[1,1] # "A" THEN GOTO ERROR

This program fragment checks if the first character of REC is "A". If not, it jumps to label
ERROR.

OpenQM762

2.6-6

GTS()

The GTS() function processes two dynamic arrays, returning a similarly structured result array
indicating whether elements of the first array are greater than corresponding elements of the second
array.

Format

GTS(expr1, expr2)

where

expr1and expr2 are the dynamic arrays to be compared.

The GTS() function compares corresponding elements of the dynamic arrays expr1 and expr2,
returning a similarly structured dynamic array of true / false values indicating the results of the
comparison.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as zero.

Example

A contains 11FM0VM14VMABCFM2
B contains 12FM0VM14VMACBFM2

C = GTS(A, B)

C now contains 0FM0VM1VM1FM0

See also:
ANDS(), EQS(), GES(), IFS(), LES(), LTS(), NES(), NOTS(), ORS(), REUSE()

QMBasic 763

2.6-6

HEADING

The HEADING statement defines text to be printed or displayed at the top of each page of output.

Format

HEADING {NO.EJECT} {ON print.unit} text

where

print.unit identifies the logical print unit in the range -1 to 255 to which the heading text
is to be applied. If omitted, the default print unit (unit 0) is used.

text is the heading text. This may include control tokens as described below.

The HEADING statement defines the text of a page heading and, optionally, control information
determining the manner in which the text is output. A page heading is output whenever the first line
of output on a page is about to be printed or displayed. The HEADING statement normally causes
subsequent output to appear on a new page. The NO.EJECT option defers the new heading until
the start of the next page.

The heading text may include the following control tokens enclosed in single quotes. Multiple tokens
may appear within a single set of quotes.

C Centres text on the line.

D Insert the current date in the form dd mmm yyyy (e.g. 25 MAR 2006)

G Insert a gap. Spaces are inserted in the heading line at the position of each G control
token such that the overall length of the line is the same as the printer unit width. A
single use of the G token will right justify the subsequent text. Multiple G tokens will
distribute spaces as evenly as possible.

When a heading line uses both G and C, the heading is considered as a number of
elements separated by the G control options. The element that contains the C option
will be centered. The items either side of the centered element are processed separately
when calculating the number of spaces to be substituted for each G option.

Hn Sets horizontal position (column) numbered from one. Use of H with C or with a
preceding G token may have undesired results.

L Start a new line

N Inhibit automatic display pagination

O Reverses the elements separated by G tokens in the current line on even numbered
pages. This is of use when printing double sided reports.

Pn Insert page number. The page number is right justified in n spaces, widening the field if
necessary. If omitted, n defaults to four.

OpenQM764

2.6-6

Sn Insert page number. The page number is left justified in n spaces, widening the field if
necessary. If omitted, n defaults to one.

T Insert current date and time in the form hh:mm:ss mm/dd/yy

Unrecognised control tokens are ignored. A quotation mark may be inserted in the printed text by
using two adjacent quotation marks in the text string.

There is no limit to the length of a heading text. Each line will be truncated at the width of the print
unit. The effect of using a heading which does not leave sufficient space for at least one line of text
is undefined.

See also:
FOOTING

QMBasic 765

2.6-6

HUSH

The HUSH statement enables or disables display output.

Format

HUSH OFF {SETTING var}

HUSH ON {SETTING var}

HUSH expr {SETTING var}

where

expr evaluates to a number.

var is a variable to receive the previous state of display output control.

The HUSH ON statement causes all output sent to the display by CRT, DISPLAY or PRINT
statements to be suppressed. The HUSH OFF statement re-enables display.

The HUSH expr format of this statement is equivalent to HUSH ON if the value of expr is
non-zero and HUSH OFF if expr is zero.

The optional SETTING clause saves the previous state of display output control in var which can
be used later to revert to that state. Alternatively, the previous state can be obtained using the
STATUS() function immediately after the HUSH statement. In either case, the value is 1 if output
was suppressed or 0 if it was enabled.

Example

HUSH ON
EXECUTE "SELECT STOCK.FILE WITH QTY > 50"
HUSH OFF

This program fragment suppresses display while the SELECT statement is executed.

OpenQM766

2.6-6

ICONV()

The ICONV() function performs input conversion. Data is converted from its external
representation to the internal form. This function is typically used to convert data entered at the
keyboard. The ICONVS() function is identical to ICONV() except that it works on each element of
a dynamic array, returning the result in a similarly delimited dynamic array.

Format

ICONV(expr, conv.spec)

ICONVS(expr, conv.spec)

where

expr evaluates to the data to be converted.

conv.spec evaluates to the conversion specification. This may be a multi-valued string
containing more than one conversion code separated by value marks. Each
conversion will be carried out in turn on the result of the previous conversion.

The ICONV() function converts the value of expr to its internal representation according to the
conversion codes in conv.spec. The result of ICONV() is stored internally as a string regardless of
whether the value is a number or not except for the MO and MX conversions which always produce
an integer value.

The ICONV() function sets the STATUS() function value to indicate whether the conversion was
successful. Possible values are

0 Successful conversion.
1 Data to convert was invalid for the conversion specification. A null string is returned.
2 The conversion code was invalid. A null string is returned.
3 The day number in a date conversion was beyond the end of the month. The returned

value will be extended into the following month (e.g. 31 June becomes 1 July). This
feature can be suppressed using the NO.DATE.WRAPPING option.

See also:
Conversion codes, OCONV()

QMBasic 767

2.6-6

IDIV()

The IDIV() function divides one integer by another and returns an integer result.

Format

IDIV(dividend, divisor)

where

dividend evaluates to the integer to be divided.

divisor evaluates to the integer by which it is to be divided.

Both arguments to the IDIV() function are converted to integers. The function returns the result of
the division as an integer rounded towards zero.

A zero value of divisor will cause a run time error.

Integer division can also be performed using the // operator.

Example

X = 7
Y = 2
Z1 = X / Y
Z2 = IDIV(X, Y)

This program fragment shows the difference between the division operator and the IDIV() function.
Z1 will be set to 3.5 and Z2 will be set to 3.

See also:
RDIV()

OpenQM768

2.6-6

IF /THEN / ELSE

The IF statement provides conditional execution of one or more statements.

Format

IF expr
{THEN statement(s)}
{ELSE statement(s)}

where

expr is an expression which can be resolved to a numeric value

statement(s) are statements to be executed depending on the value of expr.

At least one of the THEN and ELSE clauses must be present. If both are used, the THEN clause
must be first.

The newline before the THEN and ELSE clauses is optional.

The statement(s) under the THEN clause are executed if the value of expr is non-zero. The
statement(s) under the ELSE clause are executed if the value of expr is zero.

Where the keyword THEN or ELSE is followed by an executable statement on the same line, the
condition applies to that statement. If there is nothing else or only a comment on the line, the
conditioned statement(s) must appear on subsequent lines terminated by an END statement. For
example:

IF QTY > 99 THEN
 LARGE.ORDER = @TRUE
 DISCOUNT = 0.1
END

Alternatively, this could be written using semicolons to separate the conditioned statements:

IF QTY > 99 THEN LARGE.ORDER = @TRUE ; DISCOUNT = 0.1

Use of this format is discouraged as the semantics differ across multivalue database products.

IF QTY > QOH THEN
 DISPLAY 'Insufficient stock'
END ELSE
 QOH -= QTY
 DISPLAY 'Order confirmed'
END

The above program fragment might be used to compare the quantity in an order (QTY) with the
quantity on hand (QOH), taking different paths dependant on whether there is sufficient stock. Note
the need for the END to terminate the THEN clause as, unlike some other programming languages,
the END pairs up with the THEN or ELSE and not with the IF.

QMBasic 769

2.6-6

IFS()

The IFS() function returns a dynamic array constructed from elements chosen from two other
dynamic arrays depending on the content of a third dynamic array.

Format

IFS(control.array, true.array, false.array)

where

control.array is a dynamic array of true / false values.

true.array holds values to be returned where the corresponding element of
control.array is true.

false.array holds values to be returned where the corresponding element of
control.array is false.

The IFS() function examines successive elements of control.array and constructs a result array
where elements are selected from the corresponding elements of either true.array or false.array
depending on the control.array value.

Example

A contains 1VM0VM0VM1VM1VM1VM0
B contains 11VM22VM3VM4VM91VM36VM7
C contains 14VM61VM2VM0VM35VM18VM3

D = IFS(A, B, C)

D now contains 11VM61VM2VM4VM91VM36VM3

See also:
ANDS(), EQS(), GES(), GTS(), LES(), LTS(), NES(), NOTS(), ORS(), REUSE()

OpenQM770

2.6-6

IN

The IN statement reads a single byte from the terminal with an optional timeout.

Format

IN var {FOR timeout {THEN statement(s)} {ELSE statement(s)}}

where

var is the variable to receive the input character value. This is the ASCII character
number, not the character itself.

timeout is the timeout period in tenths of a second.

The IN statement reads a single byte from the terminal, returning the character value in var. Unless
the character is a non-printing control code, it is echoed to the terminal.

If a timeout is specified, the program will continue execution if no input is received after this
period. The var will be set to zero if a timeout occurs.

The optional THEN and ELSE clauses can be used with the timeout to determine whether input
was received.

See also:
INPUT, KEYIN(), KEYREADY()

QMBasic 771

2.6-6

INDEX()

The INDEX() function returns the position of a specified occurrence of a substring within a string.
The INDEXS() function is similar to INDEX() but operates on each element of a dynamic array
element separately, locating the required occurrence of substring and returning a similarly
structured dynamic array of results.

Format

INDEX(string, substring, occurrence)

where

string is the string in which the search is to occur.

substring evaluates to the substring to be located.

occurrence evaluates to the position of the occurrence of the substring to be located.

The INDEX() function locates the specified occurrence of substring within string and returns its
character position.

If occurrence is less than one or the desired occurrence of substring is not found, the INDEX()
function returns zero.

If substring is null, the value of occurrence is returned.

Use of the $NOCASE.STRINGS compiler directive makes the comparison case insensitive.

Examples

N = INDEX(S, "*", 3)

This statement assigns N with the character position of the third asterisk in variable S.

S = "ABABABABABAB"
N = INDEX(S, "ABA", 2)

sets N to 5.

OpenQM772

2.6-6

INDICES()

The INDICES() function returns information about alternate key indices.

Format

INDICES(file.var) To retrieve a list of indices

INDICES(file.var, index.name) To retrieve information for a specific index

where

file.var is the file variable associated with an open file.

index.name is the name of the index to be examined.

The first form of the INDICES() function returns a field mark delimited list of alternate key index
names for the file referenced via file.var.

The second form of the INDICES() function returns a dynamic array resembling a dictionary
record for the index named by the index.name argument. This dynamic array corresponds to the
original dictionary record used to create the index except that field 1 is extended to include
additional flags as a multivalued list.

Value 1 Index type (D, I, A, S or C)

Value 2 Set to 1 if the index needs to be built, otherwise null

Value 3 Set to 1 if the index is null-suppressed by use of the NO.NULLS option to
CREATE.INDEX, otherwise null

Value 4 Set to 1 if updates are enabled, otherwise null

Value 5 Internal AK numbers

Value 6 The key sort mode within each index entry (L or R), null for indices created prior
to release 2.2-16.

Example

INDEX.NAMES = INDICES(FVAR)
NUM.INDICES = DCOUNT(INDEX.NAMES, @FM)
FOR I = 1 TO NUM.INDICES
 NAME = INDEX.NAMES<I>
 CRT NAME : ' Type ' : INDICES(FVAR, NAME)[1,1]
NEXT I

The above program displays a list of alternate key index names and their type.

QMBasic 773

2.6-6

INHERIT

The INHERIT statement used in a class module makes the public variables, functions and
subroutines of another object visible as part of this object.

Format

INHERIT object

where

object is an object variable returned from a previous use of the OBJECT() function.

The process of searching for a public variable, function or subroutine scans the object referenced in
the statement that initiated the scan and then all inherited objects in the order in which they were
inherited. Where an inherited object has itself inherited other objects, the scan treats these inherited
names as part of the directly inherited object.

See also:
Object oriented programming, CLASS, DISINHERIT, OBJECT(), PRIVATE, PUBLIC.

OpenQM774

2.6-6

INMAT()

The INMAT() function provides qualifying information after certain statements are executed.

Format

INMAT({mat})

where

mat is the name of a matrix.

Used without a mat matrix name, the INMAT() function returns information relating to the last use
of the following statements

DIMENSION 0 if successful, 1 if insufficient memory.

MATPARSE The number of elements assigned. Zero if overflows.

MATREAD The number of elements assigned. Zero if overflows.

MATREADL The number of elements assigned. Zero if overflows.

MATREADU The number of elements assigned. Zero if overflows.

OPEN The modulus of a dynamic file.

Further details of the information returned by INMAT() in each case is documented with the
relevant statement.

Used with a matrix name, the INMAT() function returns the current dimensions of the matrix. If
mat is a single dimensional matrix, INMAT() returns the number of elements, excluding the zero
element. If mat is a two dimensional matrix, INMAT() returns the number of rows and columns as
two values separated by a value mark.

Examples

DIM A(N)
IF INMAT() THEN ABORT "Insufficient memory"

This program fragment dimensions matrix A and tests whether it was successful. If not, the
program aborts.

N = INMAT(A)
FOR I = 1 TO N
 A(I) += 1
NEXT I

This program fragment adds one to each element of matrix A. The INMAT() function is used
because the matrix was dimension elsewhere and hence its size is not known.

QMBasic 775

2.6-6

INPUT

The INPUT statement enables entry of data from the keyboard or from previously stored DATA
statements.

Format

INPUT var {, length} {_} {:} {TIMEOUT wait} {HIDDEN} {UPCASE}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the variable in which the data is to be stored.

length is the maximum length of data to be allowed.

HIDDEN echoes characters back to the screen as asterisks for password type fields.

TIMEOUT wait Sets a timeout period in seconds. If input is not received in this time, the
INPUT terminates, leaving var unchanged. The keywords FOR or
WAITING can be used in place of TIMEOUT for compatibility with
other environments.

UPCASE converts input data to uppercase.

The optional THEN and ELSE clauses used with TIMEOUT allow a program to determine
whether the input timed out. Successful input executes the THEN clause. A timeout will execute
the ELSE clause.

The INPUT statement reads data from the DATA queue or, if there is no stored data, from the
keyboard.

Keyboard Input

When taking input from the keyboard, the current prompt character will be displayed prior to
reading data. The values stored for printing characters are the ASCII characters associated with the
key. Non-printing characters result in other stored character values.

If no length expression is included, data characters are stored until the return key is pressed.

If length is specified, up to that number of characters may be entered after which input is
automatically terminated as though the return key had been pressed, any subsequent key entries
being retained for the next INPUT statement. The return key is not stored as part of the input data.

The optional underscore component of the statement suppresses the automatic input termination
when length characters have been entered. Any number of characters may be entered but only
length characters will be displayed.

The optional colon causes the carriage return and line feed output when the return key is used or on
reaching the input length limit to be suppressed.

OpenQM776

2.6-6

The INPUT statement recognises the backspace key, allowing this to be used to correct data entry
errors. The terminfo system allows the code sent by the backspace key to be redefined from its
default char(8). If an alternative, single byte definition is used, INPUT will honour this, otherwise
char(8) is used as the backspace.

DATA Queue Input

Where the data queue is not empty, the INPUT statement reads the item at the head of this queue,
copying it verbatim to var with no processing of any embedded control characters. The length
expression is ignored. The item is displayed as though it had been typed.

Testing for Input

The INPUT statement may be used to test whether there are characters waiting to be read from the
keyboard or the data queue by using a negative length value. For example, the statement

INPUT S, -1

will set S to 1 if there is data waiting, 0 if no data is waiting.

Use of Pipes

QM recognises input from pipes as a special case. Programs that process data from a pipe can read
the data using the same QMBasic statements and functions as for keyboard input. If the end of the
data is reached, a subsequent INPUT will return a null string. The STATUS() function will return
ER$EOF.

Examples

INPUT ACCOUNT.NO, 10

This statement reads data into ACCOUNT.NO with a maximum length of 10 characters.

DISPLAY @(0,24) :"Continue?" :
INPUT S:

This program fragment displays a query message on the bottom line of the screen and reads a
response. Note the trailing colon in the INPUT statement to suppress the line feed which would
cause the screen to roll up as output was to the bottom line of the display.

QMBasic 777

2.6-6

INPUT @

The INPUT @ statement enables entry of data from the keyboard at a specific screen position or
from previously stored DATA statements.

Format

INPUT @(x, y) {,} {:} var {, length} {_} {:} {format} {modes}
{THEN statement(s)}
{ELSE statement(s)}

where

x, y are the screen position (column and line) at which input is to occur.

var is the variable in which the data is to be stored.

length is the maximum length of data to be allowed. Because of a potential
syntactic ambiguity in the language, this must be enclosed in brackets if it
is an expression.

format is the format specification to the used for initial display of var and to
redisplay the data on completion of input.

modes are any combination of the following keywords:

APPEND Position the cursor at the end of the data. Use of
this keyword also implies EDIT mode.

EDIT Starts in "edit" mode, suppressing the normal
clearance of the input field if the first character
entered by the user is a data character rather than
an edit character.

HIDDEN echoes characters back to the screen as asterisks
for password type fields.

OVERLAY Starts in "overlay" mode where data entered by
the user replaces the character under the cursor
rather than being inserted.

PANNING Allows entry of an unlimited number of
characters in a field width of the given length by
panning the data if it is longer than the display
width. Use of this option requires length to be
specified and implies the presence of the
underscore.

TIMEOUT wait Sets a timeout period in seconds. If input is not
received in this time, the INPUTFIELD
terminates, leaving var unchanged. The
keywords FOR or WAITING can be used in
place of TIMEOUT for compatibility with other
environments.

UPCASE converts the input data to uppercase.

OpenQM778

2.6-6

The comma after the cursor position is optional and has no effect on the operation of the statement.

The optional THEN and ELSE clauses used with TIMEOUT allow a program to determine
whether the input timed out. Successful input executes the THEN clause. A timeout will execute
the ELSE clause.

The INPUT @ statement reads data from the DATA queue or, if there is no stored data, from the
keyboard.

Keyboard Input

When reading from the keyboard, the current prompt character will be displayed to the left of the
given input position. No prompt is displayed if the input column position, x, is zero or if the prompt
has been disabled using the PROMPT statement. The prompt character will be removed from the
screen on completion of the input.

If the colon character before var is present, the original contents or var are displayed in the input
area and entry commences in overlay mode. If the colon character before var is not present, entry
commences in insert mode with a blank field.

The user has three options:
· Pressing the return key retains the original content of var.
· Typing a data character replaces the original content of var, clearing any old displayed data

(unless the EDIT option is used).
· Using an edit key (see below) allows the old data to be edited.

The values stored for printing characters are the ASCII characters associated with the key.
Non-printing characters result in stored character values as listed under Character Values for
Terminal Input.

If no length expression is included, data characters are stored until the return key is pressed.

If length is specified, up to that number of characters may be entered after which input is
automatically terminated as though the return key had been pressed, any subsequent key entries
being retained for the next INPUT statement. The return key is not stored as part of the input data.

The INPUT @ statement may not behave correctly if the length of the input field causes it to
extend over multiple lines and the terminal in use does not automatically wrap from one line to the
next when displaying long text output.

The optional underscore component of the statement suppresses the automatic input termination
when length characters have been entered. Any number of characters may be entered but only
length characters will be displayed.

The optional colon causes the carriage return and line feed output when the return key is used or on
reaching the input length limit to be suppressed.

In all cases, the following editing keys are available.

Ctrl-A Home Position the cursor at the start of the input data

QMBasic 779

2.6-6

Ctrl-B Cursor left Move the cursor left one character

Ctrl-D Delete Delete character under cursor

Ctrl-E End Position the cursor at the end of the input data

Ctrl-F Cursor right Move the cursor right one character

Ctrl-H Backspace Backspace one character

Ctrl-K Delete all characters after the cursor

Insert Toggle insert/overlay mode. When overlay mode is enabled,
data entered by the user replaces the character under the
cursor rather than being inserted before this character. Unless
the OVERLAY option is used, the input begins in insert
mode.

These editing keys can be modified using the KEYEDIT statement.

When the return key is pressed to terminate input, if a format is specified, the data is redisplayed
using this mask to apply format rules such as right justification.

DATA Queue Input

Where the data queue is not empty, the INPUT @ statement reads the item at the head of this
queue, copying it verbatim to var with no processing of any embedded control characters. The
length expression is ignored. The item is displayed as though it had been typed.

Use of the STATUS() function after an INPUT @ statement returns zero unless input was
terminated by a key defined using the KEYEXIT or KEYTRAP statements.

Use of Pipes

QM recognises input from pipes as a special case. Programs that process data from a pipe can read
the data using the same QMBasic statements and functions as for keyboard input. If the end of the
data is reached, a subsequent INPUT @ will return a null string. The STATUS() function will
return ER$EOF.

Examples

DISPLAY @(0,10) : "Account " :
PROMPT ""
INPUT @(8, 10) : ACCOUNT.NO, 16

This program fragment displays the current value of ACCOUNT.NO with a suitable annotation and
accepts input. Pressing the RETURN key alone will retain the original value as displayed. The
PROMPT statement has been used to suppress display of the prompt character.

INPUT @(10, 5) : PRICE, 10 '10R'

OpenQM780

2.6-6

This program fragment inputs a value for the PRICE variable, redisplaying it right justified on
completion of input.

See also:
BINDKEY(), INPUTFIELD, KEYCODE(), KEYEDIT, KEYEXIT, KEYTRAP

QMBasic 781

2.6-6

INPUTCSV

The INPUTCSV statement enables entry of CSV format data from the keyboard or from
previously stored DATA statements.

Format

INPUTCSV var1, var2, ...

where

var1 var2, ... are the variables to receive the input data.

The INPUTCSV statement reads CSV format data from the DATA queue or, if there is no stored
data, from the keyboard. This data is then parsed into the named variables.

If there are insufficient data items entered to populate all the named variables, any unused variables
are set to null strings. If there are more data items entered than the number of variables, the excess
data is discarded.

Keyboard Input

When taking input from the keyboard, the current prompt character will be displayed prior to
reading data. The values stored for printing characters are the ASCII characters associated with the
key. Non-printing characters result in other stored character values.

The INPUTCSV statement recognises the backspace key, allowing this to be used to correct data
entry errors. The terminfo system allows the code sent by the backspace key to be redefined from its
default char(8). If an alternative, single byte definition is used, INPUTCSV will honour this,
otherwise char(8) is used as the backspace.

DATA Queue Input

Where the data queue is not empty, the INPUTCSV statement reads the item at the head of this
queue, copying it verbatim to var with no processing of any embedded control characters. The item
is displayed as though it had been typed.

Example

INPUTCSV PROD.NO, QTY

This statement parses the entered data into the PROD.NO and QTY variables.

See also:
PRINTCSV, READCSV, WRITECSV

OpenQM782

2.6-6

INPUTFIELD

The INPUTFIELD statement enables entry of data from the keyboard at a specific screen position
or from previously stored DATA statements. It differs from INPUT @ in that it terminates on
entry of any control character not recognised as an editing key. This allows application software to
capture and handle control and function keys.

Format

INPUTFIELD @(x, y) {,} {:} var, length {_} {:} {format} {modes}
{THEN statement(s)}
{ELSE statement(s)}

where

x, y are the screen position (column and line) at which input is to occur.

var is the variable in which the data is to be stored.

length is the maximum length of data to be allowed. Because of a potential
syntactic ambiguity in the language, this must be enclosed in brackets if it
is an expression.

format is the format specification to the used for initial display of var and to
redisplay the data on completion of input.

modes are any combination of the following keywords:

APPEND Position the cursor at the end of the data. Use of
this keyword also implies EDIT mode.

EDIT Starts in "edit" mode, suppressing the normal
clearance of the input field if the first character
entered by the user is a data character rather than
an edit character.

HIDDEN echoes characters back to the screen as asterisks
for password type fields.

OVERLAY Starts in "overlay" mode where data entered by
the user replaces the character under the cursor
rather than being inserted.

PANNING Allows entry of an unlimited number of
characters in a field width of the given length by
panning the data if it is longer than the display
width. Use of this option requires length to be
specified and implies the presence of the
underscore.

TIMEOUT wait Sets a timeout period in seconds. If input is not
received in this time, the INPUTFIELD
terminates, leaving var unchanged. The
keywords FOR or WAITING can be used in
place of TIMEOUT for compatibility with other
environments.

QMBasic 783

2.6-6

UPCASE converts the input data to uppercase.

The comma after the cursor position is optional and has no effect on the operation of the statement.

The optional THEN and ELSE clauses used with TIMEOUT allow a program to determine
whether the input timed out. Successful input executes the THEN clause. A timeout will execute
the ELSE clause.

The INPUTFIELD statement reads data from the DATA queue or, if there is no stored data, from
the keyboard.

The INPUTFIELD statement works similarly to the INPUT @ statement except that entry of any
control character not recognised as an editing function (see INPUT @) terminates data entry. The
STATUS() function can be used to determine the key that caused exit. This will return zero for the
return key and the internal key code for any other key.

When the return key is pressed to terminate input, if a format is specified, the data is redisplayed
using this mask to apply format rules such as right justification.

Keyboard Input

When reading from the keyboard, the current prompt character will be displayed to the left of the
given input position. No prompt is displayed if the input column position, x, is zero or if the prompt
has been disabled using the PROMPT statement. The prompt character will be removed from the
screen on completion of the input.

If the colon character before var is present, the original contents or var are displayed in the input
area and entry commences in overlay mode. If the colon character before var is not present, entry
commences in insert mode with a blank field.

The user has three options:
· Pressing the return key retains the original content of var.
· Typing a data character replaces the original content of var, clearing any old displayed data

(unless the EDIT option is used).
· Using an edit key (see below) allows the old data to be edited.

The values stored for printing characters are the ASCII characters associated with the key.
Non-printing characters result in stored character values as listed under Character Values for
Terminal Input.

If no length expression is included, data characters are stored until the return key is pressed.

If length is specified, up to that number of characters may be entered after which input is
automatically terminated as though the return key had been pressed, any subsequent key entries
being retained for the next INPUT statement. The return key is not stored as part of the input data.

The INPUTFIELD statement may not behave correctly if the length of the input field causes it to
extend over multiple lines and the terminal in use does not automatically wrap from one line to the
next when displaying long text output.

The optional underscore component of the statement suppresses the automatic input termination
when length characters have been entered. Any number of characters may be entered but only

OpenQM784

2.6-6

length characters will be displayed.

The optional colon causes the carriage return and line feed output when the return key is used or on
reaching the input length limit to be suppressed.

DATA Queue Input

Where the data queue is not empty, the INPUT @ statement reads the item at the head of this
queue, copying it verbatim to var with no processing of any embedded control characters. The
length expression is ignored. The item is displayed as though it had been typed.

See also:
BINDKEY(), INPUT@, KEYCODE(), KEYEDIT, KEYEXIT, KEYTRAP

QMBasic 785

2.6-6

INS

The INS statement and INSERT() function insert a field, value or subvalue into a dynamic array.

Format

INS string BEFORE dyn.array<field {, value {, subvalue}}>

INSERT(dyn.array, field {, value {, subvalue}} , string)

where

string is the string to be inserted.

dyn.array is the dynamic array into which the item is to be inserted.

field evaluates to the number of the field before which insertion is to occur.

value evaluates to the number of the value before which insertion is to occur. If
omitted or zero, value 1 is assumed.

subvalue evaluates to the number of the subvalue before which insertion is to occur. If
omitted or zero, subvalue 1 is assumed.

The string is inserted before the specified field, value or subvalue of the dynamic array. The INS
statement assigns the result to the dyn.array variable. The INSERT() function returns the result
without modifying dyn.array.

A negative value of field, value or subvalue causes the next item at this level to be appended. For
example,

INS X BEFORE S<3, -1>

appends X as a new value at the end of field 3 of S. See the description of the S<f,v,sv> assignment
operator for a discussion of how QM appends items.

Additional delimiters will be added to reach the specified field, value and subvalue unless the string
to be inserted is null. Absent fields, values and subvalues are assumed to be null so there is no need
to insert additional marks in this case.

Example

LOCATE PART.NO IN PARTS<1> BY "AL" SETTING I ELSE
 INS PART.NO BEFORE PARTS<I>
END

This program fragment locates PART.NO in a sorted list PARTS and, if it is not already present,
inserts it.

See also:

OpenQM786

2.6-6

DEL, DELETE(), EXTRACT(), FIND, FINDSTR, LISTINDEX(), LOCATE, LOCATE(),
REPLACE()

QMBasic 787

2.6-6

INT()

The INT() function returns the integer part of a value.

Format

INT(expr)

where

expr evaluates to a number or a numeric array.

The INT() function returns the integer part of expr. Any fractional part after rounding in
accordance with the INTPREC configuration parameter is discarded such that INT(1.9), for
example, evaluates to 1.

If expr is a numeric array (a dynamic array where all elements are numeric), the INT() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

N = INT(A / B)

This statement finds the integer part of the quotient of A / B and assigns this to N. The IDIV()
function provides an alternative way to achieve this but is specific to QMBasic.

OpenQM788

2.6-6

ITYPE()

The ITYPE() function executes a compiled I or C-type dictionary record or an A or S-type with a
correlative.

Format

ITYPE(itype)

where

itype is a previously compiled record read from a dictionary.

The ITYPE() function evaluates expression compiled as part of the given dictionary record and
returns its result. The working environment for the ITYPE() function must be established by
setting @ID to the key of the record being processed and @RECORD to the record data if these
are used by the expression.

The dictionary record must have been compiled before the ITYPE() function is used.

If the byte ordering of the object code in the itype variable is not the same as that of the machine on
which it is being executed, it will be converted automatically and the itype variable will be modified
to contain the converted object code so that a subsequent call to the ITYPE() function will not
repeat the conversion.

The ITYPE() function can be used to evaluate D-type items and A or S type items that do not
include a correlative. Although the performance of this use of the function will be significantly
lower than simple field extraction in the calling program, it may allow some programs that do not
require best performance to adopt a generalised interface for all dictionary record types that return
data item values.

Example

READ IREC FROM DICT.FILE, "AGE" THEN
 @RECORD = REC
 AGE = ITYPE(IREC)
END

This program fragment reads dictionary record "AGE" to IREC. This might, perhaps, be an I-type
to calculate a person's age from their date of birth. The @RECORD variable is set to the data to be
processed and the ITYPE() function is used to execute the I-type.

QMBasic 789

2.6-6

KEYCODE()

The KEYCODE() function reads a single keystroke from the keyboard.

Format

KEYCODE({timeout})

The KEYCODE() function pauses program execution until a key is pressed. The character
associated with that key is returned as the value of the function. The character is not echoed to the
display.

KEYCODE() does not take data from the DATA statement queue.

The optional timeout parameter specifies a period in seconds after which the function will return if
no input is received. In this case the returned value is a null string and the STATUS() function will
return ER$TIMEOUT.

A null string is also returned when taking input from a pipe if the piped data stream is exhausted. In
this case the STATUS() function will return ER$EOF. The value returned by the STATUS()
function is not significant unless KEYCODE() has returned a null string.

The KEYCODE() function differs from KEYIN() in that it uses the terminfo database to identify
certain special keys and returns the character representing the internal representation of that key as
defined in the KEYIN.H include record in the SYSCOM file. The special keys recognised by this
function are:

Function keys F1 to F12
Left, right, up and down cursor keys
Page up and Page down keys
Home and End
Insert and Delete
Backtab
Mouse

Use of the Escape key will return char(27) if no further characters are received within 200mS. This
mechanism can be disabled using the BINDKEY() function.

Mouse Input on AccuTerm

The mouse code is returned when the mouse control prefix sequence defined in the terminfo
database is detected. The way in which mouse clicks are handled varies considerably between
different terminal emulators and will almost certainly require device specific programming. The
following code sample works for the AccuTerm emulator in its vt100 mode if the terminfo kmous
key is defined as "\E[101~".

C = KEYCODE()
IF SEQ(C) = K$MOUSE THEN
 S = ''
 LOOP
 C = KEYIN()

OpenQM790

2.6-6

 UNTIL C = 'R'
 S := C
 REPEAT
 ROW = MATCHFIELD(S, '0X0N;0N', 2)
 COL = MATCHFIELD(S, '0X0N;0N', 4)
END

The above program fragment is for QM version 2.1-0 upwards as earlier versions used a different
terminfo entry. Note that AccuTerm numbers rows and columns from one.

Stylus Input on a PDA

Stylus taps are enabled on a PDA using the @(IT$STYLUS) function. When enabled, a stylus tap
sends char(200) (K$MOUSE) followed by the column and row coordinates, separated by a comma
and terminated by a carriage return. The following function extends KEYCODE to recognise stylus
taps, returning the mouse code to the caller and leaving the screen coordinates in a common block.

FUNCTION KEY()
 $CATALOGUE KEY

 $INCLUDE KEYS.H
 $INCLUDE KEYIN.H

 COMMON /STYLUS/STYLUS.ROW, STYLUS.COL

 DISPLAY @(IT$STYLUS,1):
 K = KEYCODE()
 DISPLAY @(IT$STYLUS,0):
 IF SEQ(K) = K$MOUSE THEN
 ECHO OFF
 INPUT S ;* Get coordinate data
 HUSH OFF
 STYLUS.COL = MATCHFIELD(S, '0N","0N', 1)
 STYLUS.ROW = MATCHFIELD(S, '0N","0N', 3)
 END

 RETURN K
END

QMBasic 791

2.6-6

KEYEDIT

The KEYEDIT statement defines editing keys for use with INPUT @.

Format

KEYEDIT (action, key), (action, key), ...

where

action identifies the editing action to be performed when the key is pressed. This may be:

2 Cursor left

3 Return

4 Backspace

6 Cursor right

7 Insert character (treated as action 13)

8 Delete character

13 Toggle insert mode

A negative action value removes the key binding specified by key.

key identifies the key to be bound to the given action. This is specified as a numeric
value:

1 to 31 Use the control key with this character value. Ctrl-A is 1, Ctrl-B is
2, etc.

32 to 159 Use the Escape key followed by the key with this character value
(e.g. Esc-A is 65).

160+ Use a sequence of up to four characters constructed from the bytes
of (key + 160) starting from the low order byte.

The KEYEDIT statement adds user defined alternative key bindings to the standard set used by
the INPUT @ statement. These may validly replace default bindings. The newly bound keys remain
in effect until either they are rebound by a further KEYEDIT statement or the process returns to
the command prompt.

The INPUT @ statement checks for keys bound via the terminfo system or KEYEDIT before
using the standard default bindings.

See also:
BINDKEY(), INPUT@, INPUTFIELD, KEYCODE(), KEYEXIT, KEYTRAP

OpenQM792

2.6-6

KEYEXIT

The KEYEXIT statement defines exit keys for use with INPUT @.

Format

KEYEXIT (action, key), (action, key), ...

where

action is a user defined value in the range 1 to 255 to be returned by the STATUS()
function following an INPUT @ that is terminated by use of the key defined by
key.

A negative action value removes the key binding specified by key.

key identifies the key to be bound to the given action. This is specified as a numeric
value:

1 to 31 Use the control key with this character value. Ctrl-A is 1, Ctrl-B is
2, etc.

32 to 159 Use the Escape key followed by the key with this character value
(e.g. Esc-A is 65).

160+ Use a sequence of up to four characters constructed from the bytes
of (key 160) starting from the low order byte.

The KEYEXIT statement defines one or more keys that will terminate an INPUT @ statement.
When any of these keys in pressed the INPUT @ returns with the input data as entered up to the
moment when this key was used. The STATUS() function will return the value defined by action
for the key.

See the KEYTRAP statement for a method to return the original data.

See also:
BINDKEY(), INPUT@, INPUTFIELD, KEYCODE(), KEYEDIT, KEYTRAP

QMBasic 793

2.6-6

KEYIN()

The KEYIN(), KEYINC() and KEYINR() functions read a single keystroke from the keyboard.

Format

KEYIN({timeout})
KEYINC({timeout})
KEYINR({timeout})

The KEYIN() function pauses program execution until a key is pressed. The character associated
with that key is returned as the value of the function. The character is not echoed to the display.

The KEYINC() function is identical except that the case of alphabetic characters is inverted in case
inversion has been enabled.

The KEYINR() function reads a single character with no internal processing. In particular, null
characters are not removed and char(10) and char(13) are passed through without any special
handling.

The KEYINR() function is redundant from release 2.1-8 as QM now honours the setting of the
telnet binary mode parameter. The function will be retained as a synonym for KEYIN() for the
foreseeable future.

KEYIN(), KEYINC() and KEYINR() do not take data from the DATAstatement queue.

The optional timeout parameter specifies a period in seconds after which the function will return if
no input is received. In this case the returned value is a null string and the STATUS() function will
return ER$TIMEOUT. The timeout value may be fractional to specify timeouts of less than one
second. Values less than 10mS or greater than 24 hours may not behave correctly.

A null string is also returned when taking input from a pipe if the piped data stream is exhausted. In
this case the STATUS() function will return ER$EOF. The value returned by the STATUS()
function is not significant unless KEYIN() has returned a null string.

Character Values

The printing characters and control characters are all represented by their normal ASCII characters.
Other keystrokes such as the function keys, ALT sequences and special keys (Home, Delete, cursor
moves, etc) are represented by characters with values of 128 and upwards. Click here for a table of
key code values.

See also:
IN, KEYCODE(), KEYREADY()

OpenQM794

2.6-6

KEYREADY()

The KEYREADY() function tests for data entered at the keyboard.

Format

KEYREADY()

The KEYREADY() function tests whether characters have been typed at the keyboard, returning
true if characters are waiting to be processed, false if not. It differs from use of the INPUT
statement with a negative length value in that KEYREADY() checks the keyboard only whereas
INPUT checks the keyboard and the DATA statement queue.

KEYREADY() always returns true when using piped input. The end of file condition can only be
determined by a subsequent attempt to read data from the pipe.

Data detected by KEYREADY() may be read by a subsequent use of either KEYIN() or INPUT.

See also:
IN, KEYIN()

QMBasic 795

2.6-6

KEYTRAP

The KEYTRAP statement defines trap keys for use with INPUT @.

Format

KEYTRAP (action, key), (action, key), ...

where

action is a user defined value in the range 1 to 255 to be returned by the STATUS()
function following an INPUT @ that is terminated by use of the key defined by key
.

A negative action value removes the key binding specified by key.

key identifies the key to be bound to the given action. This is specified as a numeric
value:

1 to 31 Use the control key with this character value. Ctrl-A is 1, Ctrl-B is
2, etc.

32 to 159 Use the Escape key followed by the key with this character value.

160+ Use a sequence of up to four characters constructed from the bytes
of (key 160) starting from the low order byte.

The KEYTRAP statement defines one or more keys that will terminate an INPUT @ statement.
When any of these keys in pressed the INPUT @ returns with the original value of the input
variable. The STATUS() function will return the value defined by action for the key.

See the KEYEXIT statement for a method to return the input data as entered up to the moment
when this key was used.

See also:
BINDKEY(), INPUT@, INPUTFIELD, KEYCODE(), KEYEDIT, KEYEXIT

OpenQM796

2.6-6

LEN()

The LEN() function returns the length of a string. The LENS() function is similar to LEN() but
operates on successive elements of a dynamic array, returning a similarly structured dynamic array
of results.

Format

LEN(string)

where

string is the string for which the length is to be returned.

The LEN() function returns the length of string including any trailing spaces.

Example

LOOP
 DISPLAY "Enter account number: "
 INPUT ACCOUNT.NO
WHILE LEN(ACCOUNT.NO) # 6
 PRINTERR "Invalid account number"
REPEAT

This program fragment prompts for and inputs an account number. If it is not six characters in
length, an error is displayed and the prompt is repeated.

QMBasic 797

2.6-6

LES()

The LES() function processes two dynamic arrays, returning a similarly structured result array
indicating whether elements of the first array are less than or equal to corresponding elements of the
second array.

Format

LES(expr1, expr2)

where

expr1and expr2 are the dynamic arrays to be compared.

The LES() function compares corresponding elements of the dynamic arrays expr1 and expr2,
returning a similarly structured dynamic array of true / false values indicating the results of the
comparison.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as zero.

Example

A contains 11FM0VM14VMABCFM2
B contains 12FM0VM14VMACBFM2

C = LES(A, B)

C now contains 1FM1VM0VM0FM1

See also:
ANDS(), EQS(), GES(), GTS(), IFS(), LTS(), NES(), NOTS(), ORS(), REUSE()

OpenQM798

2.6-6

LISTINDEX()

The LISTINDEX() function returns the position of an item in a delimited list.

Format

LISTINDEX(list, delimiter, item)

where

list is the list to search.

delimiter is the single character delimiter separating items in the list.

item is the item to find.

The LISTINDEX() function returns the position of item in the delimited list. If it is not found, the
function returns zero.

See the LOCATE statement for a more powerful way of dynamic arrays.

Examples

SUFFIX = FIELD(DOC.NAME, ".", DCOUNT(DOC.NAME, "."))
IF LISTINDEX("TXT,DOC,PDF", ",", SUFFIX) THEN
 DISPLAY DOC.NAME
END

This program fragment extracts the suffix from a Windows style file name and checks whether it is
TXT, DOC or PDF. If so, the document name is displayed.

LISTINDEX(PROD.NO, @VM, PART); IF @ THEN QTY<1,@> ELSE ""

Used as an expression in a dictionary I-type item, this example searches field PROD.NO for an
entry containing PART and extracts the corresponding entry from the QTY field. If the item is not
found, a null string is returned.

See also:
DEL, DELETE(), EXTRACT(), FIND, FINDSTR, INS, INSERT(), LOCATE, LOCATE(),
REPLACE()

QMBasic 799

2.6-6

LN()

The LN() function returns the natural log of a value.

Format

LN(expr)

where

expr evaluates to a number or a numeric array.

The LN() function returns the natural log of expr. It is the inverse of the EXP() function.

If expr is a numeric array (a dynamic array where all elements are numeric), the LN() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

N = LN(X)

This statement finds the natural log of X and assigns this to N.

OpenQM800

2.6-6

LOCAL

The LOCAL statement introduces an internal function or subroutine that may have private local
variables.

Format

LOCAL {FUNCTION | SUBROUTINE} name{(args)}
PRIVATE vars
...statements...
END

where

name is the name of the function subroutine.

args is the comma separated list of arguments to the function or subroutine. An
argument may reference a whole matrix by prefixing it with MAT. The variable
names used for the arguments are visible only to the one function or subroutine and
do not prevent use of the same name in other parts of the program module to
reference a different variable.

Further local variables that are private to the function or subroutine may be defined by immediately
following the LOCAL statement by one or more PRIVATE statements. These contain a comma
separated list of variable names which may be simple scalar items or matrices where the dimension
values are numeric constants. Any variables referenced in the local function or subroutine but not
declared as private are considered as having scope across the entire program module.

Functions and subroutines declared using LOCAL must be terminated with an END statement.
The private variables declared using the PRIVATE statement have scope from the LOCAL
statement until the corresponding END statement. Variables referenced in the main body of the
program and in conventional internal subroutines are accessible unless they have the same name as
a locally defined variable.

A local function must be defined using the DEFFUN statement with the LOCAL option before its
first use in the program.

All labels within the local subroutine are private. It is not possible to jump into a subroutine
declared with LOCAL except by using a GOSUB or ON GOSUB to its unique entry point.
Similarly, it is not possible to jump to a label outside the local subroutine. Use of the
RETURN TO statement is prohibited within a local subroutine.

If a local subroutine is called recursively, either directly or indirectly via some other intermediate
subroutine, the local variables are stacked and the new invocation has its own private local
variables.

There is a small performance cost by comparison to use of conventional internal subroutines due to
the dynamic allocation of variables but this should be negligible in most applications.

When using the QMBasic debugger, local variables have a name formed from the subroutine name
and variable name separated by a colon.

QMBasic 801

2.6-6

Examples

LOCAL SUBROUTINE SCAN.LIST
 PRIVATE I, N, REC
 N = DCOUNT(LIST, @FM)
 FOR I = 1 TO N
 READV REC FROM STOCK.F, LIST<I> , 0 ELSE
 DISPLAY LIST<I> : ' is not in stock file'
 END
 NEXT I
 RETURN
END

The above program fragment represents a local subroutine that scans a list, checking that each entry
corresponds to a record in a file. By using LOCAL and three local variables, all risk of overwriting
valuable data in variables of the same names in the main body of the program is removed.

LOCAL FUNCTION NEXT.ID(FILENAME)
 PRIVATE DICT.F, ID
 OPEN 'DICT', FILENAME TO DICT.F THEN
 READU ID FROM DICT.F, 'NEXT.ID' THEN
 WRITE ID+1 TO DICT.F, 'NEXT.ID'
 RETURN ID
 END
 END
 RETURN ''
END

The above local function takes a file name as its argument and gets the next sequential record id
from a record stored in the corresponding dictionary, returning this as the value of the function. The
dictionary will automatically be closed when the DICT.F variable is discarded on return from the
function.

OpenQM802

2.6-6

LOCATE

The LOCATE statement searches a dynamic array for a given field, value or subvalue. The
LOCATE() function provides similar capabilities and is particularly suited to use in dictionary
I-type items.

Format

LOCATE string IN dyn.array<field {,value {, subvalue}}> {BY order} SETTING var
{THEN statement(s)}
{ELSE statement(s)}

LOCATE(string, dyn.array{, field {,value }}; var {; order}) Pick style syntax

LOCATE(string, dyn.array, field {,value {, subvalue }} {; order}) Function syntax

where

string evaluates to the item to be located.

dyn.array is the dynamic array in which searching is to occur.

field is the field at which searching is to commence.

value is the value at which searching is to commence. If omitted or zero,
searching occurs at the field level.

subvalue is the subvalue at which searching is to commence. If omitted or zero,
searching occurs at the value level.

order evaluates to the ordering string as described below. If omitted, no ordering
is assumed.

var is the variable to receive the position value.

statement(s) are statements to be executed depending on the outcome of the LOCATE
action.

At least one of the THEN and ELSE clauses must be present.

The LOCATE statement searches for fields, values or subvalues. If only field is specified,
LOCATE searches for a field that matches string. If only field and value are specified, LOCATE
searches for a value within the specified field that matches string. If field, value and subvalue are
specified, LOCATE searches for a subvalue within the specified field and value that matches
string.

Searching commences at the starting position defined in the IN clause. If a match is found, var is
set to its field, value or subvalue position as appropriate to the level of the search. If no match is
found, var is set to the position at which a new item should be inserted. For an unordered
LOCATE this will be such that it would be appended.

QMBasic 803

2.6-6

The optional BY clause allows selection of an ordering rule. The order must evaluate to a two
character string, which is

AL Ascending, left justified. Items are considered to be sequenced in ascending collating
sequence order.

AR Ascending, right justified. Items are considered to be sequenced in ascending collating
sequence order. Where the item being examined is not of the same length as the string
being located, the shorter of the two is right aligned within the length of the longer prior
to comparison. Integer numeric data is treated as a special case and is sorted into
correct numeric sequence.

DL Descending, left justified. Similar to AL except that the list is held in descending
collating sequence.

DR Descending, right justified. Similar to AR except that the list is held in descending
collating sequence.

The ordering string must be in upper case. Left aligned ordering is faster than right aligned and
should be used for textual data. Right aligned ordering is useful for numeric data such as internal
format dates where the left aligned ordering would lead to sequencing problems (for example, 17
May 1995 is day 9999, 18 May 1995 is day 10000. Use of a left aligned ordering would place these
dates out of calendar order).

The THEN clause is executed if the string is found in dyn.array. The ELSE clause is found if the
string is not found.

The LOCATE() function returns as its result the position at which the item was found, zero if it
was not found. Although the order argument can be used to specify the expected ordering and has
the impact described above for numeric data, this function does not provide a way to identify where
an item should be inserted if it is not found. The LOCATE() function is particularly suited to use
in dictionary I-type items.

The result of a LOCATE statement or LOCATE() function with a specific ordering when applied
to a dynamic array which does not conform to that ordering is undefined and likely to lead to
misbehaviour of the program at run time.

Use of the $NOCASE.STRINGS compiler directive makes the comparison case insensitive. When
used with a BY clause, the sorting is effectively as though both string and dyn.array are in
uppercase.

Examples

LOCATE PART.NO IN PARTS<1> BY "AL" SETTING I ELSE
 INS PART.NO BEFORE PARTS<I>
END

This program fragment locates PART.NO in a sorted list PARTS and, if it is not already present,
inserts it.

I = LOCATE(PART.NO, PARTS, 1; "AL")

OpenQM804

2.6-6

This statement performs the same search as the previous example but can only be used to find the
position of an existing item, not to determine where a new item should be inserted to maintain the
correct sort order.

Alternative Formats

QM supports two alternative formats of LOCATE for compatibility with other database products.

The UniVerse database running in Ideal or Reality flavour uses the IN clause to identify the item to
be searched, not the starting position. The starting position is assumed to be the first item in the
data but may specified explicitly in the command.

LOCATE string IN dyn.array{<field {,value }>} {, start} {BY order} SETTING var
{THEN statement(s)}
{ELSE statement(s)}

This format of LOCATE can be selected by including a line

$MODE UV.LOCATE

in the program on a line preceding the LOCATE statement. This mode setting has no effect on the
operation of the LOCATE() function.

The Pick database uses a very different syntax which does not permit the search to start part way
through the region of the dynamic array being searched.

LOCATE(string, dyn.array{,field {,value }}; var {; order})
{THEN statement(s)}
{ELSE statement(s)}

This format can be used in QM without any special mode settings. Note that despite the presence of
brackets, this is a statement and should not be confused with the LOCATE() function described
above.

See also:
DEL, DELETE(), EXTRACT(), FIND, FINDSTR, INS, INSERT(), LISTINDEX(),
REPLACE()

QMBasic 805

2.6-6

LOCK

The LOCK statement obtains one of 64 system wide task locks.

Format

LOCK lock.num {THEN statement(s)} {ELSE statement(s)}

where

lock.num evaluates to the lock number in the range 0 to 63.

statement(s) are statements to be performed depending on the outcome of the LOCK
operation.

The THEN and ELSE clauses are both optional. Neither is required.

Task locks provide a means of synchronising the activities of multiple processes without using locks
on records in data files. The LOCK statement attempts to acquire the lock identified by lock.num.

The THEN clause is executed if the lock was available or was already held by this process.

The ELSE clause is executed if the lock is held by another process. If no ELSE clause is present,
the LOCK statement waits for the lock to become available. This wait can be interrupted by using
the break key.

The STATUS() function returns zero if the lock was free when the LOCK statement was executed.
Otherwise it returns the user number of the process that held the lock. This will be the user number
of the current process if it already owned the lock.

There is no means for a program to determine which task locks are held by the user except by
attempting to acquire each lock in turn and checking the value of the STATUS() function. Beware
that unlike read, update and file locks, task locks are only automatically released on leaving QM,
not on return to the command prompt.

Examples

LOCK 7 THEN
 ...processing statements...
 UNLOCK 7
END
ELSE ABORT "Cannot obtain task lock"

This program fragment obtains task lock 7, performs some critical processing and then releases the
lock. The program aborts if the lock is not available.

LOCK 7

This statement attempts to obtain task lock 7 but, unlike the previous example, waits for the lock to
become free if it is owned by another user.

OpenQM806

2.6-6

LOGMSG

The LOGMSG statement adds a line to the system error log. This statement has no effect on the
PDA version of QM.

Format

LOGMSG text

where

text is the message to be logged.

QM includes the option to maintain a log of system error messages in a file named errlog in the
QMSYS account. The LOGMSG statement can be used by application software to write messages
into this file. If the error log is disabled, the LOGMSG statement will be ignored.

Although programs can write to this file using the sequential file handling statements, the internal
buffering mechanism used by these statements is likely to result in loss of messages. Programs
should, therefore, use on the LOGMSG statement to write messages.

Example

READ ORDER.NO FROM @VOC, 'NEXT.ORDER' ELSE
 LOGMSG 'NEXT.ORDER record not found'
 RETURN
END

The above program fragment logs a message in the system error log if the NEXT.ORDER record
cannot be found in the VOC

See also:
LOGMSG command

QMBasic 807

2.6-6

LOOP / REPEAT

The LOOP statement introduces a sequence of statements to be executed repeatedly.

Format

LOOP
{statement(s)}

{WHILE expr}
{UNTIL expr}

{statement(s)}
REPEAT

where

statement(s) are statements to be executed within the loop.

expr is an expression which can be resolved to a numeric value

There may be any number of WHILE or UNTIL statements within the loop appearing at any
position relative to other statements.

Execution of the statements within the loop continues repeatedly until either the expression
associated with a WHILE statement evaluates to zero or the expression associated with an UNTIL
statement evaluates to a non-zero value.

The loop may also be terminated by an EXIT statement as detailed in its own description.

The CONTINUE statement may be used to commence the next iteration of the loop without
execution of any intervening statements.

Example

LOOP
 REMOVE ITEM FROM ITEM.LIST SETTING DELIMITER
 DISPLAY "Item id " : ITEM
WHILE DELIMITER
REPEAT

This program fragment displays the elements of the dynamic array ITEM.LIST.

See also:
CONTINUE, EXIT, FOR/NEXT, WHILE, UNITL

OpenQM808

2.6-6

LOWER()

The LOWER() function converts mark characters in a string to the next lower level mark.

Format

LOWER(string)

where

string evaluates to the string in which mark characters are to be converted.

The LOWER() function replaces mark characters according to the following table:

Original Replacement

Item mark Field mark

Field mark Value mark

Value mark Subvalue mark

Subvalue mark Text mark

Text mark Text mark (unchanged)

Example

READLIST LIST THEN REC<4> = LOWER(LIST)

This statement reads active select list zero to LIST and then saves it in field 4 of REC. Because a
select list contains field marks, the LOWER() function is used to demote each mark character to
the next lowest mark.

See also:
RAISE()

QMBasic 809

2.6-6

LTS()

The LTS() function processes two dynamic arrays, returning a similarly structured result array
indicating whether elements of the first array are less than corresponding elements of the second
array.

Format

LTS(expr1, expr2)

where

expr1and expr2 are the dynamic arrays to be compared.

The LTS() function compares corresponding elements of the dynamic arrays expr1 and expr2,
returning a similarly structured dynamic array of true / false values indicating the results of the
comparison.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as zero.

Example

A contains 11FM0VM14VMABCFM2
B contains 12FM0VM14VMACBFM2

C = LTS(A, B)

C now contains 1FM0VM0VM0FM0

See also:
ANDS(), EQS(), GES(), GTS(), IFS(), LES(), NES(), NOTS(), ORS(), REUSE()

OpenQM810

2.6-6

MARK.MAPPING

The MARK.MAPPING statement determines how field marks are handled when reading or writing
from a directory file.

Format

MARK.MAPPING file.var, OFF

MARK.MAPPING file.var, ON

MARK.MAPPING file.var, expr

where

file.var is the file variable for a previously opened file.

expr evaluates to a number.

Data written to directory files usually has field marks translated to newlines. On reading, the
reverse translation is performed to recover the original data. Records storing binary information
may contain bytes that appear to be field marks and these will be translated, possibly causing data
corruption.

Use of MARK.MAPPING file.var, OFF will suppress this mark mapping process until a
subsequent MARK.MAPPING file.var, ON statement or the file is closed.

The MARK.MAPPING file.var, expr format of this statement is equivalent to
MARK.MAPPING file.var, ON if the value of expr is non-zero and MARK.MAPPING file.var,
OFF if expr is zero.

Example

MARK.MAPPING FILE.VAR, OFF
READ REC FROM FILE.VAR, ID ELSE STOP 'NOT FOUND'

This program fragment reads a record with mark translation suppressed.

QMBasic 811

2.6-6

MAT

The MAT statement assigns a value to all elements of a matrix or copies one matrix to another.

Format

MAT matrix = expr

MAT matrix = MAT src.matrix

where

matrix is the name of a previously dimensioned matrix to which values are to be
assigned

expr evaluates to the value to be stored in each matrix element.

src.matrix is the name of a previously dimensioned matrix which is to be copied to matrix.

The first format of this statement copies the value of expr into all elements of matrix. The zero
element is set to a null string.

The second format copies elements from src.matrix to matrix row by row. If the number of columns
differs, the copy behaves as depicted below.

Source: Target:

1 2 1 2 3

1 A B 1 A B C

2 C D 2 D E F

3 E F

The zero element of src.matrix is copied to the zero element of matrix.

If src.matrix has more elements than matrix, the excess elements are ignored. If src.matrix has
fewer elements than matrix, the remaining elements of matrix are unchanged.

A single dimensional matrix can be copied to a two dimensional matrix and vice versa.

Examples

DIM A(25)
MAT A = 0

This program fragment dimensions matrix A to have 25 elements and sets them all to zero.

DIM A(5,5), B(25)
... statements that set values in matrix A...
MAT B = MAT A

This program fragment dimensions two matrices, sets values into matrix A and then creates a single

OpenQM812

2.6-6

dimensional copy of A in matrix B.

QMBasic 813

2.6-6

MATBUILD

The MATBUILD statement constructs a dynamic array from the elements of a matrix.

Format

MATBUILD var FROM mat {, start.expr {, end.expr} {USING delimiter}

where

var is the variable to receive the dynamic array.

mat is the matrix from which data is to be taken.

start.expr evaluates to the index of the first matrix element to be used. If omitted or less
than one, this defaults to one.

end.expr evaluates to the index of the last matrix element to be used. If omitted or less
than one, this defaults to the number of elements in the matrix.

delimiter evaluates to the delimiter to be used between elements of mat. This may be
more than one character. If omitted, this defaults to the field mark.

The MATBUILD statement constructs a dynamic array by concatenating elements of mat from
element start.expr to the last non-null element before element end.expr. The delimiter is inserted
between each element. With the default style of matrix, if the zero element of mat is non-null, a
delimiter followed by the content of the zero element is appended to the end of the resultant
dynamic array. Pick style matrices do not have a zero element. See the COMMON and
DIMENSION statements for more details.

Example

MATBUILD REC FROM A USING @VM

This statement constructs dynamic array REC from the elements of matrix A, separating each
element by a value mark.

See also:
MATPARSE

OpenQM814

2.6-6

MATCHFIELD

The MATCHFIELD() function extracts a portion of a string that matches a pattern element.

Format

MATCHFIELD(string, pattern, element)

where

string evaluates to the string in which the pattern is to be located.

pattern evaluates to a template as described below.

element evaluates to an integer indicating which pattern element of string is to be returned.

The MATCHFIELD() function matches string against pattern and returns the portion of string
that matches the element'th component of pattern.

The pattern string consists of one or more concatenated items from the following list.

... Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type

0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters

0N Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly. Either single or double quotation marks
may be used. Unlike the MATCHES operator, string must be enclosed in quotes
otherwise each character is treated as a separate component.

The values n and m are integers with any number of digits. m must be greater than or equal to n.

The 0A, nA, 0N, nN and "string" patterns may be preceded by a tilde (~) to invert the match
condition. For example, ~4N matches four non-numeric characters such as ABCD (not a string
which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, 0N, their inverses (~0A, etc) and "".

The 0X and n-mX patterns match against as few characters as necessary before control passes to
the next pattern. For example, the string ABC123DEF matched against the pattern 0X2N0X
matches the pattern components as ABC, 12 and 3DEF.

QMBasic 815

2.6-6

The 0N, n-mN, 0A, and n-mA patterns match against as many characters as possible. For example,
the string ABC123DEF matched against the pattern 0X2-3N0X matches the pattern components as
ABC, 123 and DEF.

The pattern string may contain alternative templates separated by value marks. The
MATCHFIELD() function tries each template in turn until one is a successful match against
string.

The element argument determines which component of string is returned as the MATCHFIELD()
function result. For example,

MATCHFIELD("ABC123DEF", "0X2N0X", 2)

returns the string "12".

The MATCHFIELD() function returns a null string if no component of pattern matches string.

Example

TEL.NO = "01604-709200"
LOCAL.NO = MATCHFIELD(TEL.NO, "0N'-'0N", 3)

This program fragment extracts the local part of a telephone number (709200 in this case). Note
that the literal element counts as a component of the string when identifying each element.

If the delimiter is multiple characters but not quoted, each character is counted as a separate
element:

MATCHFIELD("123--456", "0N'--'0N", 1) returns 123
MATCHFIELD("123--456", "0N'--'0N", 2) returns --
MATCHFIELD("123--456", "0N'--'0N", 3) returns 456

MATCHFIELD("123--456", "0N--0N", 1) returns 123
MATCHFIELD("123--456", "0N--0N", 2) returns -
MATCHFIELD("123--456", "0N--0N", 3) returns -
MATCHFIELD("123--456", "0N--0N", 4) returns 456

See also:
Pattern Matching

OpenQM816

2.6-6

MATPARSE

The MATPARSE statement breaks a delimited string into component substrings, assigning each to
an element of a matrix.

Format

MATPARSE mat FROM string, delimiter
MATPARSE mat FROM string USING delimiter

where

mat is the matrix into which the substrings are to be assigned. This matrix must
already have been dimensioned.

string is the string to be parsed.

delimiter evaluates to the delimiter that separates substrings within string.

The MATPARSE statement operates in one of three ways depending on the length of the delimiter
string.

If delimiter is a null string, each character of string is assigned to a separate element of mat. If
both string and delimiter are null, no elements are assigned.

If delimiter is a one character string, each substring of string delimited by delimiter is assigned to a
separate element of mat. The delimiter character is not stored in mat.

If delimiter is more than one character long, each substring of string delimited by any character of
delimiter is assigned to a separate element of mat. The next element is assigned the character that
delimited the items. Where two or more occurrences of the same delimiter character occur within
string with no other intervening characters, only a single element of mat is used to receive the
multiple delimiters.

If mat is two dimensional, its elements are assigned row by row.

In all cases, the INMAT() function will return the number of elements assigned. Unused elements
are set to null strings.

With the default style of matrix, where there are insufficient elements in mat to receive the parsed
string, the remaining unparsed data is stored in the zero element of mat. In this case, the INMAT()
function will return zero.

Pick style matrices do not have a zero element. Any excess data is stored in the final element of the
matrix and the INMAT() function returns zero to indicate this condition. See the COMMON and
DIMENSION statements for more details.

Example

DIM A(30)

QMBasic 817

2.6-6

MATPARSE A FROM S, @FM

This program fragment assigns successive fields of string S to elements of matrix A. If there are
more than 30 fields, the remaining fields and delimiting mark characters are stored in A(0).

See also:
MATBUILD

OpenQM818

2.6-6

MATREAD

The MATREAD statement reads a record from a file, assigning each field to an element of a
matrix.

The MATREADL statement is similar to MATREAD but sets a read lock on the record. The
MATREADU statement sets an update lock on the record.

Format

MATREAD mat FROM file.var, record.id {ON ERROR statement(s)}
{LOCKED statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

mat is the matrix into which fields are to be assigned. This matrix must already
have been dimensioned.

file.var is the file variable associated with the file.

record.id evaluates to the key of the record to be read.

statement(s) are statements to be executed depending on the outcome of the operation.

The LOCKED clause is not valid with the MATREAD statement. At least one of the THEN and
ELSE clauses must be present.

Each field of the record is assigned to a separate element of mat. If mat is two dimensional, its
elements are assigned row by row. The INMAT() function will return the number of elements
assigned. Unused elements are set to null strings.

With the default style of matrix, where there are fewer elements in mat than the number of fields in
the record, the remaining data is stored in the zero element of mat. In this case, the INMAT()
function will return zero.

Pick style matrices do not have a zero element. Any excess data is stored in the final element of the
matrix and the INMAT() function returns zero to indicate this condition. See the COMMON and
DIMENSION statements for more details.

The MATREAD statement is equivalent to a READ followed by a MATPARSE.

READ REC FROM file.var, record.id
ON ERROR statement(s)
LOCKED statement(s)
THEN MATPARSE mat FROM REC, @FM
ELSE statement(s)

QMBasic 819

2.6-6

Example

DIM ITEMS(30)
MATREAD ITEMS FROM ITEM.FILE, "ITEM.LIST" ELSE
 ABORT "ITEM.LIST record not found"
END
IF INMAT() THEN DISPLAY INMAT() : " items read"
ELSE ABORT "Too many items"

This program fragment reads a record from a file, assigning fields to elements of matrix ITEMS. If
there are more than 30 fields, the program aborts, otherwise it displays the number of items read.

OpenQM820

2.6-6

MATREADCSV

The MATREADCSV statement reads a CSV format line of text from a directory file record
previously opened for sequential access and parses it into the elements of a dimensioned matrix.

Format

MATREADCSV matrix FROM file.var
{THEN statement(s)}
{ELSE statement(s)}

where

matrix is the dimensioned matrix to receive the data read from the file.

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed depending on the outcome of the
READSEQ.

At least one of the THEN and ELSE clauses must be present.

A line of text is read from the file. It is then parsed according to the CSV format rules, placing the
elements into successive elements of the matrix. If successful, the THEN clause is executed and
the STATUS() function would return zero.

If there are fewer data items in the line of text than the number of variables supplied, the remaining
elements of the matrix will be set to null strings. If the line of text has more data items than the
number of elements in the matrix, the excess data is placed in the zero element as for MATPARSE.

If there are no further fields to be read, the ELSE clause is executed and the STATUS() function
would return ER$RNF (record not found). The target matrix will be unchanged.

The CSV rules are described under the WRITECSV statement.

Example

DIM DETAILS(10)
LOOP
 MATREADCSV DETAILS FROM DELIVERY.F ELSE EXIT
 GOSUB PROCESS.DELIVERY.DETAILS
REPEAT

This program fragment reads CSV format lines of text from the record open for sequential access
via the DELIVERY.F file variable into elements of the DETAILS matrix. It then calls the
PROCESS.DELIVERY.DETAILS subroutine to process the new item. The loop terminates when
the ELSE clause is executed when all fields have been processed.

See also:

QMBasic 821

2.6-6

CLOSESEQ, NOBUF, OPENSEQ, READBLK, READSEQ, SEEK, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

OpenQM822

2.6-6

MATWRITE

The MATWRITE statement builds a record from successive elements of a matrix and writes this
to a file.

The MATWRITEU statement is similar but preserves any lock on the record being written.

Format

MATWRITE mat TO file.var, record.id {ON ERROR statement(s)}

where

mat is the matrix from which data is to be taken.

file.var is the file variable associated with the file.

record.id evaluates to the key of the record to be written.

statement(s) are statements to be executed depending on the outcome of the operation.

The MATWRITE statement constructs a dynamic array by concatenating elements of mat,
inserting a field mark between each element.

If the zero element of mat is a null string or unassigned, assembly of the dynamic array terminates
after the last non-null element of mat. No trailing null fields will be written for later unassigned
elements of mat.

If the zero element of mat contains data, all elements of mat are used and the zero element is
concatenated as the final field of the record.

Pick style matrices do not have a zero element. See the COMMON and DIMENSION statements
for more details.

If the ON ERROR clause is taken, the STATUS() function can be used to determine the cause of
the error. Otherwise, for the MATWRITE statement, the STATUS() function returns 0 if the
record was locked by this process prior to the MATWRITE or ER$NLK if it was not locked. The
STATUS() function value is undefined after a successful MATWRITEU statement.

A MATWRITE statement is equivalent to a MATBUILD followed by a WRITE.

MATBUILD REC FROM mat
WRITE REC TO file.var, record.id ON ERROR statement(s)

Example

MATWRITE ITEMS TO ITEM.FILE, "ITEM.LIST" ON ERROR
 ABORT "Error " : STATUS() : " writing item list"
END
IF STATUS() = 0 THEN DISPLAY "Lock released"

QMBasic 823

2.6-6

This program fragment writes a record built from elements of matrix ITEMS. If it was locked prior
to the MATWRITE, a message is displayed.

OpenQM824

2.6-6

MAX()

The MAX() function returns the greater of two values.

Format

MAX(a, b)

where

a, b are the two values to be compared.

The MAX() function compares the values a and b, returning the greater value. If either value
cannot be treated as a number, a character by character comparison from the left end is performed
until a difference is found.

QMBasic 825

2.6-6

MAXIMUM()

The MAXIMUM() function returns the greatest value in a dynamic array.

Format

MAXIMUM(dyn.array)

where

dyn.array is the dynamic array to be scanned.

The MAXIMUM() function returns the greatest numeric value in dyn.array. Non-numeric and null
elements of dyn,array are ignored. If the entire dynamic array is null, a null string is returned.

Example

S = '61':@VM:'42':@FM:'71':@VM:'57'
CRT MAXIMUM(S)

This program fragment searches S for the largest numeric value and displays the result (71).

OpenQM826

2.6-6

MIN()

The MIN() function returns the lesser of two values.

Format

MIN(a, b)

where

a, b are the two values to be compared.

The MIN() function compares the values a and b, returning the lesser value. If either value cannot
be treated as a number, a character by character comparison from the left end is performed until a
difference is found.

QMBasic 827

2.6-6

MINIMUM()

The MINIMUM() function returns the lowest value in a dynamic array.

Format

MINIMUM(dyn.array)

where

dyn.array is the dynamic array to be scanned.

The MINIMUM() function returns the lowest numeric value in dyn.array. Non-numeric and null
elements of dyn,array are ignored. If the entire dynamic array is null, a null string is returned.

Example

S = '61':@VM:'42':@FM:'71':@VM:'57'
CRT MINIMUM(S)

This program fragment searches S for the largest numeric value and displays the result (42).

OpenQM828

2.6-6

MOD()

The MOD() function returns the modulus value of one value divided by another. The MODS()
function is similar to MOD() but operates on successive elements of two dynamic arrays, returning
a similarly structured dynamic array of results.

Format

MOD(dividend, divisor)

where

dividend evaluates to a number or a numeric array.

divisor evaluates to a number or a numeric array.

The MOD() function returns the modulus value of dividing dividend by divisor. This is defined as

MOD(x, y) = IF y = 0 THEN x ELSE x - (y * FLOOR(x / y))

where the FLOOR() function returns the highest integer with value not greater than its argument.
For example, FLOOR(-3.7) is -4.

The MOD() function differs from the REM() function when one of its arguments is negative. The
following table shows the result of the MOD() function.

Dividend Divisor MOD()

530 100 30

-530 100 70

530 -100 -70

-530 -100 -30

0 100 0

0 -100 0

100 0 100

-100 0 -100

The MODS() function operates on corresponding elements of two dynamic arrays, returning a
similarly structured dynamic array of results. For arrays of differing structure, the structure of the
result depends on whether the QMB.REUSE function is used.

Example

N = MOD(T, 30)

This statement finds the modulus of dividing T by 30 and assigns this to N.

QMBasic 829

2.6-6

See also:
REM()

OpenQM830

2.6-6

NAP

The NAP statement causes the program in which it is executed to pause for a given number of
milliseconds.

Format

NAP time

where

time is the number of milliseconds for which the program is to sleep.

If the value of time is less than 5000, the program pauses for the given number of milliseconds.
This sleep cannot be interrupted by the quit key.

If the value of time is 5000 or greater, the value is truncated to whole seconds and the program
enters an interruptable sleep for that period.

See also:
SLEEP

QMBasic 831

2.6-6

NEG()

The NEG() function returns the arithmetic inverse of a value. The NEGS() function is similar to
NEG() but operates on successive elements of a dynamic array, returning a similarly structured
dynamic array of results

Format

NEG(expr)

where

expr evaluates to a number or a numeric array.

The NEG() function returns the negative of expr. It is equivalent to -expr.

If expr is a numeric array (a dynamic array where all elements are numeric), the NEG() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

N = NEG(A)

This statement finds the arithmetic inverse of A and assigns this to N.

OpenQM832

2.6-6

NES()

The NES() function processes two dynamic arrays, returning a similarly structured result array
indicating whether corresponding elements are not equal.

Format

NES(expr1, expr2)

where

expr1and expr2 are the dynamic arrays to be compared.

The NES() function compares corresponding elements of the dynamic arrays expr1 and expr2,
returning a similarly structured dynamic array of true / false values indicating the results of the
comparison.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as zero.

Example

A contains 11FM0VM14VMABCFM2
B contains 12FM0VM14VMACBFM2

C = NES(A, B)

C now contains 1FM0VM0VM1FM0

See also:
ANDS(), EQS(), GES(), GTS(), IFS(), LES(), LTS(), NOTS(), ORS(), REUSE()

QMBasic 833

2.6-6

NOBUF

The NOBUF statement turns off buffering for a record opened using OPENSEQ.

Format

NOBUF file.var
{THEN statement(s)}
{ELSE statement(s)}

where

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed depending on the outcome of the NOBUF
statement.

At least one of the THEN and ELSE clauses must be present.

Normally, QM buffers data for records opened using OPENSEQ. The NOBUF statement turns off
this buffering such that READBLK will read the exact number of bytes specified and
WRITEBLK, WRITESEQ and WRITESEQF write immediately without intermediate buffering.
The READSEQ statement continues to use buffering as this is necessary for locating the end of a
text line.

Using unbuffered processing will result in lower performance than normal operation but may be
useful, for example, when the item opened using OPENSEQ is actually a device rather than a file
system data record.

See also:
CLOSESEQ, OPENSEQ, READBLK, READCSV, READSEQ, SEEK, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

OpenQM834

2.6-6

NOT()

The NOT() function returns the logical inverse of its argument. The NOTS() function is similar to
NOT() but operates on successive elements of a dynamic array, returning a similarly structured
dynamic array of results.

Format

NOT(expr)

where

expr evaluates to a numeric value

The NOT() function returns the logical inverse of expr. If expr is zero (or a null string which
equates to zero), the NOT() function returns true (1). If expr is non-zero, the NOT() function
returns false (0).

Example

IF NOT(NUM(S)) THEN GOTO ERROR

This statement causes the program to jump to label ERROR if S is not numeric.

See also:
ANDS(), EQS(), GES(), GTS(), IFS(), LES(), LTS(), NES(), ORS(), REUSE()

QMBasic 835

2.6-6

NULL

The NULL statement performs no action.

Format

NULL

The NULL statement is useful to satisfy the requirements of QMBasic syntax where no specific
action is required. No object code is generated by this statement.

Example

READ REC FROM CONTROL.FILE, "INVOICE.LIST" ELSE NULL

This statement reads the record "INVOICE.LIST" from the file open as file variable
CONTROL.FILE. The READ statement must have either or both of the THEN and ELSE
clauses. If the record is not found, REC will be set to a null string by the READ statement and the
ELSE clause will be executed. As no further action is required, this clause is simply a NULL
statement.

OpenQM836

2.6-6

NUM()

The NUM() function tests whether a string can be converted to a number. The NUMS() function is
similar to NUM() but operates on successive elements of a dynamic array, returning a similarly
structured dynamic array of results.

Format

NUM(string)

where

string evaluates to the string to be tested.

The NUM() function returns true (1) if the string can be converted to a number. The function
returns false (0) for a string which cannot be converted to a number. A null string is a valid
representation of zero and hence causes NUM() to return true.

Example

LOOP
 DISPLAY "Enter part number ":
 INPUT PART.NO
UNTIL LEN(PART.NO) AND NUM(PART.NO)
 PRINTERR "Part number is invalid"
REPEAT

This program fragment prompts for and inputs a part number. If the data entered is null or cannot
be converted to a number, an error message is displayed and the prompt is repeated.

QMBasic 837

2.6-6

OBJECT()

The OBJECT() function instantiates an object for object oriented programming.

Format

OBJECT(cat.name, {args...})

where

cat.name is the name of the catalogued CLASS module defining the object.

args are optional arguments that will be passed into the CREATE.OBJECT subroutine.

The OBJECT() function loads the catalogued class module defined by cat.name and creates an
object that references it. The function returns and object reference that should be stored in a
program variable.

OBJ = OBJECT("MYOBJECT")

If the class module includes a public subroutine named CREATE.OBJECT this is executed as part
of object instantiation.

Copying an object reference variable creates a second reference to the same object, not a new
instantiation of the same object.

The object remains in existence until the last variable referencing it is overwritten or discarded. At
this point, if the class module includes a public subroutine named DESTROY.OBJECT, it will be
executed.

See also:
Object oriented programming, CLASS, DISINHERIT, INHERIT, PRIVATE, PUBLIC.

OpenQM838

2.6-6

OBJINFO()

The OBJINFO() function returns information about an object variable.

Format

OBJINFO(var, key)

where

var is the name of the object variable.

key identifies the information to be returned:

0 OI$ISOBJ Returns true (1) if var is an object, false (0) if not.

1 OI$CLAS
S

Returns the class module catalogue name associated with
the object.

The OBJINFO() function returns information about an object variable based on the key value
supplied.

See also:
CLASS, OBJECT

QMBasic 839

2.6-6

OCONV()

The OCONV() function performs output conversion. Data is converted from its internal
representation to the external form. This function is typically used to convert data for display or
printing. The OCONVS() function is identical to OCONV() except that it works on each element
of a dynamic array, returning the result in a similarly delimited dynamic array.

Format

OCONV(expr, conv.spec)

OCONVS(expr, conv.spec)

where

expr evaluates to the data to be converted.

conv.spec evaluates to the conversion specification. This may be a multi-valued string
containing more than one conversion code separated by value marks. Each
conversion will be carried out in turn on the result of the previous conversion.

The OCONV() function converts the value of expr to its external representation according to the
conversion codes in conv.spec.

If conv.spec is a null string, OCONV() returns expr as its result.

The OCONV() function sets the STATUS() function value to indicate whether the conversion was
successful. Possible values are

0 Successful conversion.
1 Data to convert was invalid for the conversion specification.
2 The conversion code was invalid.

Conversions that result in a non-zero STATUS() value return the string that failed to convert as the
function result. For an OCONV() function where conv.spec is not multi-valued or where the first
stage of a multiple conversion fails, the function would return expr. If one or more stages of a
multi-valued conv.spec have been completed, the returned value is the result of the last successful
stage.

See also:
Conversion codes, ICONV()

OpenQM840

2.6-6

ON GOSUB

The ON GOSUB statement enters one of a list of internal subroutines depending on the value of an
expression.

Format

ON expr GOSUB label1{:}, label2{:}, label3{:}

where

expr is an expression which can be resolved to a numeric value

label1... are statement labels. The trailing colons are optional and have no effect on the
behaviour of the statement.

The ON GOSUB statement may be written over multiple lines by inserting a newline after the
comma separating two labels.

Execution of the program continues at label1 if the value of expr (converted to an integer) is 1,
label2 if it is 2 and so on. By default, a value less than one will use label1 and a value greater than
the number of labels in the list will use the last label. The PICK.JUMP.RANGE option of the
$MODE directive can be used to invoke the Pick style behaviour where an out of range value
continues execution at the statement following the ON GOSUB.

See the GOSUB statement for more details on internal subroutines.

Example

ON X GOSUB SUBR1,
 SUBR2,
 SUBR3

This program fragment enters one of three internal subroutines depending on the value of variable
X. If X could not be guaranteed to hold a valid value (1 to 3), error checking statements should be
included to ease debugging of program errors.

QMBasic 841

2.6-6

ON GOTO

The ON GOTO statement jumps to one of a list of labels depending on the value of an expression.

Format

ON expr GOTO label1{:}, label2{:}, label3{:}

ON expr GO {TO} label1{:}, label2{:}, label3{:}

where

expr is an expression which can be resolved to a numeric value

label1... are statement labels. The trailing colons are optional and have no effect on the
behaviour of the statement.

The ON GOTO statement may be written over multiple lines by inserting a newline after the
comma separating two labels.

Execution of the program continues at label1 if the value of expr (converted to an integer) is 1,
label2 if it is 2 and so on. By default, a value less than one will use label1 and a value greater than
the number of labels in the list will use the last label. The PICK.JUMP.RANGE option of the
$MODE directive can be used to invoke the Pick style behaviour where an out of range value
continues execution at the statement following the ON GOTO.

Example

ON ACTION GOTO DISPLAY.REPORT,
 PRINT.REPORT,
 SAVE.REPORT

This program fragment jumps to one of three labels depending on the value of variable ACTION. If
ACTION could not be guaranteed to hold a valid value (1 to 3), error checking statements should
be included to ease debugging of program errors.

OpenQM842

2.6-6

OPEN

The OPEN statement opens a directory file or dynamic file, associating it with a file variable.

Format

OPEN {dict.expr,} filename.expr {READONLY} TO file.var {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

dict.expr evaluates to DICT to open the dictionary portion of the file or to a null
string to open the data portion. If omitted or any other value, the data
portion is opened.

filename.expr evaluates to the VOC name of the file to be opened.

file.var is the name of the variable to hold the file reference for use in later
operations on this file.

statement(s) are statements to be executed depending on the outcome of the OPEN
operation.

At least one of the THEN and ELSE clauses must be present.

A file opened by the OPEN statement may be referenced using the file variable in subsequent
statements that operate on the file.

The optional READONLY clause opens the file for read only access. Any attempt to write will
fail.

If the file is opened successfully, the THEN clause is executed. If the open fails the ELSE clause is
executed and the STATUS() function may be used to determine the cause of the failure.

The ON ERROR clause is taken only in the case of serious errors such as damage to the file's
internal control structures. The STATUS() function will contain an error number. If no ON
ERROR clause is present, a fatal error results in an abort.

QM allows more files to be open than the underlying operating system limit. This is achieved by
automatically closing files at the operating system level if the limit is reached, retaining information
to reopen them automatically when the next access to the file occurs. This process allows greater
freedom of application design but has a performance penalty if a large number of files are used
frequently.

For dynamic files, the INMAT() function used immediately after the OPEN returns the modulus of
the file.

Example

OPEN "STOCK.FILE" TO STOCK ELSE ABORT "Cannot open file"

QMBasic 843

2.6-6

This statement opens a file with VOC name STOCK.FILE. If the open fails, the program aborts
with an error message.

See also:
OPENPATH, OPENSEQ

OpenQM844

2.6-6

OPENPATH

The OPENPATH statement opens a directory file or dynamic file by pathname, associating it with
a file variable.

Format

OPENPATH pathname {READONLY} TO file.var {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

pathname evaluates to the VOC name of the file to be opened.

file.var is the name of the variable to hold the file reference for use in later
operations on this file.

statement(s) are statements to be executed depending on the outcome of the
OPENPATH operation.

At least one of the THEN and ELSE clauses must be present.

A file opened by the OPENPATH statement may be referenced using the file variable in
subsequent statements that operate on the file.

The optional READONLY clause opens the file for read only access. Any attempt to write to the
file will fail.

If the file is opened successfully, the THEN clause is executed. If the open fails the ELSE clause is
executed and the STATUS() function may be used to determine the cause of the failure.

The ON ERROR clause is taken only in the case of serious errors such as damage to the file's
internal control structures. The STATUS() function will contain an error number. If no ON
ERROR clause is present, a fatal error results in an abort.

QM allows more files to be open than the underlying operating system limit. This is achieved by
automatically closing files at the operating system level if the limit is reached, retaining information
to reopen them automatically when the next access to the file occurs. This process allows greater
freedom of application design but has a performance penalty if a large number of files are used
frequently.

For dynamic files, the INMAT() function used immediately after the OPENPATH returns the
modulus of the file.

Example

OPEN "\QMSYS\NEWVOC" TO NEWVOC ELSE ABORT "Cannot open NEWVOC"

This statement opens the skeleton NEWVOC file in the QMSYS directory using Windows
pathname syntax. If the open fails, the program aborts with an error message.

QMBasic 845

2.6-6

See also:
OPEN, OPENSEQ

OpenQM846

2.6-6

OPENSEQ

The OPENSEQ statement opens a record of a directory file for sequential access.

Format

OPENSEQ file.name, id {APPEND | OVERWRITE | READONLY} TO file.var
{ON ERROR statement(s)}
{LOCKED statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

or
OPENSEQ pathname {APPEND | OVERWRITE | READONLY} TO file.var
{ON ERROR statement(s)}
{LOCKED statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

file.name evaluates to the VOC name of the directory file holding the record to be
opened.

id evaluates to the name of the record to be opened.

pathname evaluates to the operating system pathname of the record to be opened.

file.var is the name of a variable to be used in later statements accessing this
record.

statement(s) are statement(s) to be executed depending on the outcome of the
OPENSEQ statement.

At least one of the THEN and ELSE clauses must be present.

The named record is opened and associated with file.var for later operations.

The optional READONLY clause opens the item for read only access. Any attempt to write will
fail.

Use of APPEND causes the OPENSEQ statement to position at the end of any existing data in the
record such that subsequent write operations will append new data. Use of OVERWRITE
truncates the record to remove any existing data.

If the record already exists, the THEN clause is executed. An update lock will be set on this record
unless the record is read-only in which case a shared read lock is set.

If the record does not already exist, the ELSE clause is executed and the STATUS() function
returns zero. The record will have been locked and use of WRITESEQ, WRITESEQF,
WRITEBLK, WEOFSEQ or CREATE with the returned file.var will create the record.
Alternatively, the lock can be released using RELEASE or closing the file.var

QMBasic 847

2.6-6

The ELSE clause is also executed if the specified item cannot be opened due to an error. The
STATUS() function will contain the error code.

The LOCKED clause is executed if the record is already locked by another process.

The ON ERROR clause is executed if a fatal error occurs when opening the record. The
STATUS() function will return an error code relating to the problem.

A record open for sequential access may be read and written using READSEQ and WRITESEQ
respectively. The WRITESEQF statement provides a forced write and WEOFSEQ sets an end of
file marker. The record should be closed using CLOSESEQ though it will be closed automatically
when the program in which the file variable lies terminates.

The second form of OPENSEQ may be used to open a serial port by using the device name as
pathname. On Windows, this name is COM1, COM2, etc. On other platforms, it is the device
driver name.

Examples

OPENSEQ "STOCKS", "STOCK.LIST" TO STOCK.LIST ELSE
 IF STATUS() THEN ABORT "Cannot open stocks list"
END

This program fragment opens the record STOCK.LIST of directory file STOCKS. If it fails to
either open an existing record or to create a new record, the program aborts.

OPENSEQ "C:\TEMP\IMPORT.DATA" TO DAT.F ELSE
 IF STATUS() THEN ABORT "Cannot open import data file"
END

This program fragment opens the operating system file in C:\TEMP\IMPORT.DATA for sequential
processing.

See also:
CLOSESEQ, NOBUF, READBLK, READCSV, READSEQ, SEEK, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

OpenQM848

2.6-6

OPEN.SOCKET()

The OPEN.SOCKET() function opens a data socket for an outgoing connection.

Format

OPEN.SOCKET(addr, port, flags)

where

addr is the address of the system to which a connection is to be established. This may be
an IP address or a host name.

port is the port number on which the connection is to be established.

flags is a value determining the mode of operation of the socket, formed by adding the
values of tokens defined in the SYSCOM KEYS.H record. The flags available in
this release are:

SKT$BLOCKING Sets the default mode of data transfer as blocking.
SKT$NON.BLOCKING Sets the default mode of data transfer as

non-blocking.

The OPEN.SOCKET() function opens a connection to the server with the given address and port
number.

If the action is successful, the function returns a socket variable that can be used to read and write
data using the READ.SOCKET() and WRITE.SOCKET() functions. The STATUS()function
will return zero.

If the socket cannot be opened, the STATUS() function will return an error code that can be used to
determine the cause of the error.

Example

SKT = OPEN.SOCKET("193.118.13.14", 3000, SKT$BLOCKING)
IF STATUS() THEN STOP 'Cannot open socket'
N = WRITE.SOCKET(SKT, DATA, 0, 0)
CLOSE.SOCKET SKT

This program fragment opens a connection to port 3000 of IP address 193.118.13.14, sends the
data in DATA and then closes the socket.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, CREATE.SERVER.SOCKET(),
READ.SOCKET(), SERVER.ADDR(), SET.SOCKET.MODE(), SOCKET.INFO(),
WRITE.SOCKET()

QMBasic 849

2.6-6

ORS()

The ORS() function performs a logical OR operation on successive elements of a dynamic array,
returning a similarly structured dynamic array of results.

Format

ORS(expr1, expr2)

where

expr1, expr2 are the dynamic arrays to be processed.

The ORS() function performs the logical OR operation between corresponding elements of the two
dynamic arrays and constructs a similarly structured dynamic array of results as its return value.
An element of the returned dynamic array is 1 if either or both of the corresponding elements of
expr1 and expr2 are true. Any value other than zero or a null string is treated as true.

The REUSE() function can be applied to either or both expressions. Without this function, any
absent trailing values are taken as false.

Example

A contains 1VM1SM0VM0VM1FM0VM1
B contains 1VM0SM1VM0VM1FM1VM0

C = ORS(A, B)

C now contains 1VM1SM1VM0VM1FM1VM1

See also:
ANDS(), EQS(), GES(), GTS(), IFS(), LES(), LTS(), NES(), NOTS(), REUSE()

OpenQM850

2.6-6

OS.ERROR()

The OS.ERROR() function returns the error number associated with the last recorded operating
system level error.

Format

OS.ERROR()

Some actions that return errors via the STATUS() function are related to errors from operating
system calls. The OS.ERROR() function returns the value of the most recent operating system
error. The error codes for which this is valid are all marked in the SYSCOM ERR.H include
record.

The !ERRTEXT() subroutine will automatically insert this value into relevant expanded error
messages.

QMBasic 851

2.6-6

OS.EXECUTE

The OS.EXECUTE statement executes an operating system command. This function is not
available on the PDA version of QM.

Format

OS.EXECUTE expr {CAPTURING var}

where

expr evaluates to the command to be executed (maximum 4096 characters).

var is a variable to receive captured output.

The OS.EXECUTE statement allows a QMBasic program to execute an operating system
command. The program does not continue execution until the command terminates. QM attempts to
redirect any output from the command back to the user's terminal but this is not always possible.
Some commands may cause output to appear on the server system.

The CAPTURING clause captures output that would otherwise have gone to the terminal or
phantom log file, saving it in the named variable with field marks in place of newlines.

The OS.EXECUTE statement returns two error codes. The STATUS() function returns a
non-zero value if QM detected an error and was unable to execute the command. For a zero
STATUS() value, the OS.ERROR() function returns the termination status of the executed
command. The interpretation of this value will depend on the command being executed.

Example

OS.EXECUTE "MKDIR TEMPDIR"

This statement uses the operating system MKDIR command to create a directory named
TEMPDIR.

OpenQM852

2.6-6

OUTERJOIN()

The OUTERJOIN() function returns the record ids of records in a file where a field holds a
specified value.

Format

OUTERJOIN({DICT} file.name, field.name, value)

where

file.name evaluates to the name of the file from which data is to be retrieved. The
optional DICT prefix specifies that the dictionary portion of the file is to be
used. Alternatively, the file.name expression may include the uppercase word
DICT before the actual file name and separated from it by a single space.

field.name is the name of the field in file.name that determines the record ids to be
returned. There must be an alternate key index on this field.

value is the value that must appear in the specified field.

The OUTERJOIN() function uses an alternate key index on field.name to return a value mark
delimited list of record ids of records in the specified file that contain the given value.

This function is mainly intended for use in dictionary I-type expressions where the equivalent
programming built around SELECTINDEX cannot be used.

Examples

OUTERJOIN('ORDERS', 'CUST.NO', CUST.NO)

The above expression used in a dictionary I-type item retrieves a list of orders record ids for a given
customer.

OPEN 'CUSTOMERS' TO CUS.F ELSE STOP 'Cannot open file'
SELECT CUS.F
LOOP
 READNEXT ID ELSE EXIT
 DISPLAY ID:': ':CHANGE(OUTERJOIN('ORDERS', 'CUST.NO', ID),
@VM, ', ')
REPEAT

The above program displays a list of customer numbers in the CUSTOMERS file and a list of the
orders placed by each customer.

QMBasic 853

2.6-6

PAGE

The PAGE statement advances a print unit to a new page.

Format

PAGE {ON print.unit} {page.no}

where

print.unit evaluates to the print unit number on which the action is to occur. If omitted,
print unit zero is used.

page.no evaluates to the page number to be used for the new page. If omitted, the page
number is incremented from its current value.

The PAGE statement causes the footing to be printed at the end of the current page and advances to
the next page. The heading will be printed if further output is directed to the print unit. The PAGE
statement can be used to complete printing of the final page of output from a program.

If a new page number is specified, this takes effect after print unit has been advanced to the new
page. A page.no of less than one causes the page number to be set to one.

A PAGE statement directed to the display causes the pagination prompt to be displayed unless it
has been suppressed. The screen will be cleared to advance to the new page.

Example

PAGE ON PRINT.UNIT

This statement causes the print unit identified by PRINT.UNIT to advance to the next page.

OpenQM854

2.6-6

PAUSE

The PAUSE statement pauses execution until awoken by another process. This function is not
available on the PDA version of QM.

Format

PAUSE {timeout}

where

timeout specifies the maximum time to wait in seconds. A value less than one indicates that
an infinite timeout should be used.

The PAUSE statement suspends program execution until awoken by another process using the
WAKE statement. The optional timeout specifies the maximum time in seconds for which the
program can remain suspended.

If the PAUSE is terminated by detection of a WAKE event, the STATUS() function will return
zero. If the PAUSE is terminated by a timeout, the STATUS() function will return ER$TIMEOUT.

A WAKE request occurring before the PAUSE is executed is remembered and the program is not
suspended. Note that under rare conditions, precise timing of the PAUSE/WAKE pair can cause a
program to appear to wake spuriously. Programs should be written to allow for this possibility.

QMBasic 855

2.6-6

PRECISION

The PRECISION statement sets the maximum number of decimal places to appear when
converting numeric values to strings.

Format

PRECISION expr

where

expr is an expression specifying the number of decimal places. This value must be
between zero and fourteen. Negative values are treated as zero; values greater than
fourteen are treated as fourteen.

Arithmetic operations performed by QM always work to the maximum precision of the computer
system. The precision value determines the number of decimal places when numeric values are
converted to strings, for example, when printing.

Values are converted with rounding on the last digit. Trailing zero digits are removed from the
decimal places and, if the resultant value is an integer, the decimal point is also removed.

The precision value is associated with each program and subroutine and is initially set to 4. A
program which sets a precision of 6 and calls a subroutine will use precision 6 up to the call, the
subroutine will use precision 4 and, on return to the calling program, the precision reverts to 6.

Example

X = 333.33333
Y = 666.66666
PRINT X, Y
PRECISON 4
PRINT X, Y
PRECISION 1
PRINT X, Y
PRECISION 0
PRINT X, Y

This program fragment would print
333.3333 666.6667
333.3 666.7
333 667

OpenQM856

2.6-6

PRINT

The PRINT statement outputs data to a print unit.

Format

PRINT {ON print.unit} {print.list}

where

print.unit identifies the print unit to which output is to be directed. If omitted, print unit
zero is used.

print.list is a list of items to print in the format described for the DISPLAY statement.

The data is output to the requested print unit. Print unit -1 is always associated with the display and
cannot be changed. Print unit 0 can be switched between the display and the printer by use of the
PRINTER statement. Print units 1 to 255 direct their output to the hold file by default but can be
redirected using the SETPTR command.

By using PRINT statements instead of DISPLAY in programs it is possible to select whether the
output is directed to the display or to a printer. The LPTR option to the RUN command is
equivalent to a PRINTER ON at the start of the program.

Use of the @(x,y) cursor movement function in a PRINT statement that sends output to the display
will disable pagination. See DISPLAY for more details.

Example

N = DCOUNT(LINE, @FM)
FOR I = 1 TO N
 PRINT ON PU LINE<I>
NEXT I
PAGE ON PU

This program fragment emits each field of LINE to the print unit identified by PU and then
advances to a new page.

QMBasic 857

2.6-6

PRINTCSV

The PRINTCSV statement outputs CSV format data to a print unit.

Format

PRINTCSV {ON print.unit} var1, var2, ...

where

print.unit identifies the print unit to which output is to be directed. If omitted, print unit
zero is used.

var1, var2, ... is a list of items to be assembled as a CSV format text string.

The assembled CSV format data is output to the requested print unit. Print unit -1 is always
associated with the display and cannot be changed. Print unit 0 can be switched between the display
and the printer by use of the PRINTER statement. Print units 1 to 255 direct their output to the
hold file by default but can be redirected using the SETPTR command.

The optional trailing colon suppresses the normal linefeed after the data has been output.

Example

PRINTCSV PROD.NO, QTY

This statement prints the contents of the PROD.NO and QTY variables as a CSV format text
string.

See also:
INPUTCSV, READCSV, WRITECSV

OpenQM858

2.6-6

PRINTER CLOSE

The PRINTER CLOSE statement closes one or all print units.

Format

PRINTER CLOSE {ON print.unit}

where

print.unit identifies the print unit to be closed. If omitted, all print units are closed.

The PRINTER CLOSE statement terminates activity on a print unit. If this print unit was directed
to a spool file, the data will be printed. Any heading and footing text is discarded. Subsequent data
sent to the same print unit starts a new output stream. If this is for the default printer, it will be
necessary to use PRINTER ON if the output is to be directed to a printer rather than the screen.

The implementation of PRINTER CLOSE with no print.unit specified differs on various
multivalue database products. By default, in QM a PRINTER CLOSE with no print.unit causes
all print units to be closed. The same effect can be achieved by using a print.unit value of -2 though
this is not portable to other environments. The PRCLOSE.DEFAULT.0 option of the $MODE
compiler directive can be used to modify this behaviour so that only printer zero is closed.

All print units are closed automatically on return to the command prompt.

The PRINTER command has a KEEP.OPEN option which, when used, causes requests from
programs to close printers only to terminate the page and discard any heading and footing text. This
printer remains open so that subsequent output to the same print unit will be merged to form a
single print job.

QMBasic 859

2.6-6

PRINTER DISPLAY

The PRINTER DISPLAY statement directs output sent to a print unit to the display.

Format

PRINTER DISPLAY {ON print.unit}
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

print.unit evaluates to the print unit on which the action is be to performed. If
omitted, the default print unit (unit 0) is used.

statement(s) are statements to be executed depending on the outcome of the operation.

The ON ERROR, THEN and ELSE clauses are all optional.

The ON ERROR clause is executed in the event of a fatal internal error. The error code returned
by the STATUS() function will indicate the cause of the error. If this clause is omitted, the program
will abort in the event of a fatal error.

The THEN clause is executed if the operation is successful. The STATUS() function will return
zero.

The ELSE clause is executed in the event of a non-fatal error. If this clause is omitted, program
execution continues after an error.

Example

PRINTER DISPLAY ON 1

This statement directs output from print unit 1 to the display.

OpenQM860

2.6-6

PRINTER FILE

The PRINTER FILE statement associates a file with a print unit.

Format

PRINTER FILE {ON print.unit} file.name, record.name
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

print.unit evaluates to the print unit on which the action is be to performed. If
omitted, the default print unit (unit 0) is used.

file.name evaluates to the VOC name of an existing directory file.

record.name evaluates to the name of the record within file.name to which output to
print.unit is to be directed. If the record already exists, it will be
overwritten.

statement(s) are statements to be executed depending on the outcome of the operation.

The ON ERROR, THEN and ELSE clauses are all optional.

Output to print units 1 to 255 is directed to a hold file by default but can be redirected. The
PRINTER FILE statement causes the named record to be created and output will be directed to
this file until the print unit is closed.

The ON ERROR clause is executed in the event of a fatal internal error while attempting to open
the file. The error code returned by the STATUS() function will indicate the cause of the error. If
this clause is omitted, the program will abort in the event of a fatal error.

The THEN clause is executed if the operation is successful. The STATUS() function will return
zero.

The ELSE clause is executed if the file cannot be opened. The error code returned by the
STATUS() function will indicate the cause of the error. If this clause is omitted, program execution
continues after an error.

Example

PRINTER FILE ON 1 "MYFILE", "SAVED"

This statement directs output from print unit 1 to record SAVED in directory file MYFILE.

QMBasic 861

2.6-6

PRINTER NAME

The PRINTER NAME statement associates a named printer device with a print unit.

Format

PRINTER NAME {ON print.unit} printer.name
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

print.unit evaluates to the print unit on which the action is be to performed. If
omitted, the default print unit (unit 0) is used.

printer.name evaluates to a printer name.

statement(s) are statements to be executed depending on the outcome of the operation.

The ON ERROR, THEN and ELSE clauses are all optional.

The ON ERROR clause is executed in the event of a fatal internal error. The error code returned
by the STATUS() function will indicate the cause of the error. If this clause is omitted, the program
will abort in the event of a fatal error.

The THEN clause is executed if the operation is successful. The STATUS() function will return
zero.

The ELSE clause is executed if the printer does not exist. If this clause is omitted, program
execution continues after an error.

Example

PRINTER NAME ON 1 "LPT1"

This statement directs output from print unit 1 to a printer named LPT1.

OpenQM862

2.6-6

PRINTER

The PRINTER ON and OFF statements determine whether output from PRINT statements to the
default print unit (unit 0) is directed to the display or to the printer.

Format

PRINTER ON
PRINTER OFF

The PRINTER ON statement causes subsequent output to print unit zero to be directed to the
printer. A later PRINTER OFF statement resumes output to the display.

The STATUS() function returns the previous state of the PRINTER setting. A value of zero
indicates that the printer was on. A value of one indicates that it was off.

By using PRINT statements instead of DISPLAY in programs it is possible to select whether the
output is directed to the display or to a printer. The LPTR option to the RUN command is
equivalent to a PRINTER ON at the start of the program followed by a PRINTER CLOSE on
return to the command prompt.

Example

PRINTER ON
PRINT "This is sent to the printer"
PRINTER OFF
PRINT "This is sent to the display"

QMBasic 863

2.6-6

PRINTER RESET

The PRINTER RESET statement resets the default print unit and display output.

Format

PRINTER RESET

The PRINTER RESET statement performs the following actions:

Output to the default print unit (unit 0) is directed to the display (similar to use of PRINTER
OFF)

Pagination is restarted on the display if it was previously suppressed.

The page number is reset to 1.

Any heading and footing set up for the display device are cancelled.

The PRINTER RESET statement is particularly useful in programs which have disabled line
counting through use of cursor movement @() functions and subsequently want to restart
pagination of line by line output.

OpenQM864

2.6-6

PRINTER SETTING

The PRINTER SETTING statement sets a control parameter for a print unit.

This statement is obsolete. The SETPU statement should be used in its place.

Format

PRINTER SETTING {ON print.unit} param, new.value

where

print.unit evaluates to the print unit on which the action is be to performed. If omitted,
the default print unit (unit 0) is used.

param identifies the parameter to be changed.

new.value is the value to be set. A new.value of -1 sets the parameter to its default value.

The parameters which may be set by this statement are identified by param numbers. Tokens for
these are defined in the KEYS.H include record in the SYSCOM file.

Key Token Default Function

1 LPTR$WIDTH 80 Page width

2 LPTR$LINES 66 Lines per page for printer

or 24 Lines per page for display

3 LPTR$TOP.MARGIN 0 Top margin size (lines)

4 LPTR$BOTTOM.MARGIN 0 Bottom margin size (lines)

5 LPTR$LEFT.MARGIN 0 Left margin size (characters)

11 LPTR$FLAGS Printer mode flags

The value of lines per page is best set to at least one less than the physical page size to prevent the
automatic page throw of most printers after the final line of the page is printed.

Example

PRINTER SETTING ON 1 LPTR$LINES 60

This statement sets the number of lines per page on print unit 1 to 60.

QMBasic 865

2.6-6

PRINTER.SETTING()

The PRINTER.SETTING() function sets or retrieves a control parameter for a print unit.

This function is obsolete. The SETPU statement or GETPU() function should be used in its
place.

Format

PRINTER.SETTING(print.unit, param, new.value)

where

print.unit evaluates to the print unit on which the action is be to performed.

param identifies the parameter to be changed using the keys shown below.

new.value is the value to be set. A new.value of -1 sets the parameter to its default value.
A new.value of -2 returns the current value without changing it.

The PRINTER.SETTING() function returns the new (or unchanged) value of the parameter.

The parameters which may be set or retrieved by this statement are identified by param numbers.
Tokens for these are defined in the KEYS.H include record in the SYSCOM file.

Key Token Default Function

1 LPTR$WIDTH 80 Page width

2 LPTR$LINES 66 Lines per page for printer

or 24 Lines per page for display

3 LPTR$TOP.MARGIN 0 Top margin size (lines)

4 LPTR$BOTTOM.MARGIN 0 Bottom margin size (lines)

5 LPTR$LEFT.MARGIN 0 Left margin size (characters)

6 * LPTR$DATA.LINES Lines excluding page heading and footing

7 * LPTR$HEADING.LINES Heading lines per page

8 * LPTR$FOOTING.LINES Footing lines per page

9 * LPTR$MODE Printer mode number

10 * LPTR$NAME Printer or file name

11 LPTR$FLAGS Printer mode flags

12 * LPTR$LINE.NO Current position on page within data area

13 * LPTR$PAGE.NO Current page number

14 * LPTR$LINES.LEFT Lines remaining on current page

15 LPTR$COPIES 1 Number of copies to print

Modes marked with an asterisk are query only.

OpenQM866

2.6-6

The value of lines per page is best set to at least one less than the physical page size to prevent the
automatic page throw of most printers after the final line of the page is printed.

Example

WIDTH = PRINTER.SETTING(1, LPTR$WIDTH, -1)

This statement sets the page width on print unit 1 to the default value and stores this value in
WIDTH.

QMBasic 867

2.6-6

PRINTERR

The PRINTERR statement displays an error message which is removed from the screen when the
next input is entered.

The synonym INPUTERR can be used in place of PRINTERR.

Format

PRINTERR expr

where

expr evaluates to the text to be displayed.

The expr text is displayed on the bottom line of the screen using the current foreground and
background colours. This message will be removed after the first keystroke of the next INPUT @
statement. Input taken from the DATA queue will also clear the message.

Example

LOOP
 DISPLAY "Enter password " :
 ECHO OFF
 PROMPT ""
 INPUT @(5,10) PASSWORD :
 ECHO ON
WHILE PASSWORD # "SECRET"
 PRINTERR "Incorrect password"
REPEAT

This program fragment reads a password from the keyboard. If it is entered incorrectly, a message
is displayed and the input is repeated.

OpenQM868

2.6-6

PRIVATE

The PRIVATE statement defines private variables in a local subroutine or in a class module.

Format

PRIVATE var, mat(rows, cols)

where

var is a simple scalar variable.

mat(rows, cols) is a dimensioned matrix name. The rows and cols values must be numeric
constants.

The PRIVATE statement has two uses:

Immediately after the LOCAL statement defining a local function or subroutine. It identifies
variables that have scope only within the local routine and are discarded on exit. If the routine
calls itself recursively, each invocation has its own private variables. See the LOCAL
statement for more details.

Used in a CLASS module, it defines variables that are private to the object but persist between
successive executions of components of the class module. See the CLASS statement and Object
Oriented Programming for more details.

See also:
Object oriented programming, CLASS, DISINHERIT, INHERIT, OBJECT(), PUBLIC.

QMBasic 869

2.6-6

PROCREAD

The PROCREAD statement reads data from the PROC primary input buffer.

Format

PROCREAD var {THEN statement(s)} {ELSE statement(s)}

where

var is the variable to receive the data.

statement(s) are statements to be execute dependant on the outcome of the operation.

At least one of the THEN and ELSE clauses must be present.

If the current program was called directly or indirectly from a PROC, the PROCREAD statement
copies the content of the PROC primary input buffer to the named variable and executes the THEN
clause.

If the current program was not called from a PROC, the variable is set to a null string and the
ELSE clause is executed.

See also:
VOC PQ-type records

OpenQM870

2.6-6

PROCWRITE

The PROCWRITE statement writes data to the PROC primary input buffer.

Format

PROCWRITE expr

where

expr is the data to be written.

The data specified by expr is copied to the PROC primary input buffer.

See also:
VOC PQ-type records

QMBasic 871

2.6-6

PROGRAM

The PROGRAM statement introduces a program.

Format

PROGRAM name

where

name is the name of the program.

QMBasic programs should commence with a PROGRAM, SUBROUTINE, FUNCTION or
CLASS statement. If none of these is present, the compiler behaves as though a PROGRAM
statement had been used with name as the name of the source record.

The PROGRAM statement must appear before any executable statements.

The name need not be related to the name of the source record though this eases program
maintenance. The name must comply with the QMBasic name format rules.

A program module may be entered by referencing it a RUN command, by executing a command
name that corresponds to the name of the program in the system catalogue, or by use of the
QMBasic CALL statement in another program.

Example

PROGRAM SUM
 TOTAL = 0
 LOOP
 DISPLAY TOTAL
 INPUT S
 WHILE LEN(S)
 IF NUM(S) THEN TOTAL += S
 ELSE DISPLAY @SYS.BELL :
 REPEAT
END

This program reads numbers from the keyboard and displays a running total until a blank line is
entered.

OpenQM872

2.6-6

PROMPT

The PROMPT statement sets the character to be used as the prompt in INPUT statements.

Format

PROMPT expr

where

expr evaluates to the character to be used.

The first character of expr is used as the prompt character. If expr is a null string, the prompt is
suppressed.

The default input prompt is the question mark. Changes to the prompt character remain in effect
until the program returns to the command prompt.

Use of EXECUTE to start a new command processing layer resets the prompt to a question mark
but it will be restored to its previous value on return from the executed command.

Example

DISPLAY "Enter account number " :
PROMPT ""
INPUT ACCOUNT.NO
PROMPT "?"

This program fragment suppresses the prompt for the INPUT statement and then restores the
default prompt character. In normal usage, a program would use the PROMPT statement once at
the start of the program to set the prompt character to be used for the entire program.

QMBasic 873

2.6-6

PUBLIC

The PUBLIC statement defines public property variables, subroutines and functions in a class
module.

Format

PUBLIC var, mat(rows, cols), ...

PUBLIC SUBROUTINE name{(arg1, arg2)} {VAR.ARGS}
...statements...
END

PUBLIC FUNCTION name{(arg1, arg2)} {VAR.ARGS}
...statements...
END

where

var is a simple scalar variable. The variable name may be followed by
READONLY to indicate that external references to the variable may not
update it.

mat(rows, cols) is a dimensioned matrix name. The rows and cols values must be numeric
constants. The dimension values may be followed by READONLY to
indicate that external references to the variable may not update it.

name(arg1, arg2) is the subroutine or function name and an optional list of arguments. See
the CLASS statement for the maximum number of arguments allowed in
this list. Specifying the final argument name as three periods (...)
effectively extends the argument list to the maximum permissible length
with unnamed arguments that may be accessed using the ARG() function.
Use of this syntax automatically implies the VAR.ARGS option which
must not also be present.

Note that the equivalence of a function to a subroutine with a hidden first argument as found with
the SUBROUTINE and FUNCTION statements does not apply to public subroutines and
functions.

Examples

PUBLIC FUNCTION CONNECT(SERVER, PORT)
 SKT = OPEN.SOCKET(SERVER, PORT, SKT$BLOCKING)
 RETURN STATUS() = 0
END

The above function takes a fixed length list of two arguments and uses the supplied values to open a
socket connection to a remote server. The SKT variable in this example would be a private variable
within the class module.

OpenQM874

2.6-6

PUBLIC FUNCTION CONNECT(SERVER, PORT) VAR.ARGS
 IF UNASSIGNED(PORT) THEN PORT = 4000
 SKT = OPEN.SOCKET(SERVER, PORT, SKT$BLOCKING)
 RETURN STATUS() = 0
END

This example extends the previous one by making the PORT argument optional and, if it is not
supplied by the caller, defaulting it to 4000.

PUBLIC SUBROUTINE INSERT.ITEMS(ID, ...)
 READU REC FROM FVAR, ID ELSE NULL
 FOR I = 2 TO ARG.COUNT()
 VALUE = ARG(I)
 LOCATE VALUE IN REC<1> BY 'AL' SETTING POS ELSE
 INS VALUE BEFORE REC<POS>
 END
 NEXT I
 WRITE REC TO FVAR, ID
END

This example uses the ... syntax to specify a variable length argument list of the maximum
permissible length. It reads a record identified by the ID argument and then inserts all items from
the remaining arguments that are not already in the record.

See also:
Object oriented programming, CLASS, DISINHERIT, INHERIT, OBJECT(), PRIVATE

QMBasic 875

2.6-6

PWR()

The PWR() function returns the value of a number raised to a given power.

Format

PWR(expr, pwr.expr)

where

expr evaluates to a number or a numeric array.

pwr.expr evaluates to a number or a numeric array.

The PWR() function returns the value of expr raised to the power pwr.expr. It is equivalent to use
of the ** operator.

If either expr or pwr.expr is a numeric array (a dynamic array where all elements are numeric), the
PWR() function operates on each element in turn and returns another numeric array. The structure
of this array will be the same as that of the expr and pwr.expr arrays if they are identical. For
arrays of differing structure, the structure of the result depends on whether the REUSE() function
is used.

Example

N = PWR(T, 3)

This statement finds the value of T cubed. For small integer values of pwr.expr, use of the multiply
operator is faster.

OpenQM876

2.6-6

QUOTE()

The QUOTE() function returns a copy of its argument string enclosed in double quotes. The
DQUOTE() synonym is identical.

Format

QUOTE(expr)

where

expr evaluates to the source string.

The QUOTE() function returns expr enclosed in double quotation marks.

Example

A = QUOTE('ABC123')

This statement sets A to the eight character string "ABC123".

See also:
SQUOTE()

QMBasic 877

2.6-6

RAISE()

The RAISE() function converts mark characters in a string to the next higher level mark.

Format

RAISE(string)

where

string evaluates to the string in which mark characters are to be converted.

The RAISE() function replaces mark characters according to the following table:

Original Replacement

Item mark Item mark (unchanged)

Field mark Item mark

Value mark Field mark

Subvalue mark Value mark

Text mark Subvalue mark

Example

FORMLIST RAISE(LIST)

This statement takes a value mark delimited variable LIST, raises the marks and uses this to create
a select list.

See also:
LOWER()

OpenQM878

2.6-6

RANDOMIZE

The RANDOMIZE statement initialises the random number generator.

Format

RANDOMIZE expr

where

expr evaluates to a number. If omitted or a null string, the time of day is used.

The RANDOMIZE statement initialises the seed value of the random number generator function,
RND(). Supplying the same seed value in successive uses of this statement guarantees that the same
pseudo-random number sequence is generated. Note that the sequence returned may vary between
QM releases even if the same seed value is set.

If the expr value is omitted or given as a null string, the time of day is used thus giving a reasonable
chance of a different pseudo-random sequence on successive executions of the program.

See also:
RND()

QMBasic 879

2.6-6

RDIV()

The RDIV() function returns the rounded integer result of dividing two values

Format

RDIV(dividend, divisor)

where

dividend evaluates to the value to be divided.

divisor evaluates to the value by which dividend is to be divided.

The RDIV() function divides dividend by divisor and returns the result as an integer, rounded
according to the rule that values with a fractional part of 0.5 or greater are rounded away from
zero.

A zero value of divisor will cause a run time error.

Examples

Dividend Divisor Result

132 10 13

135 10 14

-135 10 -14

See also:
IDIV()

OpenQM880

2.6-6

READ

The READ statement reads a record from a previously opened file.

Format

READ var FROM file.var, record.id {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable to receive the dynamic array read from the file.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be read.

statement(s) are statements to be executed depending on the outcome of the READ
operation.

At least one of the THEN and ELSE clauses must be present.

The specified record is read into the named variable.

The THEN clause is executed if the READ is successful.

The ELSE clause is executed if the READ fails because no record with the given id is present on
the file. If the PICK.READ mode of the $MODE directive is used var will be left unchanged,
otherwise it will be set to a null string. The STATUS() function will indicate the cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

READ ITEM FROM STOCK, ITEM.ID THEN
 ...processing statements...
END ELSE
 DISPLAY "Record " : ITEM.ID : " not found"
END

This program fragment reads a record from the a file previously opened to file variable STOCK
into variable ITEM. If successful, the processing statements are executed. If the record is not found,
a message is displayed.

QMBasic 881

2.6-6

READBLK

The READBLK statement reads a given number of bytes from the current file position in a record
previously opened using OPENSEQ.

Format

READBLK var FROM file.var, bytes
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable to receive the data read from the file.

file.var is the file variable associated with the file.

bytes evaluates to the number of bytes to be read.

statement(s) are statements to be executed depending on the outcome of the
READBLK operation.

At least one of the THEN and ELSE clauses must be present.

The THEN clause is executed if the READBLK is successful.

The ELSE clause is executed if the READBLK fails. The STATUS()function will indicate the
cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

If file.var refers to a serial port opened using OPENSEQ, the READBLK statement reads up to
bytes bytes of data from the port but does not wait if there is less than the requested number of
bytes available.

Example

READBLK VAR FROM SEQ.F, 100 THEN
 ...processing statements...
END ELSE
 DISPLAY "Data block not read"
END

This program fragment reads 100 bytes from the a file previously opened to file variable SEQ.F
into variable VAR.

OpenQM882

2.6-6

See also:
CLOSESEQ, NOBUF, OPENSEQ, READCSV, READSEQ, SEEK, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

QMBasic 883

2.6-6

READCSV

The READCSV statement reads a CSV format line of text from a directory file record previously
opened for sequential access and parses it into multiple variables.

Format

READCSV FROM file.var TO var1, var2,...
{THEN statement(s)}
{ELSE statement(s)}

where

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

var1, var2 ... are the variables to receive the data read from the file.

statement(s) are statement(s) to be executed depending on the outcome of the
READSEQ.

At least one of the THEN and ELSE clauses must be present.

A line of text is read from the file. It is then parsed according to the CSV format rules, placing the
elements into the data items identified by var1, var2, etc. If successful, the THEN clause is
executed and the STATUS() function would return zero.

If there are fewer data items in the line of text than the number of variables supplied, the remaining
variables will be set to null strings. If the line of text has more data items than the number of
variables supplied, the excess data is ignored.

If there are no further fields to be read, the ELSE clause is executed and the STATUS() function
would return ER$RNF (record not found). The target variables will be unchanged.

The CSV rules are described under the WRITECSV statement.

Example

LOOP
 READCSV FROM DELIVERY.F TO PROD.NO, QTY ELSE EXIT
 GOSUB PROCESS.DELIVERY.DETAILS
REPEAT

This program fragment reads CSV format lines of text from the record open for sequential access
via the DELIVERY.F file variable, placing the elements of the line into PROD.NO and QTY. It
then calls the PROCESS.DELIVERY.DETAILS subroutine to process the new item. The loop
terminates when the ELSE clause is executed when all fields have been processed.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READSEQ, SEEK, WEOFSEQ,

OpenQM884

2.6-6

WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

QMBasic 885

2.6-6

READL

The READL statement reads a record from a previously opened file, setting a read lock.

Format

READL var FROM file.var, record.id {ON ERROR statement(s)}
{LOCKED statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable to receive the dynamic array read from the file.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be read.

statement(s) are statements to be executed depending on the outcome of the READL
operation.

At least one of the THEN and ELSE clauses must be present.

The specified record is read into the named variable and a read lock is set. See Locks for full details
of QM's locking mechanism.

The LOCKED clause is executed if the file or record is exclusively locked by another process.
The STATUS() function will return the user id of a process holding a lock on this file or record. If
the LOCKED clause is omitted and the file or record is locked, the program will wait for the lock
to be released.

The THEN clause is executed if the READL is successful.

The ELSE clause is executed if the READL fails because no record with the given id is present on
the file. If the PICK.READ mode of the $MODE directive is used var will be left unchanged,
otherwise it will be set to a null string. The STATUS() function will indicate the cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

READL ITEM FROM STOCK, ITEM.ID THEN
 ...processing statements...
 WRITE ITEM TO STOCK, ITEM.ID
END ELSE
 DISPLAY "Record " : ITEM.ID : " not found"
 RELEASE STOCK, ITEM.ID
END

OpenQM886

2.6-6

This program fragment reads a record from the a file previously opened to file variable. STOCK
into variable ITEM, setting a read lock on the record. If successful, the processing statements are
executed. If the record is not found, a message is displayed and the lock is released.

QMBasic 887

2.6-6

READLIST

The READLIST statement reads a select list into a dynamic array.

Format

READLIST var {FROM list.no}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the variable to receive the select list.

list.no is the select list number. If omitted, select list zero is used.

statement(s) are statement(s) to be performed depending on the outcome of the
READLIST operation.

At least one of the THEN and ELSE clauses must be present.

The specified select list is read into var. If the list had already been partially processed by
READNEXT statements, only the remaining unprocessed items are stored in var.

The select list is empty after the READLIST statement is completed.

The THEN clause is executed if var contains one or more items. Items are separated by field
marks. If compatibility with other software is required, it is suggested that programs should be
written to accept either field marks or item marks (or a mix) as list separators.

The ELSE clause is executed if the select list was not active or if no items remained to be
processed. In this case var will be set to a null string.

Example

READLIST S FROM 2 THEN
 WRITE S TO LISTS, "UNPROCESSED"
END

This program fragment retrieves the remaining items in select list 2 and, if there are any, writes
them to a record UNPROCESSED in file LISTS.

OpenQM888

2.6-6

READNEXT

The READNEXT statement returns the next item from an active select list.

Format

READNEXT var {, val.pos {, subval.pos}} {FROM list.no}
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the variable to receive the select list item.

val.pos is the variable to receive the value position with an exploded select list.

subval.pos is the variable to receive the subvalue position with an exploded select list.

list.no is the select list number. If omitted, select list zero is used. The
READNEXT statement can also use select list variables returned by the
SELECTV statement or the RTNLIST option of the EXECUTE
statement.

statement(s) are statement(s) to be executed depending on the outcome of the
READNEXT operation.

At least one of the THEN and ELSE clauses must be present.

The next item in the specified select list is removed from the list and stored in var. Although the list
may be of any size, a single item extracted by READNEXT cannot exceed 32k bytes. Attempting
to extract an item larger than this limit will be handled as a fatal error as described below.

The ON ERROR clause is executed if a fatal error occurs. The STATUS() function will return an
value relating to the error. If no ON ERROR clause is present, fatal errors result in an abort.

The THEN clause is executed if the select list was active and not empty.

The ELSE clause is executed if the select list was not active or no items remained to be read. The
var variable will be set to a null string.

The STATUS() function will return zero unless the ON ERROR clause is executed.

Exploded Select Lists

QM supports two styles of select list; a standard list and an exploded list.

A standard select list contains only simple data, usually record ids. The optional val.pos and
subval.pos items are always returned as zero with this type of list.

QMBasic 889

2.6-6

An exploded select list is created using the BY.EXP or BY.EXP.DSND keywords of the query
processor to break apart multi-values and subvalues in a field. Each entry contains the record id
together with the value and subvalue position corresponding to the data element associated with the
list entry

The optional val.pos and subval.pos components of the READNEXT statement can be used to
retrieve this positional data. There are three possible formats:

If both are present, the value and subvalue positions are returned in these variables. Where the
value was not subdivided into subvalues, the subvalue position is returned as zero.

If only val.pos is present, the value position is returned and any subvalue information is
discarded.

If neither is present, normally only the record id is returned, however, if the program is
compiled with the COMPOSITE.READNEXT option of the $MODE compiler directive in
force, the data returned in var is made up from the record id, the value position and the
subvalue position separated by value marks.

Example

SELECT STOCK.FILE
LOOP
 READNEXT ID
 PRINT ID
REPEAT

This program fragment produces a list of the record keys present in STOCK.FILE.

OpenQM890

2.6-6

READSEQ

The READSEQ statement reads the next field from a directory file record previously opened for
sequential access.

Format

READSEQ var FROM file.var {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the variable to receive the data read from the file.

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed depending on the outcome of the
READSEQ.

At least one of the THEN and ELSE clauses must be present.

The next field is read into var. If successful, the THEN clause is executed and the STATUS()
function would return zero.

If there are no further fields to be read, the ELSE clause is executed and the STATUS() function
would return ER$RNF (record not found).

If a fatal error occurs, the ON ERROR clause is executed. The STATUS() function can be used
to establish the cause of the error. If no ON ERROR clause is present, a fatal error causes an
abort.

The FILEINFO() function can be used with key FL$LINE to determine the field number that will
be read by the next READSEQ.

Example

LOOP
 READSEQ REC FROM STOCK.LIST ELSE EXIT
 GOSUB PROCESS.STOCK.ITEM
REPEAT

This program fragment reads fields from the record open for sequential access via the
STOCK.LIST file variable and calls the PROCESS.STOCK.ITEM subroutine for each field. The
loop terminates when the ELSE clause is executed when all fields have been processed.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READCSV, SEEK, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

QMBasic 891

2.6-6

READ.SOCKET()

The READ.SOCKET() function reads data from a socket opened with
ACCEPT.SOCKET.CONNECTION() or OPEN.SOCKET().

Format

READ.SOCKET(skt, max.len, flags, timeout)

where

skt is the socket variable returned by ACCEPT.SOCKET.CONNECTION() or
OPEN.SOCKET().

max.len is the maximum number of bytes to read.

flags is a value determining the mode of operation of the socket for this read, formed by
adding the values of tokens defined in the SYSCOM KEYS.H record. The flags
available in this release are:

SKT$BLOCKING Sets the default mode of data transfer as blocking.
SKT$NON.BLOCKING Sets the default mode of data transfer as

non-blocking.
If neither blocking flag is given, the blocking mode set when the socket was opened
is used.

timeout is the timeout period in milliseconds. A value of zero implies no timeout.

The READ.SOCKET() function returns data read from the specified socket. The STATUS()
function returns zero if the action is successful, or a non-zero error code if an error occurs. A
timeout will return an error code of ER$TIMEOUT as defined in the SYSCOM ERR.H record.

Example

SRVR.SKT = CREATE.SERVER.SOCKET("", 0)
IF STATUS() THEN STOP 'Cannot initialise server socket'
SKT = ACCEPT.SOCKET.CONNECTION(SRVR.SKT, 0)
IF STATUS() THEN STOP 'Error accepting connection'
DATA = READ.SOCKET(SKT, 100, SKT$BLOCKING, 0)
CLOSE.SOCKET SKT
CLOSE.SOCKET SRVR.SKT

This program fragment creates a server socket, waits for an incoming connection, reads a single
data packet of up to 100 bytes from this connection and then closes the sockets. The timeout value
of 0 in the READ.SOCKET() call specifies that no timeout is to be used.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, CREATE.SERVER.SOCKET(),
OPEN.SOCKET(), SERVER.ADDR(), SET.SOCKET.MODE(), SOCKET.INFO(),
WRITE.SOCKET()

OpenQM892

2.6-6

READU

The READU statement reads a record from a previously opened file, setting an update lock.

Format

READU var FROM file.var, record.id {ON ERROR statement(s)}
{LOCKED statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable to receive the dynamic array read from the file.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be read.

statement(s) are statements to be executed depending on the outcome of the READU
operation.

At least one of the THEN and ELSE clauses must be present.

The specified record is read into the named variable and an update lock is set. See Locks for full
details of QM's locking mechanism.

The LOCKED clause is executed if the file or record is locked by another process. The STATUS()
function will return the user id of a process holding a lock on this file or record. If the LOCKED
clause is omitted and the file or record is locked, the program will wait for the lock to be released.

The THEN clause is executed if the READU is successful.

The ELSE clause is executed if the READU fails because no record with the given id is present on
the file. If the PICK.READ mode of the $MODE directive is used var will be left unchanged,
otherwise it will be set to a null string. The STATUS() function will indicate the cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

READU ITEM FROM STOCK, ITEM.ID THEN
 ...processing statements...
 WRITE ITEM TO STOCK, ITEM.ID
END ELSE
 DISPLAY "Record " : ITEM.ID : " not found"
 RELEASE STOCK, ITEM.ID
END

QMBasic 893

2.6-6

This program fragment reads a record from the a file previously opened to file variable. STOCK
into variable ITEM, setting an update lock on the record. If successful, the processing statements
are executed. If the record is not found, a message is displayed and the record is unlocked.

OpenQM894

2.6-6

READV

The READV statement reads a specific field from a record of a previously opened file.

Format

READV var FROM file.var, record.id, field.expr
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable to receive the dynamic array read from the file.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be read.

field.expr evaluates to the number of the field to be read.

statement(s) are statements to be executed depending on the outcome of the READV
operation.

At least one of the THEN and ELSE clauses must be present.

The specified record is read and the field identified by field.expr is extracted into the named
variable. If the field does not exist, var is set to a null string.

A field.expr value of zero may be used to determine if the record exists. var will be set to a null
string.

The THEN clause is executed if the record is read successfully regardless of whether the specified
field is present.

The ELSE clause is executed if the READV fails because no record with the given id is present on
the file. If the PICK.READ mode of the $MODE directive is used var will be left unchanged,
otherwise it will be set to a null string. The STATUS() function will indicate the cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

READV ITEM FROM STOCK, ITEM.ID, 3 THEN
...processing statements...
END ELSE
 DISPLAY "Record " : ITEM.ID : " not found"
END

QMBasic 895

2.6-6

This program fragment reads field 3 of a record from the file previously opened to file variable
STOCK into variable ITEM. If successful, the processing statements are executed. If the record is
not found, a message is displayed.

OpenQM896

2.6-6

READVL

The READVL statement reads a specific field from a record of a previously opened file, setting a
read lock. The READVU statement is similar but sets an update lock.

Format

READVL var FROM file.var, record.id, field.expr
{ON ERROR statement(s)}
{LOCKED statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable to receive the dynamic array read from the file.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be read.

field.expr evaluates to the number of the field to be read.

statement(s) are statements to be executed depending on the outcome of the operation.

At least one of the THEN and ELSE clauses must be present.

The specified record is read and the field identified by field.expr is extracted into the named
variable. If the field does not exist, var is set to a null string.

READVL sets a read lock is set on the record. READVU sets an update lock on the record. See
Locks for full details of QM's locking mechanism.

A field.expr value of zero may be used to determine if the record exists. var will be set to a null
string.

The LOCKED clause is executed if the file or record is locked by another process (exclusively in
the case of READVL). The STATUS() function will return the user id of a process holding a lock
on this file or record. If the LOCKED clause is omitted and the file or record is locked, the
program will wait for the lock to be released.

The THEN clause is executed if the record is read successfully regardless of whether the specified
field is present.

The ELSE clause is executed if the operation fails because no record with the given id is present on
the file. If the PICK.READ mode of the $MODE directive is used var will be left unchanged,
otherwise it will be set to a null string. The STATUS() function will indicate the cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

QMBasic 897

2.6-6

Example

READVU ITEM FROM STOCK, ITEM.ID, 3 THEN
 ...processing statements...
 WRITEV ITEM TO STOCK, ITEM.ID, 3
END ELSE
 DISPLAY "Record " : ITEM.ID : " not found"
 RELEASE STOCK, ITEM.ID
END

This program fragment reads field 3 of a record from the file previously opened to file variable
STOCK into variable ITEM, setting an update lock. If successful, the processing statements are
executed and the modified value is written back to the file. If the record is not found, a message is
displayed and the record is unlocked.

OpenQM898

2.6-6

RECORDLOCKED()

The RECORDLOCKED() function indicates whether a given record is locked.

Format

RECORDLOCKED(file.var, record.id)

where

file.var is the file variable associated with the file.

record.id evaluates to the key of the record to be tested.

The RECORDLOCKED() function returns a value indicating the state of any locks on record
record.id of the file open as file.var. The tokens shown in the table below are defined in the
KEYS.H record of the SYSCOM file.

Value Token Lock state

-3 LOCK$OTHER.FILELOCK Another user holds a file lock

-2 LOCK$OTHER.READU Another user holds an update lock

-1 LOCK$OTHER.READL Another user holds a read lock

0 LOCK$NO.LOCK The record is not locked

1 LOCK$MY.READL This user holds a read lock

2 LOCK$MY.READU This user holds an update lock

3 LOCK$MY.FILELOCK This user holds a file lock

A record may be multiply locked in which case the RECORDLOCKED() function reports only
one of the current locks. File locks take precedence over read or update locks. If no file lock is set,
read or update locks held by the process in which the RECORDLOCKED() function is performed
take precedence over locks held by other processes.

Executing the STATUS() function after a RECORDLOCKED() function indicates that a lock is
active will return the user number of the user holding the lock.

Example

IF RECORDLOCKED(STOCK, "ORDER.LIST") THEN
 DISPLAY "Record is locked by user " : STATUS()
END

This program fragment checks if record ORDER.LIST is locked and, if so, reports the user number
of the process that holds the lock.

QMBasic 899

2.6-6

RECORDLOCKL

The RECORDLOCKL statement sets a read lock on a record. The RECORDLOCKU statement
is similar but sets an update lock.

Format

RECORDLOCKL file.var, record.id {ON ERROR statement(s)}
{LOCKED statement(s)}

where

file.var is the file variable associated with the file.

record.id valuates to the key of the record to be locked.

statement(s) are statements to be executed depending on the outcome of the operation.

The RECORDLOCKL statement sets a read lock on record record.id of the file open as file.var.
The RECORDLOCKU statement sets an update lock.

The LOCKED clause is executed if the file or record is locked by another process in a manner than
prevents further locking. The STATUS() function will return the user id of a process holding a lock
on this file or record. If the LOCKED clause is omitted and the file or record is locked, the
program will wait for the lock to be released.

A process may lock records within files for which it also holds the file lock. These statements may
also be used to convert an existing read lock to an update lock or vice versa.

Example

RECORDLOCKL STOCK, "ORDER.LIST" LOCKED
 DISPLAY "Waiting. Order list locked by user " : STATUS()
 RECORDLOCKL STOCK, "ORDER.LIST"
END

This program fragment attempts to lock record ORDER.LIST of the file open as STOCK. If it is
locked, a message is displayed and a second RECORDLOCKL statement is executed without a
LOCKED clause to wait for the lock.

OpenQM900

2.6-6

RELEASE

The RELEASE statement releases read, update or file locks.

Format

RELEASE {file.var{, record.id}} {ON ERROR statement(s)}

where

file.var is the file variable associated with the file.

record.id evaluates to the key of the record to be unlocked.

statement(s) are statements to be executed depending on the outcome of the operation.

The RELEASE statement operates in three ways according to whether file.var and record.id are
specified.

With no file.var or record.id, all file, read and update locks owned by the process on all files
are released.

With file.var but no record.id, all locks associated with file.var are released.

With both record.id and file.var, a specific lock is released.

The ON ERROR clause is executed if a fatal error occurs. The STATUS() function can be used
to obtain an error code to determine the cause.

The RELEASE statement has no effect inside a transaction.

Examples

RELEASE STOCK, "ORDER.LIST"

This statement releases any locks on record ORDER.LIST of the file open as STOCK.

RELEASE

This statement releases all file, read and update locks held by the user.

QMBasic 901

2.6-6

REM()

The REM() function returns the remainder when one value is divided by another.

Format

REM(dividend, divisor)

where

dividend evaluates to a number or a numeric array.

divisor evaluates to a number or a numeric array.

The REM() function returns the remainder of dividing dividend by divisor. This is defined as

REM(x, y) = SIGN(x) * MOD(ABS(X), ABS(Y))

where the SIGN() function returns 1 for x > 0, -1 for x < 0 and 0 for x = 0.

The REM() function differs from the MOD() function when one of its arguments is negative. The
following table shows the result of the REM() function.

Dividend Divisor REM()

530 100 30

-530 100 -30

530 -100 30

-530 -100 -30

0 100 0

0 -100 0

100 0 100

-100 0 -100

If either dividend or divisor is a numeric array (a dynamic array where all elements are numeric),
the REM() function operates on each element in turn and returns another numeric array. The
structure of this array will be the same as that of the dividend and divisor arrays if they are
identical. For arrays of differing structure, the structure of the result depends on whether the
REUSE() function is used.

Example

N = REM(T, 30)

This statement finds the remainder of dividing T by 30 and assigns this to N.

See also:

OpenQM902

2.6-6

MOD()

QMBasic 903

2.6-6

REMARK

The REMARK statement, which may be abbreviated to REM, enters comment text into a
program.

Format

REMARK text

where

text is arbitrary comment text.

The REMARK statement inserts text as a comment in the program which is totally ignored by the
compiler. The semicolon delimiter cannot be used to include an executable statement on the same
line as a REMARK as the entire line after the REMARK keyword is ignored.

Comments are more usually inserted using the an asterisk or exclamation mark prefix.

Examples

REMARK This text is totally ignored
* This text is totally ignored
! This text is totally ignored
A = B + C ;* This is a trailing comment

OpenQM904

2.6-6

REMOVE

The REMOVE statement and REMOVE() function extract characters from a dynamic array up to
the next mark character.

Format

REMOVE string FROM dyn.array SETTING var

REMOVE(dyn.array, var)

where

string is the variable to receive the extracted substring.

dyn.array is the dynamic array from which string is to be extracted.

var is the variable to be set according to the delimiter that terminates the extracted
substring.

The statement

S = REMOVE(X, Y)

is equivalent to

REMOVE S FROM X SETTING Y

The REMOVE operation associates a remove pointer with the dyn.array from which data is
extracted. Whenever a string is assigned to a variable the remove pointer is set to the start of the
string. Subsequent REMOVE operations extract characters from the position of the remove pointer
up to the next mark character or the end of the string. Because the remove pointer gives immediate
access to the position at which the REMOVE should commence, this operation can be much faster
than field, value or subvalue extraction.

The value returned in var indicates the delimiter that terminated the REMOVE. The delimiter
character is not stored as part of the extracted substring. Values of var are

0 End of string
1 Item mark
2 Field mark
3 Value mark
4 Subvalue mark
5 Text mark

The mark character itself can be reconstructed as CHAR(256 - var) for a non-zero value of var.

Once the end of the dyn.array has been reached, the remove pointer remains positioned at the end of
the string and further REMOVE operations would return a null string.

The remove pointer may be reset to the start of the string by assigning a new value to dyn.array.
Where it is required to reset the remove pointer without changing the string, a statement such as

QMBasic 905

2.6-6

S = S

will assign S to itself thus resetting the remove pointer.

There is a limit to the number of remove pointers that can be active at one time. A remove pointer
that is set to the start of the string is not considered to be active. It is useful to reset remove pointers
when they are no longer required if the variable will not be reassigned. Remove pointers associated
with a program or subroutine are reset automatically when the program terminates and its variables
are released.

Note that the REMOVE operation performs a type conversion on dyn.arrray if it is not already a
string. Thus the program

S = 99
REMOVE X FROM S SETTING DELIM

would convert S to be a string "99". Although this is unlikely to have any undesirable effects, it is a
side effect to be aware of.

Examples

LOOP
 REMOVE BOOK.NO FROM BOOK.LIST SETTING DELIM
 PRINT "Book number is " : BOOK.NO
WHILE DELIM

REPEAT

This program fragment extracts entries from the BOOK.LIST dynamic array and prints then. There
is an assumption that BOOK.LIST is not a null string (in which case a single null BOOK.NO
would be printed).

S = ""
LOOP
 REMOVE FLD FROM REC SETTING DELIM
 S := FLD
 IF DELIM = 2 OR DELIM = 0 THEN
 PRINT S
 S = ""
 END ELSE
 S := CHAR(256 - DELIM)
 END
WHILE DELIM
REPEAT

This program prints fields from REC. Note the use of the ELSE clause to append the delimiter that
terminated the substring if it was not a field mark or the end of the string.

This is equivalent to

N = DCOUNT(REC, @FM)
FOR I = 1 TO N
 PRINT REC<I>
NEXT I

OpenQM906

2.6-6

but may be much faster where REC is large and has a very large number of fields.

See also:
GETREM(), SETREM

QMBasic 907

2.6-6

REPLACE()

The REPLACE() function replaces a field, value or subvalue of a dynamic array, returning the
result.

Format

REPLACE(dyn.array, field {, value {, subvalue}} , string)

where

dyn.array evaluates to a string in which the replacement is to occur.

field evaluates to the field position number. If zero, this argument defaults to one.

value evaluates to the value position number. If omitted or zero, the entire field is
replaced.

subvalue evaluates to the subvalue position number. If omitted or zero, the entire value
is replaced.

string evaluates to the replacement data.

If field, value and subvalue are not all present, the comma before the string argument must be
replaced by a semicolon.

The statement

S = REPLACE(S, F, V, SV, NEW)

is equivalent to

S<F, V, SV> = NEW

If the specified field, value or subvalue is not present in the dyn.array, mark characters are added
and the new item is inserted.

A negative value of field, value or subvalue causes a new field, value or subvalue to be appended.
The lower ranking items are taken as being one. For example,

S = REPLACE(X, -1, 2, 3, Z)

appends a new field. The value and subvalue arguments are treated as though the statement were

S = REPLACE(X, -1, 1, 1, Z)

See the description of the S<f,v,sv> assignment operator for a discussion of how QM appends
items.

Example

S = REPLACE(REC, 3, 1; ITEM)

This statement assigns S with the result of replacing field 3, value 1 of REC by the contents of
ITEM. The value of REC is not changed.

OpenQM908

2.6-6

See also:
DEL, DELETE(), EXTRACT(), FIND, FINDSTR, INS, INSERT(), LISTINDEX(),
LOCATE, LOCATE()

QMBasic 909

2.6-6

RESTORE.SCREEN

The RESTORE.SCREEN statement restores a rectangular portion of the display screen image
previously saved using SAVE.SCREEN().

This statement can only be used with QMConsole and QMTerm sessions and with terminals that
support the save and restore screen region functions (e.g. AccuTerm 5.2b upwards).

Format

RESTORE.SCREEN image, restore.state

where

image is the screen image data to be restored.

restore.state is a boolean value indicating whether the cursor position, pagination mode
and current display attributes are to be restored from the saved data.

The RESTORE.SCREEN statement restores the data previously saved in image using
SAVE.SCREEN(). The data cannot be restored to a different screen position from which it was
saved. If the restore.state expression evaluates to a non-zero value, the pagination mode will also
be restored.

Example

IMAGE = SAVE.SCREEN(0, 0, 80, 25)
EXECUTE COMMAND.STRING
RESTORE.SCREEN IMAGE, @TRUE

The above code fragment saves the screen image, executes the command in variable
COMMAND.STRING and then restores the screen image.

See also:
SAVE.SCREEN

OpenQM910

2.6-6

RETURN

The RETURN statement returns from an internal subroutine entered by GOSUB or an external
subroutine entered by CALL.

Format

RETURN {TO label{:}}

RETURN expr

where

label is a label in the same program or subroutine as the RETURN statement.

expr is the value to be returned from a user written function.

The RETURN statement returns from the most recent GOSUB or CALL statement. Thus the
same RETURN statement could leave either an internal or catalogued subroutine.

The optional TO label clause causes return from a GOSUB to continue execution at the given label
rather than at the statement following the GOSUB. This clause is ignored when returning from a
CALL. Excessive use of RETURN TO can lead to programs that are extremely difficult to
maintain.

Where a subroutine needs to return to the calling routine but it is not known how many internal
subroutines may be active (e.g. in error paths), it is useful to write a statement of the form

ERROR.LABEL: RETURN TO ERROR.LABEL

This will cause all internal subroutines to return to the RETURN statement and then return to the
calling program. This is different from STOP which would also terminate the current sentence.

The RETURN expr form of the RETURN statement is only valid in a FUNCTION and returns
expr as the result of the function. If no RETURN statement of this form is executed by the
function, a null string is returned.

Examples

SUBROUTINE PRINT.REPORT(ID)
...statements...
RETURN
END

This skeleton subroutine performs its task and then returns to its caller.

FUNCTION MATMAX(MAT A)
 MAX = A(1)
 N = INMAT(A)
 FOR I = 1 TO N

QMBasic 911

2.6-6

 IF A(I) > MAX THEN MAX = A(I)
 NEXT I

 RETURN MAX
END

This function scans a one dimensional matrix and passes back the value of the largest element.

See also:
CALL, GOSUB

OpenQM912

2.6-6

REUSE()

The REUSE() function determines how arithmetic operators applied to numeric arrays handle
unequal numbers of fields, values or subvalues.

Format

REUSE(num.array)

where

num.array is a numeric array.

Arithmetic operators such as addition applied to numeric arrays (dynamic arrays where each
element is numeric) operate on each field, value or subvalue in turn. Where the layout of fields,
values and subvalues in the two numeric arrays is identical there is no difficulty, each element of
one array being added (etc) to its corresponding element from the second array.

If the arrays are of different structure, such as one having more fields than the other or more values
in one field than the corresponding field of the other array, the arithmetic operators normally use a
default value for the missing item. This value is zero except for the divisor of a division operation
which defaults to one.

The REUSE() function causes the previous field, value or subvalue to be reused in place of this
default value where array structures do not match. The REUSE() function applies only to values in
expressions; its effect cannot be assigned to a variable but it can be used to qualify an argument in
a subroutine or function call.

Examples

A = "1" : @FM : "2" : @FM : "3"
B = "10" : @FM : "20"
C = A + B
D = A + REUSE(B)

In this example, C is set to "11FM22FM3" and D to "11FM22FM23". The REUSE() function causes the
final field of B to be reused in the addition with field 3 of A.

A = "1" : @FM : "2" : @FM : "3"
C = A + 10
D = A + REUSE(10)

This example is similar except that numeric array B has been replaced by a simple numeric
constant which can be considered to be a single element numeric array.
In this case, C is set to "11FM2FM3" and D to "11FM12FM13".

A =
"1":@FM:"2":@VM:"3":@VM:"4":@FM:"5":@VM:"6":@VM:"7":@FM:"8"
B = "10":@FM:"20":@FM:"30":@VM:"40"

QMBasic 913

2.6-6

C = A + B
D = A + REUSE(B)

In this example individual fields and values of A and B are matched into pairs for the addition
operations.
C is set to "11FM22VM3VM4FM35VM36VM7FM8".
D is set to "11FM22VM23VM24FM35VM36VM37FM48".

See also:
ANDS(), EQS(), GES(), GTS(), IFS(), LES(), LTS(), NES(), NOTS(), ORS()

OpenQM914

2.6-6

RND()

The RND() function returns a random number.

Format

RND(expr)

where

expr evaluates to an integer or a numeric array.

The RND() function returns a random number. The range of values is determined by the value of
expr rounded towards zero as an integer. If expr is positive, the number is in the range zero to expr
minus one. If expr is negative, the number is in the range expr plus one to zero. If expr is zero,
RND() returns zero.

If expr is a numeric array (a dynamic array where all elements are numeric), the RND() function
operates on each element in turn and returns a numeric array with the same structure as expr.

The seed value of the random number generator may be set using RANDOMIZE. Note that the
sequence returned may vary between QM releases even if the same seed value is set.

Example

TWO.DICE = RND(6) + RND(6) + 2

This statement produces a value in TWO.DICE equivalent to throwing a pair of dice. The two calls
to the RND() function will each return a value in the range 0 to 5. The values are then brought into
the appropriate range by adding two.

See also:
RANDOMIZE

QMBasic 915

2.6-6

SAVE.SCREEN()

The SAVE.SCREEN() function saves a rectangular portion of the display screen image.

This statement can only be used with QMConsole and QMTerm sessions and with terminals that
support the save and restore screen region functions (e.g. AccuTerm 5.2b upwards).

Format

SAVE.SCREEN(col, line, width, height)

where

col is the screen column (from zero) of the leftmost column to be saved.

line is the screen line (from zero) of the top line to be saved.

width is the width of the screen region to be saved.

height is the height of the screen region to be saved.

The SAVE.SCREEN() function saves the data and display attributes of the screen image within
the specified screen area. The value assigned to the variable set by this function can only be used by
the RESTORE.SCREEN statement.

Example

IMAGE = SAVE.SCREEN(0, 0, 80, 25)
EXECUTE COMMAND.STRING
RESTORE.SCREEN IMAGE, @TRUE

The above code fragment saves the screen image, executes the command in variable
COMMAND.STRING and then restores the screen image.

See also:
RESTORE.SCREEN

OpenQM916

2.6-6

SAVELIST

The SAVELIST statement saves an active select list to the $SAVEDLISTS file.

Format

SAVELIST name {FROM list.no}
{THEN statement(s)}
{ELSE statement(s)}

where

name is the name of the $SAVEDLISTS entry to be written.

list.no is the select list number to be saved. If omitted, this defaults to zero.

statement(s) are statements to be executed depending on the outcome of the operation.

The SAVELIST statement saves an active select in the $SAVEDLISTS file. The numbered list is
destroyed by this operation.

If the list had been partially processed before the SAVELIST statement is performed, only the
unprocessed portion of the list is saved.

At least one of the THEN and ELSE clauses must be present. If the list is successfully saved, the
THEN clause is executed. If the list cannot be saved for any reason, the ELSE clause is executed.

QMBasic 917

2.6-6

SEEK

The SEEK statement sets the current read / write position in a directory file record previously
opened for sequential access.

Format

SEEK file.var {, offset{, relto }}
{THEN statement(s)}
{ELSE statement(s)}

where

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

offset is the byte position relative to the point given by relto. If offset and relto
are both omitted, the file position is set to the start of the file.

relto indicates the point from which offset is calculated. Defaults to 0 if omitted.
0 Start of file (offset must be positive).
1 Current position (offset may be positive or negative)
2 End of file (offset must be negative)

statement(s) are statement(s) to be executed depending on the outcome of the SEEK.

At least one of the THEN and ELSE clauses must be present. The THEN clause is executed if the
operation is successful. The ELSE clause is executed if the SEEK operation fails.

Example

SEEK SEQ.F 0, 2 ELSE ABORT "Seek error"

This statement positions to the end of the record ready to append new data.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READCSV, READSEQ, WEOFSEQ,
WRITEBLK, WRITECSV, WRITESEQ, WRITESEQF

OpenQM918

2.6-6

SELECT

The SELECT statement creates a select list containing all record keys from a file.

Format

SELECT var {TO list.no} {ON ERROR statement(s)}

SELECTN var {TO list.no} {ON ERROR statement(s)}

SELECTV var TO list.var {ON ERROR statement(s)}

where

var is the file variable associated with an open file or a field mark delimited
dynamic array of items to form the list.

list.no is the select list number of the list to be created. If omitted, select list zero
is used.

list.var is the select list variable to receive the list. Select list variables can be
processed by the READNEXT statement as an alternative to using
numbered select lists.

statement(s) are statement(s) to be executed if a fatal error occurs.

The SELECT and SELECTN statements construct a list of record keys in the file open as var and
store this as an active select list list.no replacing any previously active list. If there are no records in
the file, an empty list is created.

|The SELECTV statement constructs the list in the same way but stores it in a select list variable
which can be processed by a subsequent use of READNEXT.

For compatibility with other database products, the action of the SELECT statement can be
changed to produce a select list variable in the same was as SELECTV. This is achieved by setting
the SELECTV option of the $MODE compiler directive.

The QMBasic SELECT statement uses an optimised method for processing hashed files such that
each group is examined only when the record keys are extracted from the select list. This reduces
disk transfers and gives better application performance than constructing the entire list in one
operation. This benefit does not apply to SELECTV. This overlapping of processing with record
selection means that, if the application writes new records while the select list is being processed,
these new records may be seen later in the operation.

It is important that a program that does not completely process a select list should use
CLEARSELECT to clear the remainder of the list. While the list is active, split and merge
operations are suspended on the data file. Thus, leaving a list active may cause the file performance
to degrade if updates are made. Note that the file will automatically reconfigure for optimum
performance once the select operation has terminated.

The @SELECTED variable is set to the number of records selected for a directory file or the
number of records in the first non-empty group for a dynamic file.

QMBasic 919

2.6-6

The optional ON ERROR clause is executed in the event of a fatal error. This covers such
situations as disk hardware errors and faults in the internal structure of the file. The STATUS()
function will return a value relating to the cause of the error. If no ON ERROR clause is present, a
fatal error will result in an abort.

Except where the ON ERROR clause is taken, the STATUS() function will return zero.

Use of a Dynamic Array instead of a File Variable

For compatibility with Pick style environments, QM also supports a variation on these statements
where the var is a dynamic array in which each field becomes an entry in the target select list.

Example

SELECT STAFF TO 7

This statement creates a list of the records on the file with file variable STAFF and saves it as
active select list 7.

OpenQM920

2.6-6

SELECTE

The SELECTE statement transfers select list 0 to a select list variable.

Format

SELECTE TO list.var

where

list.var is the select list variable to receive the list. Select list variables can be processed by
the READNEXT statement as an alternative to using numbered select lists.

The SELECTE statement transfers the unprocessed portion of the default select list (list 0) to the
named variable.

QMBasic 921

2.6-6

SELECTINDEX

The SELECTINDEX statement creates a select list from an alternate key index entry.

Format

SELECTINDEX index.name {, value} FROM file.var {TO list.no}

where

index.name is the name of the alternate key index to be processed.

value is the value to be located in the index.

file.var is the file variable associated with an open file.

list.no is the select list number of the list to be created. If omitted, select list zero
is used.

If the value is omitted, the SELECTINDEX statement constructs a select list containing all the
values of the index identified by index.name. If the value is included, the SELECTINDEX
statement constructs a select list containing keys of records for which the index indentifed by
index.name has the given value.

Thus, in a file of orders with an index on the customer number field, the first form would return a
list of customers referenced by the orders file and the second form would return a list of orders for a
specific customer.

The STATUS() function returns zero if the SELECTINDEX is successful, non-zero if it fails
because the index does not exist. Selecting records for a value that is not present in the index will
return an empty list.

The @SELECTED variable is set to the number of entries in the returned list.

The SELECTINDEX operation leaves the internal index pointer used by the SELECTLEFT and
SELECTRIGHT statements positioned at the item that has been located or, if not found, at the
position where such an item would go.

Use of this statement inside a transaction will not reflect any uncommitted updates to the file.

Examples

SELECTINDEX 'CUST.NO' FROM ORDERS.FILE TO 7
LOOP
 READNEXT CUST.NO FROM 7 ELSE EXIT
 CRT CUST.NO
 SELECTINDEX 'CUST.NO', CUST.NO FROM ORDERS.FILE
 LOOP
 READNEXT ORDER.NO ELSE EXIT
 CRT ORDER.NO
 REPEAT

OpenQM922

2.6-6

REPEAT

This program builds a select list of all the customers referenced by the orders file as list 7. The
inner loop then constructs a list of the order numbers for each customer in turn.

See also:
SETLEFT, SETRIGHT, SELECTLEFT, SELECTRIGHT

QMBasic 923

2.6-6

SELECTINFO()

The SELECTINFO() function returns information about a select list.

Format

SELECTINFO(list.no, key)

where

list.no evaluates to the number of the select list to be examined. If omitted, select list zero
is used.

key identifies the action to be performed.

Values for the key to the SELECTINFO() function are defined in the KEYS.H record in the
SYSCOM file. These are

1 SL$ACTIVE Returns true (1) if the select list is active, false (0) if it is not active.

3 SL$COUNT Returns the number of items remaining to be processed in the select
list. If the list is not active, the SELECTINFO() function will return
zero.

Use of mode 3 with a list constructed using the QMBasic SELECT statement on a dynamic file
requires completion of the selection process and thus may reduce application performance.

Example

SELECT STOCK.FILE
PRINT "Stock file has " : SELECTINFO(0, SL$COUNT) : " records"
CLEARSELECT

This program fragment counts and reports the number of records in the file open with file variable
STOCK.FILE..

OpenQM924

2.6-6

SELECTLEFT and SELECTRIGHT

The SELECTLEFT and SELECTRIGHT statements create a select list from the entry in an
alternate key index to the left or right of the last entry processed.

Format

SELECTLEFT index.name FROM file.var {SETTING key} {TO list.no}
SELECTRIGHT index.name FROM file.var {SETTING key} {TO list.no}

where

index.name is the name of the alternate key index to be processed.

file.var is the file variable associated with an open file.

key is the variable to be set to the key value associated with the returned list.

list.no is the select list number of the list to be created. If omitted, select list zero
is used.

The SELECTLEFT and SELECTRIGHT statements construct a select list from the alternate key
index entry to the left or right of the one most recently returned using SELECTINDEX,
SELECTLEFT or SELECTRIGHT. The position of the scan can be set to the extreme left using
SETLEFT or the extreme right using SETRIGHT.

These operations allow a program to find a specific value and then walk through successive values
in the sorted data structure that makes up an alternate key index.

If SELECTINDEX is used to locate a value that does not exist in the index, SELECTLEFT will
return a list of records for the value immediately before the non-existent one and SELECTRIGHT
will return a list of records for the value immediately after the non-existent one.

The STATUS() function returns zero if the operation is successful, non-zero if it fails because the
index does not exist. The @SELECTED variable is set to the number of entries in the returned list,
or zero if there are no further index entries to be returned.

Use of these statements inside a transaction will not reflect any uncommitted updates to the file.

Examples

KEY = 'M'
SELECTINDEX 'POSTCODE', KEY FROM CLIENTS.FILE
LOOP
 LOOP
 READNEXT CLIENT.NO ELSE EXIT
 CRT CLIENT.NO
 REPEAT
 SELECTRIGHT 'POSTCODE' FROM CLIENTS.FILE SETTING POSTCODE
UNTIL STATUS()
WHILE POSTCODE[1,LEN(KEY)] = KEY

QMBasic 925

2.6-6

REPEAT

This program displays a list of all clients with postcodes beginning with M.

The SELECTINDEX looks for an index entry for a postcode of "M". This is unlikely to exist and
hence the select list will probably be empty. If it did find any records, the inner loop would display
these. Having processed this initial list, the SELECTRIGHT moves one step right (i.e. in
ascending order) through the index tree and builds a list of these records. The POSTCODE variable
is returned as the value of the indexed item located. Processing continues until the
SELECTRIGHT finds an item that does not begin with the characters in KEY.

SELECTINDEX 'TIME', TIMESTAMP FROM LOG.F TO 1
IF @SELECTED = 0 THEN
 SELECTLEFT 'TIME' FROM LOG.F TO 1
END IF

The above program fragment finds the record in the file open as LOG.F with the TIME field equal
to TIMESTAMP. If there is no such record it finds the record with the nearest time before the
requested timestamp. If multiple records have the same timestamp value, select list 1 will contain all
of their ids. If TIME was the id of records in the log file, the select list could never contain multiple
values.

See also:
SELECTINDEX, SETLEFT, SETRIGHT

OpenQM926

2.6-6

SENTENCE()

The SENTENCE() function returns command line that started the current program.

Format

SENTENCE()

The SENTENCE() function is an alternative to use of the @SENTENCE variable.

QMBasic 927

2.6-6

SEQ()

The SEQ() function returns the ASCII character set position value of a character.

Format

SEQ(char)

where

char evaluates to the character to be processed.

The SEQ() function returns the character value of char. It is the inverse of the CHAR() function.

If char is a null string, SEQ() returns zero. If char is more than one character in length, SEQ()
returns the value of the first character.

Example

N = SEQ(KEYIN())

This statement reads a single character from the keyboard and then uses SEQ() to find its ASCII
character set value.

See also:
CHAR()

OpenQM928

2.6-6

SERVER.ADDR()

The SERVER.ADDR() function returns the IP address for a given server name.

Format

SERVER.ADDR(server.name)

where

server.name is the name of the server for which the IP address is required.

The SERVER.ADDR() function can be used to find the IP address of a network server from its
name. This function is not usually needed as the QMBasic socket functions work with either IP
addresses or server names.

If successful, the STATUS() function will return zero. All error conditions return a null string as
the IP address and subsequent use of the STATUS() function will return the error code.

Example

DISPLAY SERVER.ADDR("openqm.com")

This statement displays the IP address of the openqm.com server.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, CREATE.SERVER.SOCKET(),
OPEN.SOCKET(), READ.SOCKET(), SET.SOCKET.MODE(), SOCKET.INFO(),
WRITE.SOCKET()

QMBasic 929

2.6-6

SET.ARG

The SET.ARG statement updates a subroutine argument value based on its position in the
argument list. It is intended for use with subroutines declared with the VAR.ARGS option.

Format

SET.ARG n, value

where

n is the argument list position, numbered from one.

value is the value to be set.

Subroutines declared with the VAR.ARGS option may have a variable number of arguments.
Although each argument must have a name assigned to it in the SUBROUTINE statement, it is
often useful to be able to process a series of arguments by indexing this list.

The SET.ARG statement sets the value of argument n. The actual number of arguments passed
may be determined using the ARG.COUNT() function. Use of an argument position value less than
one or greater than the number of arguments causes the program to abort.

See also:
ARG(), ARG.COUNT

OpenQM930

2.6-6

SET.EXIT.STATUS

The SET.EXIT.STATUS statement sets the final exit status returned by QM to the operating
system. This operation has no effect on the PDA version of QM.

Format

SET.EXIT.STATUS value

where

value is the exit status value to be set.

By default, QM returns an exit status of zero to the operating system on termination. The
SET.EXIT.STATUS statement allows an application to return an alternative exit status value to
indicate, for example, success or failure. Note that error conditions detected during startup of a QM
session return an exit status of 1.

See also the SET.EXIT.STATUS command.

QMBasic 931

2.6-6

SET.PORT.PARAMS()

The SET.PORT.PARAMS() function sets the communications parameters for a serial port. This
function is not available on the PDA version of QM.

Format

SET.PORT.PARAMS(fvar, params)

where

fvar is the file variable from the OPENSEQ statement that was used to open the port.

params is a dynamic array holding the new parameters to be set.

The SET.PORT.PARAMS() function returns true (1) if successful, false (0) if an error occurs.

The params dynamic array contains the following data:

Field 1 Port name (ignored)
Field 2 Baud rate
Field 3 Parity mode (0 = off, 1 = odd, 2 = even)
Field 4 Bits per byte (5 to 8)
Field 5 Stop bits (1 or 2)

To allow for the possibility of additional fields being added in future releases, programs should use
the GET.PORT.PARAMS() function to retrieve the current settings, modify this as required and
then use SET.PORT.PARAMS() to set the new parameters.

Example

PARAMS = GET.PORT.PARAMS(PORT)
PARAMS<2> = 9600
IF NOT(SET.PORT.PARAMS(PORT, PARAMS) THEN STOP 'Error setting
parameters'

OpenQM932

2.6-6

SET.SOCKET.MODE()

The SET.SOCKET.MODE() function sets parameters for an open socket.

Format

SET.SOCKET.MODE(skt, key, value)

where

skt is the socket variable for an open socket.

key identifies the mode to be set:

SKT$INFO.BLOCKING Default blocking mode.

SKT$INFO.NO.DELAY Nagle algorithm disabled?

SKT$INFO.KEEP.ALIVE Send keep alives?

value is the required value of the parameter.

The SET.SOCKET.MODE() function returns TRUE (1) if the action is successful, FALSE (0) if
it fails. The STATUS() function can be used to determine the cause of failure.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, CREATE.SERVER.SOCKET(),
OPEN.SOCKET(), READ.SOCKET(), SERVER.ADDR(), SOCKET.INFO(),
WRITE.SOCKET()

QMBasic 933

2.6-6

SETLEFT and SETRIGHT

The SETLEFT and SETRIGHT statements set the scanning position of an alternate key index at
the extreme left or right of the data.

Format

SETLEFT index.name FROM file.var
SETRIGHT index.name FROM file.var

where

index.name is the name of the alternate key index to be processed.

file.var is the file variable associated with an open file.

The SETLEFT and SETRIGHT statements are used with SELECTLEFT and
SELECTRIGHT to set the scan position to the first or last entry in an alternate key index.

The STATUS() function returns zero if the operation is successful, non-zero if it fails because the
index does not exist.

Example

SETLEFT 'POSTCODE' FROM CLIENTS.FILE
LOOP
 SELECTRIGHT 'POSTCODE' FROM CLIENT.FILE SETTING POSTCODE
UNTIL POSTCODE[1,1] >= 'N'
 CRT POSTCODE
REPEAT

This program displays a list of all postcodes commencing with a letter in the first half of the
alphabet.

See also:
SELECTINDEX, SELECTLEFT, SELECTRIGHT

OpenQM934

2.6-6

SETNLS

The SETNLS statement sets the value of a national language support parameter.

Format

SETNLS key, value

where

key identifies the parameter to be set.

value is the new value for the parameter.

The SETNLS statement sets the value of the named national language support parameter. NLS
parameter name tokens are defined in the KEYS.H include record.

Available parameters are:

Parameter Key Meaning

1 NLS$CURRENCY Default currency symbol. Maximum 8 characters.

2 NLS$THOUSANDS Default thousands separator character.

3 NLS$DECIMAL Default decimal separator character.

Example

SETNLS NLS$CURRENCY, 'Eur'

QMBasic 935

2.6-6

SETPU

The SETPU statement sets the characteristics of a print unit.

Format

SETPU key, unit, value

where

key identifies the parameter to retrieved. This may be:

1 PU$MODE Print unit mode

2 PU$WIDTH Characters per line

3 PU$LENGTH Lines per page

4 PU$TOPMARGIN Top margin size

5 PU$BOTMARGIN Bottom margin size

6 PU$LEFTMARGIN Left margin size

7 PU$SPOOLFLAGS Various print unit flags

9 PU$FORM Form name (not used by all spoolers)

10 PU$BANNER Banner page text

11 PU$LOCATION Printer / file name

12 PU$COPIES Number of copies to print

15 PU$PAGENUMBER Current page number (see below)

1002 PU$LINESLEFT Lines left on page

1003 PU$HEADERLINES Lines occupied by header

1004 PU$FOOTERLINES Lines occupied by footer

1005 PU$DATALINES Lines between header and footer

1006 PU$OPTIONS Options to be passed to the spooler

1007 PU$PREFIX Pathname of file holding prefix data to be
added to the start of the output

1008 PU$SPOOLER Spooler to be used (ignored on Windows)

1009 PU$OVERLAY Catalogued overlay subroutine name (see
SETPTR)

1010 PU$CPI Characters per inch (may be non-integer
value)

1011 PU$PAPER.SIZE Paper size. See SYSCOM PCL.H

1012 PU$LPI Lines per inch. Must be 1, 2, 3, 4, 6, 8, 12,
16, 24, 48

1013 PU$WEIGHT Font stroke weight. See SYSCOM PCL.H

1014 PU$SYMBOL.SET Symbol set. See SYSCOM PCL.H

1015 PU$STYLE Query processor style. See the Query
processor STYLE option for details.

OpenQM936

2.6-6

2000 PU$LINENO Current line number

unit evaluates to the print unit number.

value is the value to set for the given parameter.

The SETPU statement sets the print unit characteristic specified by key to the given value. It is
closely related to the SETPU() subroutine.

If successful, STATUS() is set to zero. Otherwise, STATUS() returns an error code.

Mode 15 (PU$PAGENUMBER) can be used to set the current page number before any output to
the print unit if a report is to start at a page number other than one. Using this mode after output
has commenced may have indeterminate effects.

Example

SETPU PU$LOCATION, 3, "LASER"

The above statement sets the destination for print unit 3 to be the LASER printer.

QMBasic 937

2.6-6

SETREM

The SETREM statement sets the remove pointer of a string.

Format

SETREM offset ON string

where

offset is the character offset of the remove pointer to be set.

string is the string on which the remove pointer position is to be set.

Assigning a character string variable automatically sets the remove pointer to zero, effectively
pointing one character before the start of the string. The SETREM statement allows an application
to set the remove pointer to an arbitrary offset into string. The STATUS() function will return zero
if the action is successful.

If the offset is negative or greater than the length of string, any existing remove pointer is not
altered and the STATUS() function will return error code ER$LENGTH.

SETREM is typically used with GETREM() to save and restore the remove pointer position.

Example

RMV.PTR = GETREM(S)
GOSUB PROCESS.DATA
SETREM RMV.PTR ON S

The above code fragment saves the remove pointer associated with string S and restores it after
execution of subroutine PROCESS.DATA which might change this remove pointer.

See also:
GETREM, REMOVE

OpenQM938

2.6-6

SHIFT()

The SHIFT() function performs a logical bit-shift operation on an integer value.

Format

SHIFT(value, shift.len)

where

value evaluates to the integer to be shifted.

shift.len indicates the number of bit positions by which value is to be shifted.

The SHIFT() function converts value to a thirty two bit integer, truncating any fractional part of a
non-integer value, and shifts the bit pattern of this value by shift.len positions.

A positive value of shift.len shifts right (towards the low order end). A negative value of shift.len
shifts left (towards the high order end).

Values of shift.len that are outside the range -32 to +32 have undefined results.

Example

FOR I = 30 TO 0 STEP - 3
 DISPLAY BITAND(SHIFT(N, I), 7) :
NEXT I

This program fragment displays the value of N in octal. The MO conversion mode of the
OCONV() function would be more appropriate.

See also:
BITAND(), BITNOT(), BITOR(), BITRESET(), BITSET(), BITTEST(), BITXOR()

QMBasic 939

2.6-6

SIN()

The SIN() function returns the sine of a value.

Format

SIN(expr)

where

expr evaluates to a number or a numeric array.

The SIN() function returns the cosine of expr. Angles are measured in degrees.

If expr is a numeric array (a dynamic array where all elements are numeric), the SIN() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

OPP = HYP * SIN(ANGLE)

This statement finds the length of the opposite side of a right angled triangle from the length of the
hypotenuse and the adjacent angle.

See also:
ACOS(), ASIN(), ATAN(), COS(), TAN()

OpenQM940

2.6-6

SLEEP

The SLEEP statement causes the program in which it is executed to pause for a given number of
seconds or until a specific time. The synonym RQM may be used in place of SLEEP.

Format

SLEEP {time}

where

time determines the time for which the program is to sleep. If omitted, time defaults to
one.

The SLEEP statement operates in one of two ways depending on the format of time.

If time is a number, it is rounded to an integer value and the program sleeps for that number of
seconds. If time is negative or zero, the program continues without sleeping.

If time is not a number, an attempt is made to convert it to a time of day using any of the formats
accepted by the ICONV() function MT conversion. If successful, the program sleeps until this
time. The SLEEP statement used in this way cannot sleep across midnight. If the time of day
specified by time has already passed or if time cannot be converted to a time of day, the program
continues without sleeping.

In all cases, if there is more than one process running, the SLEEP statement causes a process
switch to occur. It can therefore be used to relinquish the remainder of the timeslice of the current
process if waiting for some event to occur in another process, such as release of a lock.

If the break key is used to interrupt a program which is sleeping, selection of the G option will
continue to sleep to the specified time. The Q option will abort the program immediately.

Examples

SLEEP "10:30PM"

This statement causes the program to sleep until half past ten at night unless it is already later than
that time.

SLEEP 10

This statement causes the program to pause for 10 seconds

DISPLAY "Time to continue"
INPUT T
DELAY = ICONV(T, "MT") - TIME()
IF DELAY < 0 THEN DELAY += 86400
SLEEP DELAY

QMBasic 941

2.6-6

This program fragment prompts for and reads a time of day from the keyboard. It then converts this
to a number of seconds from the current time and sleeps until this time. This technique, with the
conditional statement handling times earlier than the current time allows the program to sleep across
midnight.

See also:
NAP

OpenQM942

2.6-6

SOCKET.INFO()

The SOCKET.INFO() function returns information about an open socket.

Format

SOCKET.INFO(skt, key)

where

skt is the socket variable for an open socket.

key identifies the information to be returned:

SKT$INFO.OPEN Is skt a socket variable? Returns true (1) or false
(0).

SKT$INFO.TYPE Type or socket. Returns one of the following
values according to which socket function was
used to open the socket:

SKT$INFO.TYPE.SERVER CREATE.SERVER.SOCKET()
SKT$INFO.TYPE.INCOMING

ACCEPT.SOCKET.CONNECTI
ON()

SKT$INFO.TYPE.OUTGOING OPEN.SOCKET()

SKT$INFO.PORT Port number.

SKT$INFO.IP.ADDR IP address.

SKT$INFO.BLOCKING Default blocking mode.

SKT$INFO.NO.DELAY Nagle algorithm disabled?

SKT$INFO.KEEP.ALIVE Send keep alives?

The SOCKET.INFO() function returns information about an open socket as shown in the
parameter descriptions above.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, CREATE.SERVER.SOCKET(),
OPEN.SOCKET(), READ.SOCKET(), SERVER.ADDR(), SET.SOCKET.MODE(),
WRITE.SOCKET()

QMBasic 943

2.6-6

SOUNDEX()

The SOUNDEX() function returns a four character string determined by the phonetic content of a
string. The SOUNDEXS() function is similar to SOUNDEX() but operates on successive elements
of a dynamic array, returning a similarly structured dynamic array of results.

Format

SOUNDEX(string)

where

string is the string for which the sound code is to be returned.

The SOUNDEX() function is useful for situations where it is desired to compare or locate items by
their spoken sound. For example, names in a telephone directory could be indexed by their
SOUNDEX() value to aid location of similar sounding names.

The value returned by SOUNDEX() is made up from the first letter of string in upper case
followed by three digits which are found by examination of further characters of string according to
the following table.

0 A E H I O U W Y
1 B F P V
2 C G J K Q S X Z
3 D T
4 L
5 M N
6 R

Letters in group 0 are ignored. Consecutive letters that result in the same value result in only a
single character. If the result is less than four characters long, zeros are added to fill the remaining
positions. Thus the word SOUNDEX encodes to S532.

Example

DISPLAY "Enter name "
INPUT NAME
KEY = SOUNDEX(NAME)
READ OTHER.NAMES FROM PHONONYMS, KEY THEN
 NAME = OTHER.NAMES
END

This program fragment prompts for and reads a name. It then establishes the soundex key for this
name and attempts to read a list of similar sounding names from the PHONONYMS file. If found,
this list replaces the NAME value.

OpenQM944

2.6-6

SPACE()

The SPACE() function returns a string consisting of a given number of spaces. The SPACES()
function is similar to SPACE() but operates on successive elements of a dynamic array, returning a
similarly structured dynamic array of results.

Format

SPACE(count)

where

count evaluates to the desired number of spaces.

The SPACE() function is a useful way to generate multiple spaces. It can aid readability of
programs by removing the need for space filled strings and it can be used to provide variable
numbers of spaces where required.

Example

PRINT SPACE(INDENT) : TEXT

This statement prints the contents of TEXT indented by the number of spaces specified by
INDENT.

See also:
STR()

QMBasic 945

2.6-6

SPLICE()

The SPLICE() function concatenates corresponding elements of a dynamic array, inserting a string
between each pair of items.

Format

SPLICE(array1, string, array2)

where

array1 is the first dynamic array.

string is the string to be inserted between each pair of items.

array2 is the second dynamic array.

The SPLICE() function returns the result of concatenating corresponding dynamic array
components (fields, values and subvalues) from the supplied arrays, inserting string between each
pair.

The REUSE() function can be applied to either or both dynamic arrays. Without this function, any
absent trailing values are taken as null strings.

Example

S1 = "ABC":@fm@"DEF"
S2 = "123":@vm:"456":@fm:"789"
X = SPLICE(S1,'-', S2)

The above code fragment concatenates elements of the two strings yielding a result in X of
"ABC123VM456FMDEF789"

OpenQM946

2.6-6

SQRT()

The SQRT() function returns the square root of a value.

Format

SQRT(expr)

where

expr evaluates to a number or a numeric array.

The SQRT() function returns the square root of expr.

If expr is a numeric array (a dynamic array where all elements are numeric), the SQRT() function
operates on each element in turn and returns a numeric array with the same structure as expr.

A negative value of expr will cause a run time error.

Example

N = SQRT(A)

This statement finds the square root of A and assigns this to N.

QMBasic 947

2.6-6

SQUOTE()

The SQUOTE() function returns a copy of its argument string enclosed in single quotes.

Format

SQUOTE(expr)

where

expr evaluates to the source string.

The SQUOTE() function returns expr enclosed in single quotation marks.

Example

A = SQUOTE('ABC123')

This statement sets A to the eight character string 'ABC123'.

See also:
QUOTE()

OpenQM948

2.6-6

SSELECT

The SSELECT statement creates a select list containing all record keys from a file sorted into left
justified ascending order.

Format

SSELECT file.var {TO list.no} {ON ERROR statement(s)}

where

file.var is the file variable associated with an open file.

list.no is the select list number of the list to be created. If omitted, select list zero
is used.

statement(s) are statement(s) to be executed if a fatal error occurs.

A list of record keys in the file open as file.var is created and stored as an active select list list.no
replacing any previously active list. If there are no records in the file, an empty list is created. Keys
will be stored in left justified ascending order. The @SELECTED variable is set to the number of
records selected.

The optional ON ERROR clause is executed in the event of a fatal error. This covers such
situations as disk hardware errors and faults in the internal structure of the file. The STATUS()
function will return a value relating to the cause of the error. If no ON ERROR clause is present, a
fatal error will result in an abort.

Except where the ON ERROR clause is taken, the STATUS() function will return zero.

Use of a Dynamic Array instead of a File Variable

For compatibility with Pick style environments, QM also supports a variation on SSELECT where
the file.var is replaced by a dynamic array in which each field becomes an entry in the target select
list.

Example

SSELECT STAFF TO 7

This statement creates a sorted list of the records on the file with file variable STAFF and saves it
as active select list 7.

QMBasic 949

2.6-6

STATUS()

The STATUS() function returns information following execution of certain other statements. In
many cases, this information gives details of an error condition.

Format

STATUS()

The STATUS() function is used to fetch status information set by other statements as documented
in their descriptions. Where the value relates to an error condition, the tokens in the ERR.H record
of the SYSCOM file can be used. Use of the actual values of error status codes is discouraged.

The STATUS() function can be used any number of times to retrieve the current status value but
this value may be changed by other statements. In general, the STATUS() function should be used
as close a possible to the statement that set the value to be retrieved. In particular, use of CALL
and EXECUTE are very likely to result in execution of statements that destroy the previous value
of the STATUS() function.

There is a standard subroutine, !ERRTEXT(), that can be used to translate an error number to an
equivalent text message.

See the OS.ERROR() function for a way to access operating system level error numbers.

Example

OPEN "STOCK.FILE" TO FVAR ELSE
 ABORT "Open failed : Error code " : STATUS()
END

This program fragment attempts to open a file and, if the OPEN fails, reports the error code.

OpenQM950

2.6-6

STATUS

The STATUS statement returns a dynamic array containing a variety of information about an open
file. Not all fields are returned on the PDA version of QM.

Format

STATUS var FROM file.var THEN statement(s) ELSE statement(s)

where

var is the variable to receive the dynamic array.

file.var is the file variable associated with an open file.

At least one of the THEN and ELSE clauses must be present for compatibility with other
multivalue products. The implementation of STATUS in QM never executes the ELSE clause.

The STATUS statement returns a dynamic array where the fields contain the following
information:

1 File position for a sequential file.
2 1 if at end of file, else 0 (sequential files)
3 Unused on QM
4 Bytes available to read (sequential files)
5 File permission flags in the form used by Linux, etc to define access rights
6 File size
7 Number of hard links (not Windows)
8 User id of owner (not Windows)
9 Group id of owner (not Windows)
10 Inode number (not Windows)
11 Device number
12 Unused on QM
13 Time of last access
14 Date of last access
15 Time of last modification
16 Date of last modification
17-19 Unused on QM
20 Operating system file pathname
21 File type (see FILEINFO() for a list of values)

See also:
FILEINFO()

QMBasic 951

2.6-6

STOP

The STOP statement terminates the current program. STOPE and STOPM provide compatibility
with other multivalue database products.

Format

STOP {print.list}

where

print.list evaluates to the message to be displayed. This is of the form described under the
DISPLAY statement.

Control is passed to the calling program, menu or paragraph.

The Pick syntax of STOP can be enabled by including a line

$MODE PICK.ERRMSG

in the program before the first STOP statement. In this syntax, the STOP statement becomes

STOP {msg.id {, arg...}}

where

msg.id evaluates to the id of a record in the ERRMSG file which holds the message to be
displayed. If this id is numeric, it will be copied to @SYSTEM.RETURN.CODE.

arg... is an optional comma separated list of arguments to be substituted into the
message.

See the ERRMSG statement for a description of the ERRMSG file message format.

The STOPE statement always uses Pick style message handling and the STOPM statement always
uses Information style message handling, regardless of the setting of the PICK.ERRMSG option.

Examples

IF NO.OF.ENTRIES = 0 THEN STOP

This statement terminates the program if the value of the variable NO.OF.ENTRIES is zero. No
error message is printed. STOP statements without error text messages can result in difficult
diagnostic work to locate faults.

OPEN "STOCK.FILE" TO STOCK ELSE
 STOP "Cannot open STOCK.FILE - Error " : STATUS()

END

This program fragment attempts to open a file named STOCK.FILE. If the open fails, the program

OpenQM952

2.6-6

displays an error message and terminates the program.

See also:
ABORT

QMBasic 953

2.6-6

STR()

The STR() function returns a string made up of a given number of repeated occurrences of another
string. The STRS() function is similar to STR() but operates on successive elements of a dynamic
array, returning a similarly structured dynamic array of results.

Format

STR(string, count)

where

string evaluates to the string to be repeated.

count evaluates to the number of repeats of string that are required.

The STR() function returns count occurrences of string. If count is less than one, a null string is
returned.

Example

PRINT STR("*", 79)

This statement prints a line of 79 asterisks.

See also:
SPACE()

OpenQM954

2.6-6

SUBR()

The SUBR() function calls a subroutine as a function in an expression. It is normally only used in
dictionary I-type items.

Format

SUBR(name {,arg1 {, arg2...})

where

name evaluates to the name of the subroutine to be called.

arg1, etc are the arguments to the subroutine.

The SUBR() function calls catalogued subroutine name, passing arg1, arg2, etc to it as its
arguments. The subroutine must be written to have an additional first argument through which it
returns its result which is used as the value of the SUBR() function.

A statement such as

A = B + SUBR("EVALUATE", C, D)

is equivalent to

CALL EVALUATE(X, C, D)
A = B + X

The name argument may be any expression that evaluates to the name of the subroutine. The
catalogue look-up process is performed for each execution of the SUBR() function unlike a CALL
statement where the look-up is performed just once for each invocation of the calling program.

When used in a QMBasic program, the SUBR() function does not support the MAT keyword to
pass a whole matrix as an argument. The CALL statement must be used to achieve this.

Example

 SUBROUTINE CUST.ORD(RESULT, CUST.NO)
 $INCLUDE FILES.H
 SELECTINDEX 'CUST', CUST.NO FROM ORDERS.F TO 1
 READLIST RESULT FROM 1 ELSE NULL
 RETURN
 END

The above subroutine takes a customer number as its second argument and uses this to access an
alternate key index, returning a list of all orders that were placed by the given customer. This
example assumes that the ORDERS.F file variable is in a common block defined in the FILES.H
include record and that the file is already open.

The subroutine could alternatively be written as a function:
 FUNCTION CUST.ORD(CUST.NO)

QMBasic 955

2.6-6

 $INCLUDE FILES.H
 SELECTINDEX 'CUST', CUST.NO FROM ORDERS.F TO 1
 READLIST RESULT FROM 1 ELSE NULL
 RETURN RESULT
 END

In either case, assuming that the subroutine or function is catalogued as CUST.ORD, it could be
used from within a dictionary I-type item by use of a SUBR() function such as:
 SUBR('CUST.ORD', CUST.NO)
where CUST.NO is the name of a field within the data records being processed.

OpenQM956

2.6-6

SUBROUTINE

The SUBROUTINE statement introduces a subroutine. The abbreviation SUB may be used.

Format

SUBROUTINE name{(arg1 {, arg2...}) {VAR.ARGS}}

where

name is the name of the subroutine.

arg1, etc are the names of the arguments to the subroutine.

QMBasic programs should commence with a PROGRAM, SUBROUTINE, FUNCTION or
CLASS statement. If none of these is present, the compiler behaves as though a PROGRAM
statement had been used with name as the name of the source record.

The SUBROUTINE statement must appear before any executable statements. A SUBROUTINE
with no arguments is equivalent to a PROGRAM. The brackets are optional if there are no
arguments. The SUBROUTINE statement may be split over multiple lines by breaking after a
comma.

The name used in a SUBROUTINE statement need not be related to the name of the source record
though this eases program maintenance. The name must comply with the QMBasic name format
rules

A subroutine module is entered by referencing it a CALL statement. A subroutine that has no
arguments can also be entered by use of the RUN command or by executing a command name that
corresponds to the name of the program in the system catalogue.

The number of arguments in calls to the subroutine must be the same as in the SUBROUTINE
statement unless the subroutine is declared with the VAR.ARGS option. When VAR.ARGS is
used, any arguments not passed by the caller will be unassigned. The ARG.COUNT() function can
be used to determine the actual number of arguments passed. If the values of argument variables are
changed by the subroutine, these changes are reflected in the variables used in the CALL statement
that entered the subroutine.

Subroutine arguments are normally passed by reference such that changes made to the argument
variable inside a subroutine will be visible in the caller's variable referenced by that argument. The
CALL statement allows arguments to be passed by value by enclosing them in brackets. The
SUBROUTINE statement also supports this dereferencing syntax. For example

SUBROUTINE INVOICE(P, (Q))

An argument may refer to a whole matrix. In this case the argument variable name must be
preceded by the keyword MAT and there must be a DIM statement following the subroutine
declaration to indicate whether this is a one or two dimensional matrix. Alternatively, the
dimensions may be given after the variable name in the SUBROUTINE statement. In either case,
the actual dimension values are counted by the compiler but otherwise ignored. Use of a dimension

QMBasic 957

2.6-6

value of one emphasises to readers of the program that the value is meaningless. A matrix passed as
an argument cannot be redimensioned in the subroutine.

For example

SUBROUTINE MATMAX(MAX, MAT A)
 DIM A(1)
 MAX = A(1)
 N = INMAT(A)
 FOR I = 2 TO N
 IF A(I) > MAX THEN MAX = A(I)
 NEXT I
END

This subroutine scans a one dimensional matrix and passes back the value of the largest element via
the MAX argument. The first two lines could alternatively be written as

SUBROUTINE MATMAX(MAX, A(1))

OpenQM958

2.6-6

SUBSTITUTE()

The SUBSTITUTE() function performs substring replacement on successive elements of a
dynamic array, returning a similarly structured dynamic array of results.

Format

SUBSTITUTE(dyn.array, old.list, new.list {, delimiter})

where

dyn.array is the dynamic array to be processed.

old.list is list of items to replace.

new.list is list of replacement items.

delimiter is the single character delimiter separating items in old.list and new.list. If
omitted, this defaults to a value mark.

The SUBSTITUTE() function processes each element of dynamic array dyn.array constructing an
equivalently structured new dynamic array result. Where an element of dyn.array contains a value
in the old.list, the result contains the corresponding item from new.list. Where there is no match
with an item in old.list, the source data is copied to the result dynamic array.

Although this function is defined to operate on dynamic array, it may be equally useful when
dyn.array is a simple single valued string.

Example

A contains DFMDVMFVMP

B = SUBSTITUTE(A, 'D|P', 'Done|Pending', '|')

B will contain DoneFMDoneVMFVMPending

QMBasic 959

2.6-6

SUBSTRINGS()

The SUBSTRINGS() function performs substring extraction on successive elements of a dynamic
array, returning a similarly structured dynamic array of results.

Format

SUBSTRINGS(dyn.array, start, length)

where

dyn.array is the dynamic array to be processed.

start is the start position for extraction of each substring.

length is the length of each extracted substring.

The SUBSTRINGS() function is the multi-valued equivalent of the substring extraction operator [
start, length] and processes each element of dyn.array in turn to produce a result dynamic array.

Example

A contains ABCDEFMFGHIJVMKLMNOVMPQRST

B = SUBSTRINGS(A, 2, 3)

B will contain BCDFMGHIVMLMNVMQRS

OpenQM960

2.6-6

SUM()

The SUM() function eliminates the lowest level of a dynamic array by adding the elements to form
an item of the next highest level.

Format

SUM(expr)

where

expr evaluates to a numeric array.

The SUM() function identifies the lowest level elements present in expr and forms the sum of each
group of elements at this level, replacing the group with an item of the next highest level.

In a numeric array containing subvalues, the subvalues are summed to form values.

If there are no subvalues and the numeric array contains values, the values are summed to form
fields.

If there are no subvalues or values, the fields are summed to form a single field.

If only one item remains, the SUM() function returns expr.

Example

TOTAL.PAID = SUM(PAYMENTS)

This statement sums a multi-valued list of payments to form the total amount paid.

See also:
SUMMATION()

QMBasic 961

2.6-6

SUMMATION()

The SUMMATION() function returns the total value of all elements of a numeric array.

Format

SUMMATION(expr)

where

expr evaluates to a numeric array.

The SUMMATION() function adds together all elements of expr, returning the total value. It is
equivalent to repeated use of the SUM() function until just one value remains.

Example

TOTAL.PAID = SUMMATION(PAYMENTS)

This statement sums a multi-valued list of payments to form the total amount paid.

See also:
SUM()

OpenQM962

2.6-6

SWAPCASE(0

The SWAPCASE() function inverts the case of all alphabetic characters in a string.

Format

SWAPCASE(string)

where

string evaluates to the string in which substitution is to occur.

The SWAPCASE() function returns the value of string with all uppercase letters converted to
lower case and all lowercase letters converted to uppercase. If string is a variable rather than an
expression, the value of the variable is not affected.

Example

S = "ABCdef"
PRINT SWAPCASE(S)

This program fragment prints the string "abcDEF".

See also:
DOWNCASE(), UPCASE()

QMBasic 963

2.6-6

SYSTEM()

The SYSTEM() function returns information regarding the status of various aspects of the system.
On the PDA version of QM, key values that are inappropriate return a zero value.

Format

SYSTEM(key)

where

key identifies the information to be returned.

The SYSTEM() function is provided for compatibility with other data management products. Many
of the key values correspond to those found in other multivalue database products though some
values are implemented inconsistently across products. Values 1000 and above are usually specific
to QM.

The following key values are implemented. All other key values return a zero value.

Key Function

1 Returns 1 if a PRINTER ON statement is in effect

2 Current page width of the default print unit

3 Current page length of the default print unit

4 Lines remaining on current page of the default print unit

5 Current page number of the default print unit

6 Current line number of the default print unit

7 Terminal type (same as @TERM.TYPE)

9 Cumulative processor time used (mS) by this QM session

10 Input waiting in the DATA queue? (1 if so, 0 if not)

11 Select list 0 active? (1 if so, 0 if not)

12 Time in seconds since midnight (same as TIME())

18 User number (same as @USERNO)

23 Break key enabled? (1 if so, 0 if not)

24 Input echo enabled? (1 if so, 0 if not)

25 Is this a phantom process?

26 Returns the current input prompt character

27 Returns the operating system uid for the user's process. (Not Windows or PDA)

28 Returns the operating system effective uid for the user's process. (Not Windows or
PDA)

29 Returns the operating system gid for the user's process. (Not Windows or PDA)

30 Returns the operating system effective gid for the user's process. (Not Windows or

OpenQM964

2.6-6

PDA)

31 Licence number

32 Returns the system directory pathname

38 Returns temporary directory pathname

42 Returns telnet connection IP address, null for a console user

91 Returns 1 on Windows, 0 on other platforms

1000 Returns 1 if EXECUTE CAPTURING is in effect, 0 otherwise

1001 Returns 1 if case inversion is enabled, 0 otherwise

1002 Returns the program call history. This is a dynamic array in which each program is
represented by a field, the current program being in field 1. The first value in each field
contains the program name. Subsequent values are divided into two subvalues
containing the program address and line number (where available) for each internal
subroutine call (GOSUB) in the program.

1003 Returns a dynamic array containing a list of open files. Each field has two values; the
first holds the internal file number, the second holds the file's pathname.

1004 Returns the peak number of files that have been open at one time since QM was
started.

1005 Returns the combined date and time value as DATE() * 86400 + TIME().

1006 Returns 1 if running on a Windows NT style system (NT and later).

1007 Returns the current transaction number, zero if not in a transaction.

1008 Returns the current transaction level, zero if not in a transaction.

1009 Returns the system byte ordering, 1 for high byte first, 0 for low byte first.

1010 Returns the platform name; Windows, Linux or FreeBSD.

1011 Returns the pathname of the QM configuration file (qm.ini on Windows, qmconfig on
other platforms)

1012 Returns the QM version number.

1013 Returns user limit, excluding users reserved for phantom processes.

1014 Returns user limit, including users reserved for phantom processes.

1015 Returns the name of the host computer system.

1016 Returns the remaining number of licensed non-phantom users.

1017 Returns the tcp/ip port number for a socket connection.

1018 Returns the device licensing ip address limit.

1019 Returns the device licensing current ip address count.

1020 Returns the time of day in milliseconds since midnight.

1024 Returns the current working directory pathname when QM was entered.

1025 Returns a dynamic array where field 1 is a multivalued list of environment variable
names and field 2 is a corresponding list of their values.

1026 Returns xxx when QM is entered using "qm xxx".

1027 Returns the name of the serial port when logged in on a serial connection.

QMBasic 965

2.6-6

1028 Returns the system id of the active QM licence, zero if the licence is not system
specific.

1029 Returns the current internal subroutine depth.

1030 Returns login time as date * 86400 + time.

1031 Returns operating system process id.

1032 Returns and clears the break pending flag, set if the break key is pressed with breaks
disabled.

QM allows users to add definitions for their own SYSTEM() function key values by writing a
QMBasic subroutine that performs whatever processing is required. This subroutine takes two
arguments. The first is used to return the result and the second is the key value passed in. This
subroutine must be catalogued as $SYSTEM.

OpenQM966

2.6-6

TAN()

The TAN() function returns the tangent of a value.

Format

TAN(expr)

where

expr evaluates to a number or a numeric array.

The TAN() function returns the tangent of expr. Angles are measured in degrees.

If expr is a numeric array (a dynamic array where all elements are numeric), the TAN() function
operates on each element in turn and returns a numeric array with the same structure as expr.

Example

OPP = ADJ * TAN(ANGLE)

This statement finds the length of the opposite side of a right angled triangle from the length of the
adjacent side and the angle between it and the hypotenuse.

See also:
ACOS(), ASIN(), ATAN(), COS(), SIN()

QMBasic 967

2.6-6

TCLREAD

The TCLREAD statement retrieves the sentence that started the current program.

Format

TCLREAD var

where

var is the variable to receive the sentence.

The TCLREAD statement is an alternative to use of the @SENTENCE variable.

OpenQM968

2.6-6

TERMINFO()

The TERMINFO() function returns information from the terminfo database.

Format

TERMINFO()
TERMINFO(cap.name)

where

cap.name evaluates to the name of a terminfo capability.

The TERMINFO() function enables programs to examine the terminfo database to establish
capabilities of the currently selected terminal type.

In the first form, TERMINFO() returns a dynamic array containing a wide range of capability
information about the terminal. The structure of this dynamic array is defined in the TERMINFO.H
include record in the SYSCOM file. Additional entries may be added in future releases but existing
entries will not be moved.

The second form of the TERMINFO() function returns the value of the named capability. The
cap.name argument should evaluate to a capability name as used in terminfo source files. This
name is case sensitive. Unrecognised capabilities and those for which the terminfo database has no
entry will be returned as null strings.

Both modes of this function return a null string on the PDA version of QM.

QMBasic 969

2.6-6

TIME()

The TIME() function returns the current time as the number of seconds since midnight.

Format

TIME()

The TIME() function returns the number of seconds since midnight. The OCONV() function can
be used to format this in a number of ways for display.

Example

DISPLAY OCONV(TIME(), "MTS")

This statement displays the time in the form hh:mm:ss using the 24 hour clock.

OpenQM970

2.6-6

TIMEDATE()

The TIMEDATE() function returns the current time and date as a string.

Format

TIMEDATE()

The TIMEDATE() function returns the current time and date as a 20 character string in the form

hh:mm:ss dd mmm yyyy

where

hh hours in 24 hour format, zero filled
mm minutes, zero filled
ss seconds, zero filled
dd day of month, zero filled
mmm first three letters of the month name, first letter uppercase
yyyy year

Example

DISPLAY @(60, 0) : TIMEDATE()

This statement displays the time and date at the top right of the display.

QMBasic 971

2.6-6

TIMEOUT

The TIMEOUT statement sets a timeout for READBLK and READSEQ.

Format

TIMEOUT file.var, interval

where

file.var is the file variable associated with a file opened using OPENSEQ.

interval is the timeout period in seconds. A negative value disables the timeout.

The TIMEOUT statement can be used when OPENSEQ is used to open a FIFO (named pipe). If
no input is received by READBLK or READSEQ in the given interval, the read terminates.

The TIMEOUT statement is ignored on Windows systems and for files that are not FIFOs.

OpenQM972

2.6-6

TOTAL()

The TOTAL() function accumulates totals for use with the CALC query processor keyword. It is
only available in dictionary I-type items.

Format

TOTAL(expr)

where

expr is an expression.

The TOTAL() function can be used in dictionary I-type expressions. While processing the detail
lines of a report, the TOTAL() function returns the value of the expression but also accumulates a
running total internally. When the query includes fields prefixed by the CALC keyword, the
expression is re-evaluated on the total lines of the report using the accumulated total in place of the
TOTAL() function.

QMBasic 973

2.6-6

TRANS(), RTRANS(), XLATE()

The TRANS() function returns a field or the entire record from a named data file. It is normally
only used in dictionary I-type items. The synonym XLATE() may be used.

The RTRANS() function is similar but has a slight difference described below for closer
compatibility with some other environments.

Format

TRANS({DICT} file.name, record.id, field, action)

RTRANS({DICT} file.name, record.id, field, action)

where

file.name evaluates to the name of the file from which data is to be retrieved. The
optional DICT prefix specifies that the dictionary portion of the file is to be
used. Alternatively, the file.name expression may include the uppercase word
DICT before the actual file name and separated from it by a single space.

In a QMBasic program, file.name is evaluated in the same way as any other
expression. In a dictionary I-type record, file.name may be specified as a
quoted string or as the actual name of the file, optionally preceded by the DICT
qualifier.

record.id evaluates to the id of the record to be retrieved. When used in a QMBasic
program, this must be the actual record id. When used in an I-type dictionary
expression, this may be

the name of a D or I-type item defined in the same dictionary which
contains the id of the record to be retrieved.

a literal record id enclosed in quotes.

field identifies the field to be returned. A field value of zero returns the record id and
can be used to check the existence of a record. A field value of -1 indicates that
the entire record is to be returned. When used in a dictionary I-type expression
this can also be

A D or I-type field name as defined in the target file's dictionary.

A field number

@RECORD or -1 to return the entire record.

An expression that evaluates to the field position. This must be enclosed in
brackets to avoid potential syntactic ambiguity.

action determines the action taken if the record does not exist or the required field is
null. This may evaluate to:

C Return the record id.
V Print a warning message and return a null value.
X Return a null value (default).

OpenQM974

2.6-6

The TRANS() function returns the specified data with any mark characters lowered by one level
(e.g. value marks become subvalue marks).

If record.id is multi-valued, the TRANS() function extracts each requested record and returns a
multi-valued result with the data from each record separated by a value mark.

The RTRANS() function is identical to TRANS() except that it does not lower the mark
characters. This makes it impossible to distinguish between the results of retrieving a multivalued
field from a single record and retrieving a single valued field from multiple records.

Examples

TOTAL.VALUE = QTY * TRANS('STOCK', PART.NO, 'PRICE', 'X')

The above statement reads from the STOCK file a record (or list of records) whose id(s) can be
found in the PART.NO variable. The X error code causes the TRANS() function to return a null
value for any record that cannot be found.

X = TRANS(DICT 'ORDERS', 'DISCOUNT', 'X')
X = TRANS('DICT ORDERS', 'DISCOUNT', 'X')

Both of the above statements perform the same action. Either might be used, for example, to
retrieve an I-type item named DISCOUNT from the dictionary of the ORDERS file.

QMBasic 975

2.6-6

TRANSACTION ABORT, TRANSACTION COMMIT, TRANSACTION START

The TRANSACTION START/COMMIT/ABORT statements provide an alternative to use of
the BEGIN TRANSACTION, COMMIT, ROLLBACK and END TRANSACTION
statements.

Format

TRANSACTION START
THEN {statements}
ELSE {statements}

TRANSACTION COMMIT
THEN {statements}
ELSE {statements}

TRANSACTION ABORT

A transaction is a group of updates that must either be performed in their entirety or not at all. The
TRANSACTION START statement starts a new transaction. All updates within the transaction
are cached and only applied to the database when the TRANSACTION COMMIT statement is
executed. Execution of the program then continues at the statement following the TRANSACTION
COMMIT.

The TRANSACTION ABORT statement terminates the transaction, discarding any cached
updates. Execution continues at the statement following the TRANSACTION ABORT.

The THEN and ELSE clauses are optional and are provided for compatibility with other products.
Within QM any errors occurring in a TRANSACTION START or TRANSACTION COMMIT
will result in run time errors.

Deletes and writes inside a transaction will fail unless the program holds an update lock on the
record or the file. All locks obtained inside the transaction are retained until the transaction
terminates and are then released. Locks already owned when the transaction begins will still be
present after the transaction terminates, even if the record is updated or deleted within the
transaction.

Closing a file inside a transaction appears to work in that the file variable is destroyed though the
actual close is deferred until the transaction terminates and any updates have been applied to the
file. Rolling back the transaction will not reinstate the file variable.

Access to indices using SELECTINDEX, SELECTLEFT or SELECTRIGHTinside a
transaction will not reflect any updates within the transaction as these have not been committed.

Updates to sequential records opened using OPENSEQ are not affected by transactions.

Transactions may be nested. If the TRANSACTION START statement is executed inside an
active transaction, the active transaction is stacked and a new transaction commences. Termination
of the new transaction reverts to the stacked transaction.

The following operations are banned inside transactions:
CLEARFILE

OpenQM976

2.6-6

PHANTOM

Example

TRANSACTION START
READU CUST1.REC FROM CUST.F, CUST1.ID ELSE
 TRANSACTION ABORT
 RETURN
END
CUST1.REC<C.BALANCE> -= TRANSFER.VALUE
WRITE CUST1.REC TO CUST.F, CUST1.ID

READU CUST2.REC FROM CUST.F, CUST2.ID ELSE
 TRANSACTION ABORT
 RETURN
END
CUST2.REC<C.BALANCE> += TRANSFER.VALUE
WRITE CUST2.REC TO CUST.F, CUST2.ID
TRANSACTION COMMIT

The above program fragment transfers money between two customer accounts. The updates are
only committed if the entire transaction is successful.

QMBasic 977

2.6-6

TRIM()

The TRIM() function removes excess characters from a string.

Format

TRIM(string)

TRIM(string, character{, mode})

where

string evaluates to the string to be trimmed.

character is the character to be removed

mode evaluates to a single character which determines the mode of trimming:
A Remove all occurrences of character.
B Remove all leading and trailing occurrences of character.
C Replace multiple instances of character with a single character.
D Remove all leading and trailing spaces, replacing multiple

embedded spaces with a single space. The value of character is
ignored.

E Remove all trailing spaces. The value of character is ignored.
F Remove all leading spaces. The value of character is ignored.
L Remove all leading occurrences of character.
R Remove all leading and trailing occurrences of character,

replacing multiple embedded instances of character with a single
character.

T Remove all trailing occurrences of character.

The first format of the TRIM() function removes all leading and trailing spaces from string and
replaces multiple embedded spaces by a single space.

The second form is more generalised and allows other characters to be removed.

Examples

X = " 1 2 3 "
Y = TRIM(X)

This program fragment removes excess spaces from string X setting Y to "1 2 3"

X = "ABRACADABRA"
Y = TRIM(X, 'A', 'A')

This program fragment removes all occurrence of the letter A from string X setting Y to
"BRCDBR"

OpenQM978

2.6-6

X = "ABRACADABRA"
Y = TRIM(X, 'A', 'B')

This program fragment removes leading and trailing occurrences of the letter A from string X
setting Y to "BARCADABR"

See also:
TRIMB(), TRIMF(), TRIMS()

QMBasic 979

2.6-6

TRIMB()

The TRIMB() function removes excess spaces from the back of a string. The TRIMBS() function
is similar to TRIMB() but operates on each element of a dynamic array and returns an equivalently
structured dynamic array of trimmed strings.

Format

TRIMB(string)

where

string evaluates to the string to be trimmed.

The TRIMB() function removes all trailing spaces from string.

Examples

A = " 1 2 3 "
B = TRIMB(A)

This program fragment removes excess spaces from string A setting B to " 1 2 3"

A = " 1 2 3 " : @FM : " 4 5 6"
B = TRIMBS(A)

This program fragment is similar to the previous example but it shows the way in which
TRIMBS() operates on the two fields separately.
B becomes " 1 2 3FM 4 5 6"

See also:
TRIM(), TRIMF(), TRIMS()

OpenQM980

2.6-6

TRIMF()

The TRIMF() function removes excess spaces from the front of a string. The TRIMFS() function
is similar to TRIMF() but operates on each element of a dynamic array and returns an equivalently
structured dynamic array of trimmed strings.

Format

TRIMF(string)

where

string evaluates to the string to be trimmed.

The TRIMF() function removes all leading spaces from string.

Where string is delimited by mark characters, the TRIMF() function works on each delimited
substring as a separate item.

Examples

A = " 1 2 3 "
B = TRIMF(A)

This program fragment removes excess spaces from string A setting B to "1 2 3 "

A = " 1 2 3 " : @FM : " 4 5 6"
B = TRIMFS(A)

This program fragment is similar to the previous example but it shows the way in which
TRIMFS() operates on the two fields separately.
B becomes "1 2 3 FM4 5 6 "

See also:
TRIM(), TRIMB(), TRIMS()

QMBasic 981

2.6-6

TRIMS()

The TRIMS() function removes excess spaces from strings in a dynamic array, operating on each
element in turn and and returning an equivalently structured dynamic array of trimmed strings.

Format

TRIMS(string)

where

string evaluates to the string to be trimmed.

Example

A = " 1 2 3 " : @FM : " 4 5 6"
B = TRIMS(A)

B becomes "1 2 3FM4 5 6"

See also:
TRIM(), TRIMB(), TRIMF()

OpenQM982

2.6-6

TTYGET()

The TTYGET() function returns a dynamic array containing the current terminal settings.

Format

TTYGET()

The TTYGET() function allows an application that alters terminal settings to read and save the
original terminal settings for restore on exit.

The dynamic array currently contains the fields listed below. Further fields may be added in future.

Field Content
1 Ctrl-C treated as the break key? (PTERM BREAK mode)
2 Case inversion on? (PTERM CASE mode)
3 Break character value (PTERM BREAK n)
4 Output newline sequence (PTERM NEWLINE)
5 Input return key code (PTERM RETURN)

See also:
PTERM, TTYSET

QMBasic 983

2.6-6

TTYSET

The TTYSET statement sets the terminal modes.

Format

TTYSET var

where

var is a dynamic array of terminal mode settings.

The TTYSET statement allows an application that alters terminal settings to restore previously
saved settings on exit.

The format of the dynamic array var is described under the TTYGET() function. Because this
dynamic array may be extended in future releases, programs must ensure that any additional fields
returned by TTYGET() are restored on use of TTYSET().

See also:
PTERM, TTYGET()

OpenQM984

2.6-6

UNASSIGNED()

The UNASSIGNED() function tests whether a variable is unassigned.

Format

UNASSIGNED(var)

where

var is the variable to be tested.

All QMBasic variables except those in common blocks are initially unassigned. Any attempt to use
the contents of the variable in an expression would cause a run time error until such time as a value
has been stored in it. The UNASSIGNED() function allows a program to test whether a variable is
unassigned, returning true (1) if it is unassigned or (0) if it is assigned.

Example

SUBROUTINE VALIDATE(ACCOUNT.CODE, ERROR)
BEGIN CASE
 CASE UNASSIGNED(ACCOUNT.CODE)
 ERROR = 1
 CASE ACCOUNT.CODE MATCHES '3N-5N'
 ERROR = 2
 ...etc...
 CASE 1
 ERROR = 0
END CASE
RETURN
END

This program fragment validates an account code. The use of the UNASSIGNED() function
prevents an abort if the variable has not been assigned.

See also:
ASSIGNED()

QMBasic 985

2.6-6

UNLOCK

The UNLOCK statement releases one of 64 system wide task locks.

Format

UNLOCK lock.num {THEN statement(s)} {ELSE statement(s)}

where

lock.num evaluates to the lock number in the range 0 to 63.

statement(s) are statements to be executed depending on the outcome of the UNLOCK
operation.

The THEN and ELSE clauses are both optional.

The UNLOCK statement releases the specified task lock if it has previously been acquired using
the LOCK statement. There is no means for a program to determine which task locks are held by
the user except by attempting to lock each in turn and checking the STATUS() value. Beware that
unlike read, update and file locks, task locks are only automatically released on leaving QM, not on
return to the command prompt.

The THEN clause is executed if the lock is held by this process. The value of the STATUS()
function will be zero.

The ELSE clause is executed if the lock is not owned by this process. The value of the STATUS()
function will be ER$LCK if the lock is owned by another process or ER$NLK if it is not owned by
any process.

Example

LOCK 7 THEN
 ...processing statements...
 UNLOCK 7
END
ELSE ABORT "Cannot obtain task lock"

This program fragment obtains task lock 7, performs some critical processing and then releases the
lock.

OpenQM986

2.6-6

UNTIL

The UNTIL statement is used in conjunction with the FOR / NEXT or LOOP / REPEAT
constructs to determine whether execution of the loop should continue.

Format

UNTIL expr

where

expr evaluates to a numeric value

The UNTIL statement causes execution of the innermost FOR/NEXT or LOOP/REPEAT
construct to terminate if the value of expr is non-zero. It is equivalent to a statement such as

IF expr # 0 THEN EXIT

Example

FOR I = 1 TO 20
UNTIL A(I) < 0
 DISPLAY A(I)
NEXT I

This program fragment displays elements of matrix A. The loop terminates if an element is found
with a negative value.

See also:
EXIT, WHILE

QMBasic 987

2.6-6

UPCASE()

The UPCASE() function returns a string with all letters converted to upper case.

Format

UPCASE(string)

where

string evaluates to the string in which substitution is to occur.

The UPCASE() function returns the value of string with all letters converted to upper case. If
string is a variable rather than an expression, the value of the variable is not affected.

Example

NAME = "Thomas Smith"
PRINT UPCASE(NAME)

This program fragment prints the string "THOMAS SMITH".

See also:
DOWNCASE()

OpenQM988

2.6-6

VSLICE()

The VSLICE() function returns a string formed by extracting a given value position from a
dynamic array.

Format

VSLICE(string, value)

where

string is the string from which the value is to be extracted.

value evaluates to the value position to be extracted.

The VSLICE() function processes string to build a new dynamic array containing only the
specified value position from each field. Subvalues are returned as part of each value in the result
string.

If value is less than one, the VSLICE() function returns the source string. If value is greater than
the number of values in all fields of string, a null string is returned.

Example

If S holds the string "AAVMBBVMCCFMDDVMEEVMFF"

X = VSLICE(S, 2)

would set X to "BBFMEE"

QMBasic 989

2.6-6

VOID

The VOID statement discards the result of an associated expression.

Format

VOID expr

where

expr is an expression.

The VOID statement evaluates the supplied expression and discards the result. It is intended for use
when calling functions for which the returned value is not used by the program. Us of VOID
removes the need for a dummy variable and possible compiler warning messages regarding a
variable that is set but never used.

Example

VOID KEYIN()

The above statement waits for the user to press a key but discards the input data.

OpenQM990

2.6-6

WAKE

The WAKE statement awakens another process that has executed a PAUSE. This function is not
available on the PDA version of QM.

Format

WAKE user.no

where

user.no is the QM user number of the process to be awoken.

The WAKE statement resumes execution of another process that has executed a PAUSE
statement.

If the WAKE is executed before the other process attempts to pause, the program is not suspended.
Multiple wake events occurring in this way will only awaken the target process once.

The WAKE statement attempts to use an inter-process signalling mechanism to resume execution
of the other process. Due to operating system limitations, this is usually only possible if both
processes are running with the same user id. If this is not the case, the target process may take up to
about a second to restart.

QMBasic 991

2.6-6

WEOFSEQ

The WEOFSEQ statement truncates a record open for sequential access at the current position.

Format

WEOFSEQ file.var {ON ERROR statement(s)}

where

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed if the action fails.

The WEOFSEQ statement truncates the record at the current position. Performed immediately
after the OPENSEQ, this will remove all data from the record. Performed after one or more
READSEQ operations have been performed, all subsequent data is cleared from the record.

The ON ERROR clause is executed if a fatal error occurs. The STATUS() function can be used
to determine the cause of the error. If no ON ERROR clause is present, a fatal error causes an
abort.

Example

OPENSEQ "STOCKS", "STOCK.LIST" TO STOCK.LIST THEN
 WEOFSEQ STOCK.LIST
ELSE
 IF STATUS() THEN ABORT "Cannot open stocks list"
END

This program fragment opens the record STOCKS for sequential access. If it already exists, the
THEN clause of the OPENSEQ is taken and the existing data is removed using WEOFSEQ.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READCSV, READSEQ, WRITEBLK,
WRITECSV, WRITESEQ, WRITESEQF

OpenQM992

2.6-6

WHILE

The WHILE statement is used in conjunction with the FOR / NEXT or LOOP / REPEAT
constructs to determine whether execution of the loop should continue.

Format

WHILE expr

where

expr evaluates to a numeric value

The WHILE statement causes execution of the innermost FOR/NEXT or LOOP/REPEAT
construct to terminate if the value of expr is zero. It is equivalent to a statement such as

IF expr = 0 THEN EXIT

Example

LOOP
 REMOVE ITEM FROM LIST SETTING DELIMITER
 DISPLAY ITEM
WHILE DELIMITER
REPEAT

This program fragment displays items removed from dynamic array LIST. The loop is terminated
when the value of DELIMITER becomes zero.

See also:
EXIT, UNTIL

QMBasic 993

2.6-6

WRITE

The WRITE statement writes a record to a previously opened file. The WRITEU statement is
identical but preserves any lock on the record.

Format

WRITE var TO file.var, record.id {ON ERROR statement(s)}

where

var is the name of a variable containing the data to be written.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be written.

statement(s) are statements to be executed if the write fails.

The keyword ON may be used in place of TO.

The contents of var are written to the file. Any existing record of the same id is replaced by this
action. The WRITE statement releases any read or update lock on this record. The WRITEU
statement preserves the lock. Within a transaction, the lock is retained until the transaction
terminates and then released regardless of which statement is used. Attempting to write a record in a
transaction will fail if the process does not hold an update lock on the record or the file.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

WRITE ITEM TO STOCK, ITEM.ID

This statement writes the content of ITEM to a record with the id in ITEM.ID on the file previously
opened to file variable STOCK.

OpenQM994

2.6-6

WRITEBLK

The WRITEBLK statement writes data at the current file position in a record previously opened
using OPENSEQ.

Format

WRITEBLK var TO file.var
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the name of a variable holding the data to be written.

file.var is the file variable associated with the file.

statement(s) are statements to be executed depending on the outcome of the
WRITEBLK operation.

At least one of the THEN and ELSE clauses must be present.

The THEN clause is executed if the WRITEBLK is successful.

The ELSE clause is executed if the WRITBLK fails. The STATUS() function will indicate the
cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

WRITEBLK VAR TO SEQ.F ELSE STOP 'Write error'

This program fragment writes data to a file previously opened to file variable SEQ.F.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READCSV, READSEQ, WRITECSV,
WEOFSEQ, WRITESEQ, WRITESEQF

QMBasic 995

2.6-6

WRITECSV

The WRITECSV statement writes data at the current file position in a record previously opened
using OPENSEQ. The data to be written is assembled from one or more variables and written in
CSV format.

Format

WRITECSV var1, var2, ... TO file.var
{ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var1, var2, ... are the items to be written to the file. If any of the variables contains field
marks, each field is treated as a separate item in the resultant CSV data.

file.var is the file variable associated with the file.

statement(s) are statements to be executed depending on the outcome of the
WRITECSV operation.

At least one of the THEN and ELSE clauses must be present.

The data in the named variables is assembled as a CSV format text string which is then written to
the file with a newline appended. The THEN clause is executed if the WRITECSV is successful.

The ELSE clause is executed if the WRITCSV fails. The STATUS() function will indicate the
cause of the error.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

CSV Format

CSV format is used by many applications. QM adheres to the CSV standard (RFC 4180).

Items are enclosed in double quotes if they contain commas or double quotes. Embedded double
quotes are replaced by a pair of double quotes.

Examples

WRITECSV PROD.NO, QTY TO SEQ.F ELSE STOP 'Write error'

This program fragment writes the contents of the PROD.NO and QTY variables as a CSV item to a
file previously opened to file variable SEQ.F.

OpenQM996

2.6-6

WRITECSV S<1>, S<2>, S<3> TO SEQ.F ELSE STOP 'Write error'

This program fragment writes the contents of fields 1 to 3 of S as CSV data to a file previously
opened to file variable SEQ.F.

WRITECSV S TO SEQ.F ELSE STOP 'Write error'

If dynamic array S in the previous example had only three fields, this program fragment writes
exactly the same data, treating each field as a separate CSV item.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READCSV, READSEQ, WEOFSEQ,
WRITESEQ, WRITEBLK, WRITESEQF

QMBasic 997

2.6-6

WRITESEQ

The WRITESEQ statement writes a string array to a directory file record previously opened for
sequential access. WRITESEQF is identical except that it force writes the data to disk.

Format

WRITESEQ var TO file.var {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where

var is the variable containing the data to be written.

file.var is the file variable associated with the record by a previous OPENSEQ
statement.

statement(s) are statement(s) to be executed depending on the outcome of the
WRITESEQ.

The keyword TO may be replaced by ON. At least one of the THEN and ELSE clauses must be
present.

The data in var is written to the record at the current file position, overwriting any data already
present. The THEN clause is executed if the write is successful.

The ELSE clause is executed if the WRITESEQ operation fails.

If a fatal error occurs, the ON ERROR clause is executed. The STATUS() function can be used
to establish the cause of the error. If no ON ERROR clause is present, a fatal error causes an
abort.

The FILEINFO() function can be used with key FL$LINE to determine the field number that will
be written by the next WRITESEQ. This information is not valid if the SEEK, READBLK or
WRITEBLK statements have been used.

The WRITESEQF statement is identical to WRITESEQ except that execution of the next
QMBasic statement does not occur until the data has been written to disk. With WRITESEQ, the
data may still be in internal buffers.

Example

WRITESEQ REC TO STOCK.LIST ELSE ABORT "Write error"

This statement writes the data in REC to the record open for sequential access via the
STOCK.LIST file variable.

See also:
CLOSESEQ, NOBUF, OPENSEQ, READBLK, READCSV, READSEQ, WEOFSEQ,

OpenQM998

2.6-6

WRITEBLK, WRITECSV

QMBasic 999

2.6-6

WRITE.SOCKET()

The WRITE.SOCKET() function writes data to a socket opened with
ACCEPT.SOCKET.CONNECTION() or OPEN.SOCKET().

Format

WRITE.SOCKET(skt, data, flags, timeout)

where

skt is the socket variable returned by ACCEPT.SOCKET.CONNECTION() or
OPEN.SOCKET().

data is the data to be written.

flags is a value determining the mode of operation of the socket for this write, formed by
adding the values of tokens defined in the SYSCOM KEYS.H record. The flags
available in this release are:

SKT$BLOCKING Sets the default mode of data transfer as blocking.
SKT$NON.BLOCKING Sets the default mode of data transfer as

non-blocking.
If neither blocking flag is given, the blocking mode set when the socket was opened
is used.

timeout is the timeout period in milliseconds. A value of zero implies no timeout.

The WRITE.SOCKET() function writes the given data and returns the number of bytes written. If
non-blocking mode is used or a timeout occurs, this byte count may be less than the length of the
data. The remaining data can be written with a subsequent call to WRITE.SOCKET() when
buffer space becomes available.

The STATUS() function returns zero if the action is successful, or a non-zero error code if an error
occurs. A timeout will return an error code of ER$TIMEOUT as defined in the SYSCOM ERR.H
record.

Example

SKT = OPEN.SOCKET("193.118.13.14", 3000, SKT$BLOCKING)
IF STATUS() THEN STOP 'Cannot open socket'
N = WRITE.SOCKET(SKT, DATA, 0, 0)
CLOSE.SOCKET SKT

This program fragment opens a connection to port 3000 of IP address 193.118.13.14, sends the
data in DATA and then closes the socket.

See also:
ACCEPT.SOCKET.CONNECTION, CLOSE.SOCKET, CREATE.SERVER.SOCKET(),
OPEN.SOCKET(), READ.SOCKET(), SERVER.ADDR(), SET.SOCKET.MODE(),

OpenQM1000

2.6-6

SOCKET.INFO()

QMBasic 1001

2.6-6

WRITEV

The WRITEV statement writes a specific field to a record of a previously opened file. The
WRITEVU statement is identical but preserves any lock on the record.

Format

WRITEV var TO file.var, record.id, field.expr
{ON ERROR statement(s)}

where

var is the name of a variable containing the data to be written.

file.var is the file variable associated with the file.

record.id evaluates to the id of the record to be written.

field.expr evaluates to the number of the field to be written.

statement(s) are statements to be executed if the write fails.

The keyword ON may be used in place of TO.

The contents of var are written to field field.expr of record record.id of the file. If the record does
not already exist, it will be created by this operation.. The WRITEV statement releases any read or
update lock on this record. The WRITEVU statement preserves the lock. Within a transaction, the
lock is retained until the transaction terminates and then released regardless of which statement is
used. Attempting to write a record in a transaction will fail if the process does not hold an update
lock on the record or the file.

A field.expr value of zero is treated as a reference to field one. A negative field number causes the
var string to be appended as a new field at the end of the record.

The ON ERROR clause is executed for serious fault conditions such as errors in a file's internal
control structures. The STATUS() function will return an error number. If no ON ERROR clause
is present, an abort would occur.

Example

WRITEV ITEM TO STOCK, ITEM.ID, 3

This program fragment writes the value of ITEM to field 3 of record ITEM.ID in a file previously
opened to file variable STOCK.

OpenQM1002

2.6-6

XTD()

The XTD() function converts a string of hexadecimal characters to a number.

Format

XTD(expr)

where

expr evaluates to the hexadecimal string to be converted.

The XTD() function converts the supplied expr hexadecimal string to a number. If expr contains
any characters other than 0-9 or A-F (upper or lower case) or is a null string, the function returns
the original value of expr.

See also:
DTX()

QMBasic 1003

2.6-6

6.5 Character Values for Terminal Input

The table below shows the keys that produce each character value on Windows systems using
QMConsole, on all systems using QMTerm, or when using KEYCODE() to decode key sequences.

0 1 2 3 4 5 6 7 8 9

00x Ctrl-A Ctrl-B Ctrl-C Ctrl-D Ctrl-E Ctrl-F Ctrl-G Ctrl-H Ctrl-I

Bsp Tab

01x Ctrl-J Ctrl-K Ctrl-L Ctrl-M Ctrl-N Ctrl-O Ctrl-P Ctrl-Q Ctrl-R Ctrl-S

Ctrl-rt
n

Return

02x Ctrl-T Ctrl-U Ctrl-V Ctrl-W Ctrl-X Ctrl-Y Ctrl-Z Esc Ctrl-}

03x Ctrl-^ Ctrl-_ Space ! " # $ % & '

04x () * + , - . / 0 1

05x 2 3 4 5 6 7 8 9 : ;

06x < = > ? @ A B C D E

07x F G H I J K L M N O

08x P Q R S T U V W X Y

09x Z [\] ^ _ ` a b c

10x d e f g h i j k l m

11x n o p q r s t u v w

12x x y z | } ~ Ctrl-Bs
p

F1 F2

13x F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

14x Ctrl-F1 Ctrl-F2 Ctrl-F3 Ctrl-F4 Ctrl-F5 Ctrl-F6 Ctrl-F7 Ctrl-F8 Ctrl-F9 Ctrl-F1
0

15x Ctrl-F1
1

Ctrl-F1
2

Alt-F1 Alt-F2 Alt-F3 Alt-F4 Alt-F5 Alt-F6 Alt-F7 Alt-F8

16x Alt-F9 Alt-F1
0

Alt-F1
1

Alt-F1
2

Sh-F1 Sh-F2 Sh-F3 Sh-F4 Sh-F5 Sh-F6

17x Sh-F7 Sh-F8 Sh-F9 Sh-F10 Sh-F11 Sh-F12 CSA-F
1

CSA-F
2

CSA-F
3

CSA-F
4

18x

19x

20x Mouse CsrLeft CsrRgt CsrUp CsrDn Pg Up Pg Dn Home

OpenQM1004

2.6-6

21x End Insert Delete Ctrl-Ta
b

C-PgU
p

C-PgD
n

C-Hom
e

C-End User0 User1

22x User2 User3 User4 User5 User6 User7 User8 User9

23x

24x

25x

Character value tokens are defined in the KEYIN.H record of the SYSCOM file. Codes User0 to
User9 are only returned by the KEYCODE() function.

QMBasic 1005

2.6-6

6.6 @-Variables

QMBasic provides a number of special variables and constants with names prefixed by the @
character. Some @-variables can be updated by QMBasic programs though most are read-only.

Many of the @-variables are also available for use in I-type definitions or within paragraphs. A
complete list of @-variables appears below.

Compile-time Constants

These constants are available in QMBasic programs and I-type definitions to improve readability.

@AM Attribute mark (synonym for @FM)

@FM Field mark

@IM Item mark

@SM Subvalue mark

@SVM Subvalue mark (synonym for @SM)

@TM Text mark

@VM Value mark

@FALSE 0

@TRUE 1

Variables

Except where indicated in the descriptions, these items are read-only

@ABORT.CODE A value indicating the cause of execution of the last abort. This
variable is particularly useful within ON.ABORT paragraphs or
programs invoked from them. Values are:

0 No abort has occurred

1 A QMBasic ABORT statement or the ABORT command has
been used

2 The Quit option has been selected after the break key was pressed

The value of @ABORT.CODE is initially zero and is reset to zero
only by the EXECUTE statement

@ABORT.MESSAGE Contains the text of any message associated with the most recent
abort event.

@ANS Contains the result of the last virtual attribute expression evaluated.
This variable can be updated, usually only in C-type dictionary
items.

@COMMAND The last command entered at the command prompt or initiated using
the QMBasic EXECUTE statement.

OpenQM1006

2.6-6

@COMMAND.STACK This variable holds the last 99 commands executed at the command
prompt as a field mark delimited dynamic array. The most recent
command is field 1.

@CRTHIGH Contains the number of lines per page of the display.

@CRTWIDE Contains the width of the display.

@DATA.PENDING Contains the data on the DATA queue, if any. Each item, including
the last, is followed by an item mark character.

@DATE The internal format date value (days since 31 December 1967) at
which the last command started execution. Any changes made to this
variable will also be reflected in the values of the @DAY,
@MONTH, @YEAR and @YEAR4 variables described below.

@DAY The day of the month at which the last command started execution as
a two digit value. Changing @DATE will also change this value.

@DS Contains the operating system specific directory delimiter character, \
on Windows, / on other platforms.

@FILE.NAME The name of the file referenced in the most recent query processor
command. This variable may be updated by a QMBasic program.

@HOSTNAME The name of the server computer system. Same as SYSTEM(1015).

@ID The record id of the record being processed by a query processor
command or an I-type function. This variable may be updated by a
QMBasic program.

@IP.ADDR The IP address associated with a network user. Same as
SYSTEM(42).

@ITYPE.MODE This variable can be used to determine the mode of execution of an
I-type. It has three possible values:
0 Normal
1 Evaluation of the old index value when updating or deleting a

record from a file with an alternate key index.
2 Evaluation of the new index value when updating or adding a

record to a file with an alternate key index.

@LEVEL The current command processor depth (EXECUTE level). The initial
command processor is level one, each EXECUTE level increments
this by one, decrementing on return from that level.

@LOGNAME User's login name. On Windows, this is converted to uppercase.

@LPTRHIGH Contains the number of lines per page of print unit zero. Depending
on the current setting of the PRINTER flag, this may refer to the
display or to the printer.

@LPTRWIDE Contains the width of print unit zero. Depending on the current
setting of the PRINTER flag, this may refer to the display or to the
printer.

@MONTH The month in which the last command started execution as a two
digit value. Changing @DATE will also change this value.

@NB Break number level. Set to zero on detail lines and one upwards on
break lines. A value of 255 represents the grand total line.

@NI Item counter. Used in I-types, this holds the number of records

QMBasic 1007

2.6-6

retrieved by the query processor command.

@OPTION Contains a copy of field 4 of the V-type VOC entry when a verb
starts execution. Use of this variable enables related commands to be
handled by a single program.

@PARASENTENCE The sentence that invoked the most recent paragraph or sentence. On
entering a command at the keyboard, this variable will be set to the
same value as @COMMAND. If the command is a paragraph or
sentence which invokes a further paragraph or sentence, the value
will be updated to be the command which started this new paragraph
or sentence.

@PATH The pathname of the current account.

@PIB The PROC primary input buffer.

@POB The PROC primary output buffer.

@QMSYS The pathname of the system account.

@RECORD The data of the record being processed by an I-type function. This
variable may be updated by a QMBasic program.

@SELECTED Contains the total record count for the most recent SELECT or
SSELECT operation. Note that a QMBasic SELECT operation
against a dynamic file processes the file one group at a time and this
variable will show the record count for the group being processed.

@SENTENCE The currently active sentence. This is different from @COMMAND
if the command runs a paragraph, sentence or menu.

@SIB The PROC secondary input buffer.

@SOB The PROC secondary output buffer.

@SYSTEM.RETURN.CO
DE

A status value returned from most commands.

@SYS.BELL This variable is available to QMBasic programs and initially
contains the ASCII BEL character (character 7) which, when sent to
the display, causes the audible warning to sound. The BELL OFF
command changes @SYS.BELL to a null string and BELL ON
reverts to the default character. Thus use of @SYS.BELL in
QMBasic programs results in an audible alarm which can be
disabled by the user.

@TERM.TYPE Terminal type.

@TIME The internal format time value (seconds since midnight) at which the
last command started execution. This value may be updated by a
QMBasic program.

@TRANSACTION.ID The unique id number for the currently active transaction. Zero if no
transaction is active. Same as SYSTEM(1007).

@TRANSACTION.LEVE
L

The transaction depth. Zero when no transaction is active,
incremented for each active transaction, decremented when a
transaction terminates. Same as SYSTEM(1008).

@TRIGGER.RETURN.C
A status value returned set by trigger functions that return a
STATUS() value of ER$TRIGGER.

OpenQM1008

2.6-6

ODE

@TTY Terminal device name. This variable is provided for compatibility
with other systems. It contains one of the following values:
console QMConsole interactive session on Windows
/dev/... QMConsole interactive session on other platforms
telnet Telnet session
phantom Phantom process
port Serial port connection
vbsrvr QMClient process
Other process types may be added in future.

@USER Synonym for @LOGNAME

@USER0 to @USER4 These variables are initially set to zero and may be updated by
QMBasic programs to provide status information, etc. QM places no
rules on the use of these variables and does not update them at any
time.

@USERNO User number.

@USER.NO Synonym for @USERNO.

@USER.RETURN.CODE This variable is initially set to zero and may be updated by QMBasic
programs to provide status information, etc. QM places no rules on
the use of this variable and does not update it at any time.

@VOC This @VOC variable can be used as the file variable for the VOC in
place of opening it explicitly within user written application code.

@WHO User's account name.

@YEAR The last two digits of the year in which the last command started
execution. Changing @DATE will also change this value.

@YEAR4 The four digit year number in which the last command started
execution. Changing @DATE will also change this value.

QMBasic 1009

2.6-6

6.7 Standard Subroutines

QMBasic includes a set of standard subroutines that may be called from user programs. These all
have an exclamation mark prefix to the subroutine name.

!ABSPATH() Form an absolute pathname from a directory and file path
!ATVAR() Return value of an @-variable
!ERRTEXT() Return text description of an error number
!GETPU() Get print unit characteristics
!PATHTKN() Process special tokens in a VOC or ACCOUNTS file pathname
!PARSER() Command line parser
!PCL() PCL control code functions
!PICK() Display a pick list of options
!PICKLIST() Display a pick list of options
!QMCLIENT QMClient interface from QMBasic
!SCREEN() Screen driver
!SETPU() Set print unit characteristics
!SETVAR() Set the value of an @-variable
!SORT() Sort a delimited list
!USERNAME() Return user name for a given user number
!USERNO() Return a list of user numbers for a given user name
!VOCREC() Read a VOC record, following remote pointers

OpenQM1010

2.6-6

!ABSPATH()

The !ABSPATH() subroutine forms an absolute pathname from a directory and file path.

Format

CALL !ABSPATH(path, dir, file)

where

path is the returned absolute pathname.

dir is the directory path to be used when prefixing the pathname.

file is the file path to be processed.

The !ABSPATH() subroutine uses the supplied directory and file path to construct an absolute
pathname.

If file commences with @QMSYS, path is returned as the file value with the @QMSYS token
replaced by the QMSYS account pathname.

If file commences with a directory separator character, path is returned as file.

If file commences with a Windows drive specification, path is returned as file.

Otherwise, path is formed by concatenating dir and file, inserting a directory separator character if
required.

Examples

Dir File Path

Any @QMSYS\ACCOUNTS C:\QMSYS\ACCOUNTS

Any \SALES\CUSTOMERS \SALES\CUSTOMERS

Any C:\SALES\CUSTOMERS C:\SALES\CUSTOMERS

C:\SALES CUSTOMERS C:\SALES\CUSTOMERS

C:\ CUSTOMERS C:\CUSTOMERS

QMBasic 1011

2.6-6

!ATVAR()

The !ATVAR() subroutine retrieves the value of an @-variable.

Format

CALL !ATVAR(value, name)

where

value is the returned value.

name is the name of the @-variable to be retrieved. The leading @ character may
optionally be omitted. Variable names are case insensitive.

The !ATVAR() subroutine returns the value of the named @-variable. Although intended for
accessing user defined variables, it can also return the standard variables.

The !ATVAR() function sets the value returned by the STATUS() function. This will be zero if the
specified variable is found, non-zero if it is not recognised.

Example

CALL !ATVAR(VALUE, "@USER1")

or

DEFFUN ATVAR(NAME) CALLING "!ATVAR"
VALUE = ATVAR("@USER1")

Both of these examples retrieve the value of the @USER1 variable.

See the !SETVAR() subroutine for a way to set the value of an updateable @-variable.

OpenQM1012

2.6-6

!ERRTEXT()

The !ERRTEXT() subroutine returns a text description of an error number.

Format

CALL !ERRTEXT(text, errno)

where

text is the returned descriptive text.

errno is the error number.

The !ERRTEXT() subroutine can be used to retrieve a text description of a QM error number for
display to a user or entry into a log file.

Where relevant, the associated operating system error number will be inserted into the text. For this
to be correct, the !ERRTEXT() subroutine must be called before any actions are performed that
might lose this value (e.g. file operations).

If errno is not recognised, the subroutine returns errno as the text description.

Examples

CALL !ERRTEXT(TEXT, STATUS())
DISPLAY 'Error ' : STATUS() : ' ' : TEXT

or
DEFFUN ERRTEXT(ERRNO) CALLING "!ERRTEXT"
DISPLAY 'Error ' : STATUS() : ' ' : ERRTEXT(STATUS())

QMBasic 1013

2.6-6

!GETPU()

The !GETPU() subroutine gets the characteristics of a print unit.

Format

CALL !GETPU(key, unit, value, status)

where

key identifies the parameter to retrieved. This is as for the GETPU() function.

unit evaluates to the print unit number.

value is the variable to receive the given parameter.

status is the return status value. Zero if the action is successful, a non-zero error code if
the action fails.

The !GETPU() subroutine retrieves the print unit characteristic specified by key, storing it in value.
It is closely related to the GETPU()function.

Example

CALL !GETPU(PU$MODE, 3, MODE, STATUS)

The above statement gets the mode of print unit 3, storing it in MODE.

OpenQM1014

2.6-6

!PARSER()

The !PARSER() subroutine parses a command line.

Format

CALL !PARSER(key, type, string, keyword {, voc.rec})

where

key identifies the operation to be performed:

0 PARSER$RESET Prepares to parse the data in string.

1 PARSER$GET.TOKEN Returns the next token from the data.

2 PARSER$GET.REST Returns all remaining tokens as a single string.

3 PARSER$EXPAND Inserts string before the remaining tokens.

4 PARSER$LOOK.AHEA
D

Previews the next token.

5 PARSER$MFILE Like PARSER$GET.TOKEN but allows multifile
syntax.

type is the returned token type:

0 PARSER$END End of data reached.

1 PARSER$TOKEN A token has been returned in string.

2 PARSER$STRING A quoted string. The quotes are removed in string.

3 PARSER$COMMA A comma has been found.

4 PARSER$LBR A left bracket has been found.

5 PARSER$RBR A right bracket has been found.

string is the returned token string. For key values 1 and 3, this is the string passed into the
parser.

keyword is the returned token keyword number as defined in the VOC and in the SYSCOM
PARSER.H record. This is negative if the token is not a VOC keyword. This
argument is ignored for key values 1 and 3.

voc.rec is an optional argument, returned as the VOC record when string corresponds to a
VOC key.

The !PARSER() subroutine can be used to parse the elements of a command line.

Example

CALL !PARSER(PARSER$RESET, 0, @SENTENCE, 0)
CALL !PARSER(PARSER$GET.TOKEN, TOKEN.TYPE, STRING, KEYWORD) ;*
Verb
LOOP

QMBasic 1015

2.6-6

 CALL !PARSER(PARSER$GET.TOKEN, TOKEN.TYPE, STRING, KEYWORD)
UNTIL TOKEN.TYPE = PARSER$END
 …process token…
REPEAT

OpenQM1016

2.6-6

!PATHTKN()

The !PATHTKN() subroutine processes special tokens in a VOC or ACCOUNTS file pathname.

Format

CALL !PATHTKN(inpath, outpath)

where

inpath is the pathname to be processed.

outpath is the returned processed pathname. This may be the same variable as inpath.

Pathnames recorded in the VOC or the QMSYS ACCOUNTS file may include special tokens that
represent variable components. The !PATHTKN() subroutine processes a pathname, substituting
the expansions for these tokens.

The special tokens are:

@DRIVE The drive letter for the QMSYS directory (Windows only).

@HOME The user's home directory as defined by the operating system HOME
environment variable.

@QMSYS The full pathname of the QMSYS directory.

@TMP The pathname of the system temporary directory as defined by the TEMPDIR
configuration parameter.

The token must be the leading part of the pathname.

The !PATHTKN() subroutine is also defined as a function in the SYSCOM KEYS.H include
record:

outpath = PARSE.PATHNAME.TOKENS(inpath)

Examples

The entry for the QMSYS account in the ACCOUNTS register is simply
@QMSYS

This ensures that the entire system can be moved without needing to update the QMSYS account
location.

When using QM installed on a USB flash drive on Windows, creating an account on the USB
device sets the ACCOUNTS register entry as

@DRIVE:pathname
The account is therefore accessible even if the flash drive takes on a different drive letter in later
use.

QMBasic 1017

2.6-6

!PCL()

The !PCL () subroutine constructs PCL control strings for various useful operations. It is intended
for use as a series of functions defined in the SYSCOM PCL.H include record.

Format

CALL !PCL(string, key, arg1,...)

where

string is the returned control string.

key identifies the operation to be performed. See the PCL.H include record for the
relationship between the key values and the functions described below.

arg1,... are arguments defining the exact action. The !PCL() subroutine takes a variable
length argument list.

The !PCL() subroutine should be called using the function interfaces defined below. The returned
string can be sent to a PCL compatible printer to perform the requested action.

All page positioning values are measured using the PCL coordinate grid where (0,0) is at the top
left of the page and the grid scale is 300 per inch. There is a useful grid template printing program,
PCL.GRID, in the BP file of the QMSYS account.

Note: The quality of PCL implementations varies widely and these functions may not give the
expected results on some printers. In particular, setting some font metrics may cause inconsistent
character placement. It is the application developer's responsibility to ensure that the printed results
are acceptable.

The following functions are defined in the SYSCOM PCL.H include record. Each returns the
relevant control string to perform its action.

PCL.BOX(left, top, width, height, pen.width, radius)
Draws a rectangular box using the given position (left, top) and size (width, height) values.
The pen.width determines the width of the lines used to draw the box. The radius value
determines the radius of rounded corners. A value of zero results in square corners .

PCL.COPIES(copies)
Sets the number of copies to be printed.

PCL.CURSOR(x, y)
Sets the current cursor position to the given coordinates. Subsequent text output will occur at
this point.

PCL.DUPLEX(mode)
Sets duplex mode. 0 = off, 1 = long edge binding, 2 = short edge binding.

PCL.FONT(font)
Sets the font details for text output. The font argument consists of comma separated list of case
insensitive items chosen from the following list. Features that are not specified retain their

OpenQM1018

2.6-6

previous values. Not all printers support all options.
Font names: ARIAL, COURIER, CG-TIMES, LETTER-GOTH, LINEPRINTER,

UNIVERS
Character sets: ASCII, LATIN-1, PC-8, ROMAN-8
Type style: UPRIGHT, COMPRESSED, CONDENSED, CONDENSEDITALIC,

EXPANDED, INLINE, ITALIC, OUTLINE, OUTLINESHADOW,
SHADOW

Weight: ULTRA-THIN, EXTRA-THIN, THIN, EXTRA-LIGHT, LIGHT,
DEMI-LIGHT, SEMI-LIGHT, MEDIUM, SEMI-BOLD, DEMI-BOLD,
BOLD, EXTRA-BOLD, BLACK, EXTRA-BLACK, ULTRA-BLACK

Spacing: FIXED, PROPORTIONAL
Size: nPT (point size), PITCH n (characters per inch)
Composite: REGULAR (equivalent to UPRIGHT, MEDIUM)

PCL.HLINE(x, y, length, pen.width)
Draws a horizontal line starting at the given position and extending to the right, using the
specified length and pen.width values.

PCL.LEFT.MARGIN(col)
Sets the left margin at column col.

PCL.ORIENTATION(layout)
Specifies the page format. The layout argument is a string and may be PORTRAIT or
LANDSCAPE.

PCL.PAPER.SIZE(size)
Specifies the page size. The size argument is a string chosen from A3, A4, B5, C5, COM10,
DL, EXECUTIVE, LEDGER, LEGAL, LETTER and MONARCH.

PCL.RESET()
Resets the printer.

PCL.RESTORE.CURSOR()
Restores a previously saved cursor position.

PCL.SAVE.CURSOR()
Saves the current cursor position. Note that there is a limit to the number of nested cursor save
operations.

PCL.VLINE(x, y, length, pen.width)
Draws a vertical line starting at the given position and extending downwards, using the
specified length and pen.width values.

The source version of the !PCL() subroutine is in the BP file of the QMSYS account so that users
can add further options. A copy of any changes should be retained as this item will be replaced
when an upgrade is installed.

Example

PRINTER ON
PRINT PCL.RESET() :
PRINT PCL.FONT('Courier, Pitch 10, Regular') :
PRINT PCL.BOX(300,300,300,100,2,15) :

QMBasic 1019

2.6-6

PRINT PCL.CURSOR(350, 380) : 'Hello' :

The above program prints the word Hello in a box with rounded corners.

OpenQM1020

2.6-6

!PICK()

The !PICK() subroutine displays a list of entries from which a user may select one.

Format

CALL !PICK(item, top.line, item.list, title, pos)

where

item is the returned item. This will be returned as a null string if no item is selected

top.line is the line number of the topmost display line to be used. The pick list display uses
from this line to the bottom of the screen.

item.list is a field mark delimited list of items to display. Long items will be truncated to fit
a single line.

title is a short text description of the items being processed. This is displayed alongside
the item count at the bottom of the screen. This may be a null string to omit the
title.

pos enables programs to return to a pick list at the position of a previously displayed
item. On initial entry, this should be zero or a null string. If a variable name is used
for pos, this variable will be updated to contain position information related to the
list. A subsequent call to !PICK() using this updated value will display the screen
as it was when the previous item was selected. Programs should not make any
assumption about the format of this variable as it may change between QM
releases.

The !PICK() subroutine displays a list of items as specified in list. The user can move through this
list using the following keys:

Down one line: Cursor down D Ctrl-N

Up one line: Cursor up U Ctrl-P Ctrl-Z

Down page: Page down N Ctrl-V

Up page Page up P Esc-V

Top: Home T Esc-<

Bottom: End B Esc->

Example

OPEN "ACCOUNTS" TO ACC.F ELSE STOP "Cannot open ACCOUNTS file"
SSELECT ACC.F
READLIST LIST ELSE NULL
CALL !PICK(ITEM, 0, LIST, "Accounts", POS)
IF ITEM # "" THE
 READ ACC.REC FROM ACC.F, ITEM THEN
 ...processing...

QMBasic 1021

2.6-6

 END
END

The above example shows a list of records in the ACCOUNTS file and processes the selected
record.

See also:
!PICKLIST()

OpenQM1022

2.6-6

!PICKLIST()

The !PICKLIST() subroutine displays a list of entries from which a user may select one.

Format

CALL !PICKLIST(value, list, return.col, index.col)

where

value is the returned item. This will be returned as a null string if no option is selected.

list is a field mark delimited list of items to process. The display can show multiple
items for each entry (e.g. a code and an expanded text) in which case each field is
divided into values corresponding to the columns to be shown. The number of
displayed columns is determined by the number of values in the first field.

return.col identifies which column (from 1) of the selected item is to be returned as value.

index.col is the column number (from 1) for shortcut entry. The list must be sorted into
ascending order of this column. A value of zero implies that no shortcut is to be
allowed.

The !PICKLIST() subroutine displays a box containing the items to from list. The user can use the
up and down cursor keys to move through this list. If the list is longer than can be displayed, the
subroutine will scroll the displayed items. The page up and down key can be used to move rapidly
through the entries. The return key selects the current item, returning it in the value argument.

If index.col is non-zero, the user may enter the initial characters of an entry in the chosen column to
position directly to the first entry starting with the entered prefix. The characters entered are
displayed in the lower border of the box.

When used on a QMTerm or Windows QMConsole session or on a terminal that supports screen
region save and restore, the area of the screen overwritten by the pick list box is automatically
saved and restored. Programs using other terminal systems will need to arrange their own system to
recover the screen.

Example

LIST = 'Blue':@FM:'Green':@FM:'Red'
CALL !PICKLIST(ITEM, LIST, 1, 1)
DISPLAY 'Selected item was ' : ITEM

See also:
!PICK()

QMBasic 1023

2.6-6

!QMCLIENT

The !QMCLIENT class module provides an object oriented interface to the QMClient API for use
within QMBasic programs.

An QMClient object is instantiated using a QMBasic statement of the form

session = object('!qmclient')

The table below lists the QMClient API calls and their actions available with this object.

QMConnect bool = session->Connect(host, port, username, password, account)

QMCall session->Call(subr{, args})

QMClearSelect session->ClearSelect(listno)

QMClose session->Close(fno)

QMConnected bool = session->Connected

QMDelete session->Delete(fno, id)

QMDeleteu session->Deleteu(fno, id)

QMDisconnect session->Disconnect

QMEndCommand session->EndCommand

QMExecute str = session->Execute(cmd)

QMLogto bool = session->Logto(acc)

QMMarkMapping session->MarkMapping(fno, state)

QMOpen fno = session->Open(name)

QMRead str = session->Read(fno, id, err)

QMReadl str = session->Readl(fnom id, wait, err)

QMReadList str = session->ReadList(listno, err)

QMReadNext str = session->ReadNext(listno, err)

QMReadu str = session->Readu(fno, id, wait, err)

QMRecordLock session->RecordLock(fno, id, update, wait)

QMRelease session->Release(fno, id)

QMRespond str = session->Respond(response, err)

QMSelect session->Select(fno, listno)

QMSelectIndex session->SelectIndex(fno, indexname, indexvalue, listno)

QMSelectLeft str = session->SelectLeft(fno, indexname, listno)

QMSelectRight str = session->SelectRight(fno, indexname, listno)

QMSetLeft session->Setleft(fno, indexname)

QMSetRight session->SetRight(fno, indexname)

QMWrite session->Write(fno, id, data)

QMWriteu session->Writeu(fno, id, data)

QMStatus session->ServerStatus

QMError session->Error

For a more detailed description, see QMClient.

OpenQM1024

2.6-6

!SCREEN()

The !SCREEN() subroutine performs screen based input using a screen definition created using
the SCRB command.

Format

CALL !SCREEN(scrn, data, step, status)

where

scrn is a dynamic array holding the screen definition.

data is the data record to be processed.

step holds the step number at which screen execution is to commence. If this is a
variable, it will be updated on exit to contain the step at which execution ended.

status identifies the termination cause on returning to the calling program.

The !SCREEN() subroutine executes the screen starting at step except for the special step values
described below.

step Action
0 Clear the screen and paint text and data from all steps except those items with X in

their mode value.

-1 Paint text and data from all steps except those items with X in their mode value
without clearing the screen.

-2 Clear the screen without painting any data.

-3 Return a single keystroke value.

On returning to the calling program, status contains
-3 Illegal exit key code found in screen definition.
-2 Illegal validation code found in screen definition.
-1 Step number error.
0 Normal exit (X action code)
1 Exit key (escape) used with action code X
2 Backstep key used with no step history.
n Function key used. n is the key value as in KEYIN.H.

Example

READ SCRN FROM SCR.F, 'MY.SCREEN' ELSE ABORT 'Cannot read
screen'
DATA = ''
CALL !SCREEN(SCRN, DATA, STEP, SCR.STATUS)

QMBasic 1025

2.6-6

The above code fragment reads a screen definition and executes the screen driver to process the data
record using this definition.

OpenQM1026

2.6-6

!SETPU()

The !SETPU() subroutine sets the characteristics of a print unit.

Format

CALL !SETPU(key, unit, value, status)

where

key identifies the parameter to set. This is as for the SETPU statement.

unit evaluates to the print unit number.

value is the value to set for the given parameter.

status is the return status value. Zero if the action is successful, a non-zero error code if
the action fails.

The !SETPU() subroutine sets the print unit characteristic specified by key to the given value. It is
closely related to the SETPU statement.

Example

CALL !SETPU(PU$LOCATION, 3, "LASER", STATUS)

The above statement sets the destination for print unit 3 to be the LASER printer.

QMBasic 1027

2.6-6

!SETVAR()

The !SETVAR() subroutine sets the value of a user defined @-variable. It can also update some
standard @variables.

Format

CALL !SETVAR(name, value)

where

name is the name of the @-variable to be set. The leading @ character may optionally be
omitted. The name may be up to 32 characters and is case insensitive.

value is the value to be set. This may not include the mark characters.

The !SETVAR() subroutine sets the value of the named user defined @-variable. It can also set
other standard @variables that are not read-only (e.g. @USER0) though these can be set using
simple assignment statements.

The !SETVAR() function sets a status value that can be retrieved using the STATUS() function.
This will be zero if the action is successful, or a non-zero error code if the name is invalid.

Example

CALL !SETVAR("@MYVAR", 71)

This example sets the user defined @MYVAR to 71.

See the !ATVAR() subroutine for a way to retrieve the value of a user defined @-variable.

OpenQM1028

2.6-6

!SORT()

The !SORT() subroutine sorts the elements of a dynamic array according to a specified sorting
rule.

Format

CALL !SORT(in.list, out.list, sort.rule)

where

in.list is the dynamic array containing the items to be sorted. Any mark character (or a
mix of different mark characters) may be used to separate the items.

out.list is the variable to receive the sorted dynamic array. The items will be separated by
field marks.

sort.rule defines the manner of sorting. This is a string containing characters from the
following:

A Sort in ascending order (default)
D Sort in descending order
L Sort as left aligned values (default)
R Sort as right aligned values
N Ignore null elements
U Return unique items. Multiple occurrences of an item are replaced by just

one item.
Invalid or conflicting sort.rule elements are ignored.

The !SORT() subroutine sorts elements of in.list into the order defined by sort.rule, returning the
sorted list in out.list. The value of in.list is not changed unless it refers to the same variable as
out.list.

Right aligned sorts should normally be used when sorting numeric data.

Example

CUSTOMER.LIST = ""
SELECT INVOICES
LOOP
 READNEXT ID ELSE EXIT
 READ INVOICE.REC FROM INVOICES, ID THEN
 CUSTOMER.LIST<-1> = INVOICE.REC<CUSTOMER.NAME>
 END
REPEAT
CALL !SORT(CUSTOMER.LIST, CUSTOMER.LIST, "AU")

The above program fragment reads all the records from the INVOICE file and builds a list of
customer names. This is then sorted, removing duplicates.

This approach will be faster than using LOCATE and INS to build a sorted list unless there are a
very large number of duplicates.

QMBasic 1029

2.6-6

!USERNAME()

The !USERNAME() subroutine returns the user login name for a given QM user number.

Format

CALL !USERNAME(name, userno)

or

DEFFUN USERNAME(userno) CALLING "!USERNAME"
name = USERNAME(userno)

where

name is the returned user login name.

userno is the user number to locate.

The !USERNAME() subroutine returns name as the login name associated with a given user
number. If there is no user logged in with that userno, a null string is returned.

Example

READU INV.REC FROM INV.F, INV.NO
LOCKED
 CALL !USERNAME(UNAME, STATUS())
 PRINTERR "Invoice is locked by user " : UNAME
END THEN
 GOSUB PROCESS.INVOICE
END

The above program fragment displays the login name of the user holding the lock if the READU is
blocked by another user.

OpenQM1030

2.6-6

!USERNO()

The !USERNO() subroutine returns a list of QM user numbers for a given user name.

Format

CALL !USERNO(userno, username)

or

DEFFUN USERNO(username) CALLING "!USERNO"
userno = USERNO(username)

where

username is the user name to locate.

userno is a field mark delimited list of QM user numbers for the given user name.

The !USERNO() subroutine returns a field mark delimited list of the QM user numbers of
processes running with the given user name. The user name is case insensitive. If there is no user
logged in with that username, a null string is returned.

Example

INPUT USERNAME
CALL !USERNO(UNO, USERNAME)
IF UNO # "" THEN
 CRT "User numbers are: " : CHANGE(UNO, @FM, ", ")
END ELSE
 CRT "There are no users logged in with this user name"
END

The above program fragment displays a comma separated list of QM users logged in under a given
user name.

QMBasic 1031

2.6-6

!VOCREC()

The !VOCREC() subroutine reads a VOC record, following links to remote records.

Format

CALL !VOCREC(rec, id)

or

DEFFUN VOCREC(id) CALLING "!VOCREC"
rec = VOCREC(id)

where

rec is the variable to receive the result.

id is the record id of the record to be read.

The !VOCREC() subroutine attempts to read record id from the VOC file. If not found, it tries
again using an uppercase version of id.

If the record read from the VOC is an R-type item, the subroutine follows the link, again translating
to uppercase if the record is not found exactly as specified in the R-type link.

If the original VOC record or the target of the R-type link is not found, the rec variable is set to a
null string, otherwise rec contains the retrieved data.

The STATUS() function returns zero if a record was found or an error code if not.

Example

CALL !VOCREC(STYLE.REC, STYLE.NAME)
IF STATUS() THEN STOP 'Style record not found'

The above program fragment reads the VOC record identified by STYLE.NAME, following any
remote link. If no record can be found, the program terminates with an error message.

OpenQM1032

2.6-6

6.8 QMBasic Debugger

The QM interactive debugger enables the developer to step through an application program in a
convenient manner, stopping at desired points and examining data items.

Programs to be debugged must be compiled with the DEBUGGING option to the BASIC
command or by including the $DEBUG compiler directive in the program source. At run time, the
debugger will stop at selected places in the execution of these programs but will run normally
through programs not compiled in this mode. Catalogued programs and subroutines may be
debugged in exactly the same way as other programs.

The debugger is activated either by use of the DEBUG command in place of RUN or by a
DEBUG statement encountered during execution of a program. The latter method enables debug
mode to be entered part way through execution of the program. The debugger can also be entered
from the quit confirmation prompt if any program currently being executed has been compiled in
debug mode.

During application development it is often worth compiling the entire application in debug mode.
Execution of the program with the RUN command will not invoke the debugger unless a DEBUG
statement is encountered. There is a small performance impact of running a debug mode program in
this way but it is usually not significant.

Phantom processes and those acting as the server side of a QMClient connection can be debugged
using the PDEBUG command.

The debugger will identify the program from which it was entered and locate the source program
record. If this is not available, a warning is displayed and execution of the program continues in
non-debug mode though other programs and subroutines called by it will still be subject to
debugging if their source records are available.

When used with QMConsole on a Windows system, via the QMTerm terminal emulator or the
bundled version of AccuTerm, the debugger operates in full screen mode. The display is divided
into two areas. The upper portion of the screen shows the source program with the line about to be
executed highlighted. The lower portion of the screen is used to echo commands and to display their
responses. The top line of the screen displays the program name and current line and element
number. The display may be toggled between the debugger and the application by use of the F4 key.
Full screen mode also supports a command stack similar to that found at the command prompt.

When used on other terminals, the debugger output is mixed with the application output.

The current position in a program is referenced by a line number and an element number. Most
QMBasic source lines hold only a single element (element 0) but lines with multiple statements
separated by semicolons or clauses of IF/THEN/ELSE constructs, etc, are considered to represent
separate execution elements. The debugger can step line by line or element by element through a
program.

The debugger cannot step through statements inserted into a program from an include record. In
such cases, it will step over the included statements as though they were part of the immediately
preceding statement.

Debugger commands fall into two groups; function keys and word based commands. In many cases
both forms are available. Not all terminals support function keys.

QMBasic 1033

2.6-6

Function Key Commands

(Some function keys may not be available on all terminal emulations)
F1 Display help screen
F2 Abort program
F3 Stop program
F4 Display user screen (normal program output)
F5 Free run
F6
F7 Step program element
F8 Step line
Ctrl-F7 Run to parent program / subroutine (internal or external)
Ctrl-F8 Exit program, returning to parent program or external subroutine

If an application dynamically rebinds the codes sent by keys used by the debugger, setting the
DEBUG.REBIND.KEYS mode of the OPTION command will cause the debugger to reset these
to the bindings specified in the terminfo entry for the current terminal type on each entry to the
debug screen. Note that the debugger cannot revert to the user bindings on exit as it has no way to
determine what these were. This feature is available only with AccuTerm.

Word Based Commands

Where a short form is available, this is the upper case portion of the command as shown.
Commands may be entered in any mix of upper and lower case.

ABORT Quit the program, generating an abort.

BRK n Set a breakpoint on line n.

CLR Clear all breakpoints.

CLR n Clear breakpoint on line n.

DUMP var path Dumps a variable to an operating system level file.

EP Exit program, returning to parent program or external subroutine.

EXit Exit subroutine, returning to parent program, internal or external
subroutine.

Goto n Continue execution at line n.

HELP Display help page.

Quit Quit the program, generating an abort.

Run Free run.

Run n Run to line n.

SET var=value Change content of a program variable

STACK Display the call stack. The current program is shown first.

Step n Execute n lines.

Step .n Execute n elements.

OpenQM1034

2.6-6

STOP Quit the program, generating a stop.

UnWatch Cancels an active watch action.

View Display user screen (normal program output)

Watch var Watches the named variable.

The following commands apply only to full screen mode debugging:

SRC Revert to default program source display

SRC name Show source of program name.

SRC n Display around line n of currently displayed program.

SRC +n Move display forward n lines in program.

SRC -n Move display backward n lines in program.

The following commands apply only to non-full screen mode debugging:

SRC Display current source line

SRC n Display source line n. Entering a blank debugger command line after this
command will display the next source line.

SRC n,m Display m lines starting at source line n. The value of m is limited to three
lines less than the screen size. Entering a blank debugger command line
after this command will display the next m source lines.

Displaying Program Variables

Entering a variable name preceded or followed by a slash (/) or a question mark (?) displays the
type and content of the given variable (var/, /var, var?, ?var). This name may be a variable in a
common block defined in the current program. If the common block has not been linked at the time
the command is entered, the variable will appear as unassigned. For programs compiled with case
insensitive names, the debugger is also case insensitive.

Private local variables in a subroutine declared using the LOCAL statement can be referenced
using a name formed by concatenating the subroutine name and variable name with a colon between
them. If a subroutine is executed recursively, it is only possible to view the current instance of the
variables.

The debugger will not recognise names defined using EQUATE or $DEFINE.

The debugger recognises variable names STATUS(), INMAT(), COL1(), COL2() and
OS.ERROR() to display the corresponding system variable. All @-variables may also be displayed
except for @VOC (which is a file variable) and those representing constants such as @FM and
@TRUE.

Display of long strings is broken into short sections to fit the available display space. Entering Q at
the continuation prompt will terminate display.

When displaying strings with an active remove pointer, the position of this pointer is also shown.

QMBasic 1035

2.6-6

If the variable is a matrix, the name may be followed by the index value(s) for the element to be
displayed. Entry of the name without an index will display the dimensions of the matrix. Subsequent
presses of the return key display successive elements of the matrix until either all elements have
been displayed or another command is entered.

CLI.REC/
Array: Dim (20)
<return>
CLI.REC(0) = Unassigned
<return>
CLI.REC(1) = String (8 bytes): "J Watson"
<return>
CLI.REC(2) = 13756
CLI.REC(8)/
Integer: 86

The variable name may be followed by a field, value or subvalue reference which will be used to
restrict the display if the data is a string. Note that this qualifier has no effect on other data types.

REC/
String (11 bytes,R=4): "487FM912VM338"
REC<1>/
String (3 bytes): "487"
REC<2,1>/
String (3 bytes): "912"

Entering a slash alone will repeat the most recent display command.

Analysis of very large character strings is sometime easier from outside the debugger. The DUMP
command can be used to dump the contents of a variable to an operating system level file that can
then be processed with other tools.

Changing Program Variables

The SET command can be used to alter the value of a variable.

SET var = value to set a numeric value
SET var = "string" to set a string value. Double quotes, single quotes or

backslashes may be used to enclose the string.
SET var(row,col) = value to set a matrix element

Watching Variables

The WATCH command causes the debugger to monitor the named variable. Whenever a value is
assigned to this variable (even if the value is the same as currently stored), the debugger will stop
program execution and display the new value. Only one variable can be watched at a time.

The UNWATCH command cancels the watch action. The watch action is automatically cancelled
when the watched variable ceases to exist. This might be return from the program in which the

OpenQM1036

2.6-6

program exists, redimensioning a common block, etc.

QMBasic 1037

2.6-6

6.9 Process Dump Files

QM includes the option to generate a process dump file containing a detailed report of the state of
the process. There are three ways to generate a process dump:

A process dump will be created automatically if the DUMP.ON.ERROR mode of the OPTION
command is active and the process aborts either due to an error detected by QM or from use of
the ABORT statement in a QMBasic program.

Selection of the P option following use of the break key.

Use of the PDUMP command. This can be used to generate a dump of a different process such
as a phantom or a QMClient process.

By default, the process dump is directed to an operating system level file named qmdump.n in the
QMSYS account directory where n is the QM user number. The directory to receive the dump file
can be changed using the DUMPDIR configuration parameter.

The file consists of a number of sections detailing the current state of the user process at the time of
the error.

1. Environment data

QM version number

Licence number and site name

User number

Process id

Parent used number (zero except in phantom processes)

User name

2. @-variables

@-variables that are likely to be useful in determining the cause of an error.

3. Locks

The report shows all task locks, file locks and record locks owned by the process.

4. Program stack

This contains an entry for each program, working backwards from the program in which the
error occurred.

For each program, the dump shows

Program number (used in some cross-references within the dump)

Program name, instruction address and line number. Line numbers cannot be shown if the
program was compiled with no cross reference tables or these were removed when the
program was catalogued.

Program status flags showing various special program states.

GOSUB return stack, if not empty.

Variables. Local variables are sorted alphabetically. Elements of a common block are
shown in memory order and are only dumped on the first program that references the block.
Non-printing characters in strings are replaced by \nn where nn is the hexadecimal
character value. Backslash characters are shown as \\. Character string data is not line
wrapped to simplify exploration of the data using tools such as the SED editor.

OpenQM1038

2.6-6

6.10 Error Numbers

Error numbers are defined in the ERR.H record of the SYSCOM file.

1 ER$ARGS Command arguments invalid or incomplete

2 ER$NCOMO Como file not active

3 ER$ICOMP I-type compilation error

4 ER$ACC.EXISTS Account name already in register

5 ER$NO.DIR Directory not found

6 ER$NOT.CREATED Unable to create directory

7 ER$STOPPED Processing terminated by user in response to a
"continue" prompt

8 ER$INVA.PATH Invalid pathname

9 ER$NOT.CAT Item not in catalogue

10 ER$PROCESS Unable to start new process

11 ER$USER.EXISTS User name already in register

12 ER$UNSUPPORTED This operation is not supported on this platform

13 ER$TERMINFO No terminfo definition for this function

14 ER$NO.ACC Account name not in register

15 ER$TERMINATED Query command terminated by user.

1000 ER$PARAMS Invalid parameters

1001 ER$MEM Cannot allocate memory

1002 ER$LENGTH Invalid length

1003 ER$BAD.NAME Bad name

1004 ER$NOT.FOUND Item not found

1005 ER$IN.USE Item is in use

1006 ER$BAD.KEY Bad action key

1007 ER$PRT.UNIT Bad print unit

1008 ER$FAILED Action failed

1009 ER$MODE Bad mode setting

1010 ER$TXN Operation not allowed in a transaction

1011 ER$TIMEOUT Timeout

1012 ER$LIMIT User limit reached

1013 ER$EXPIRED Package licence has expired

1014 ER$NO.CONFIG Cannot find configuration file

1015 ER$RDONLY.VAR Variable is read-only

1016 ER$NOT.PHANTOM Not a phantom process

1017 ER$CONNECTED Device already connected

1018 ER$INVA.ITYPE Invalid I-type

2000 ER$INVA.OBJ Invalid object code

2001 ER$CFNF Catalogued function not found

QMBasic 1039

2.6-6

2100 ER$TI.NAME Invalid terminal type name

2101 ER$TI.NOENT No terminfo entry for given name

2102 ER$TI.MAGIC Terminfo magic number check failed

2103 ER$TI.INVHDR Invalid terminfo header data

2104 ER$TI.STRSZ Invalid terminfo string length

2105 ER$TI.STRMEM Error allocating terminfo string memory

2106 ER$TI.NAMEMEM Error allocating terminfo name memory

2107 ER$TI.BOOLMEM Error allocating terminfo boolean memory

2108 ER$TI.BOOLRD Error reading terminfo booleans

2109 ER$TI.NUMMEM Error allocating terminfo numbers memory

2110 ER$TI.NUMRD Error reading terminfo numbers

2111 ER$TI.STROMEM Error allocating terminfo string offsets memory

2112 ER$TI.STRORD Error reading terminfo string offsets

2113 ER$TI.STRTBL Error reading terminfo string table

3000 ER$IID Illegal record id

3001 ER$SFNF Subfile not found

3002 ER$NAM Bad file name

3003 ER$FNF File not found

3004 ER$NDIR Not a directory file

3005 ER$NDYN Not a dynamic file

3006 ER$RNF Record not found

3007 ER$NVR No VOC record

3008 ER$NPN No pathname in VOC record

3009 ER$VNF VOC file record not F type

3010 ER$IOE I/O error

3011 ER$LCK Lock is held by another process

3012 ER$NLK Lock is not held by this process

3013 ER$NSEQ Not a sequential file

3014 ER$NEOF Not at end of file

3015 ER$SQRD Sequential file record read before creation

3016 ER$SQNC Sequential record not created due to error

3017 ER$SQEX Sequential record already exists (CREATE)

3018 ER$RDONLY Update to read only file

3019 ER$AKNF AK index not found

3020 ER$INVAPATH Invalid pathname

3021 ER$EXCLUSIVE Cannot gain exclusive access to file

3022 ER$TRIGGER Trigger function error

3023 ER$NOLOCK Attempt to write/delete record with no lock

3024 ER$REMOTE Open of remote file not allowed

3025 ER$NOTNOW Action cannot be performed now

3026 ER$PORT File is a port

OpenQM1040

2.6-6

3027 ER$NPORT File is not a port

3028 ER$SQSEEK Seek to invalid offset in sequential file

3029 ER$SQREL Invalid SEEK relto in sequential file

3030 ER$EOF End of file

3031 ER$CNF Multifile component not found

3032 ER$MFC Multifile reference with no component name

3033 ER$PNF Port not found

3034 ER$BAD.DICT Bad dictionary entry

3035 ER$PERM Permissions error

3036 ER$SEEK.ERROR Seek error

3037 ER$WRITE.ERROR Write error

3038 ER$VFS.NAME Bad class name in VFS entry

3039 ER$VFS.CLASS VFS class routine not found

3040 ER$VFS.NGLBL VFS class routine is not globally catalogued

3041 ER$ENCRYPTED Access denied to encrypted file

4000 ER$SRVRMEM Insufficient memory for packet buffer

5000 ER$NO.DLL DLL not found

5001 ER$NO.API API not found

5002 ER$NO.TEMP Cannot open temporary file

6031 ER$NO.EXIST Item does not exist

6032 ER$EXISTS Item already exists

6033 ER$NO.SPACE No space for entry

6034 ER$INVALID Validation error

7000 ER$NETWORK Networked file not allowed for this operation

7001 ER$SERVER Unknown server name

7002 ER$WSA.ERR Failed to start Window socket library

7003 ER$HOSTNAME Invalid host name

7004 ER$NOSOCKET Cannot open socket

7005 ER$CONNECT Cannot connect socket

7006 ER$RECV.ERR Error receiving socket data

7007 ER$RESOLVE Cannot resolve server name

7008 ER$LOGIN Login rejected

7009 ER$XREMOTE Remote server disallowed access

7010 ER$ACCOUNT Cannot connect to account

7011 ER$HOST.TABLE Host table is full

7012 ER$BIND Error binding socket

7013 ER$SKT.CLOSED Socket has been closed

8001 DHE$FILE.NOT.OPEN DH.FILE pointer is NULL

8002 DHE$NOT.A.FILE DH.FILE does not point to a file descriptor

8003 DHE$ID.LEN.ERR Invalid record id length

8004 DHE$SEEK.ERROR Error seeking in DH file

QMBasic 1041

2.6-6

8005 DHE$READ.ERROR Error reading DH file

8006 DHE$WRITE.ERROR Error writing DH file

8007 DHE$NAME.TOO.LONG File name is too long

8008 DHE$SIZE File exceeds maximum allowable size

8009 DHE$STAT.ERR Error from stat()

8100 DHE$OPEN.NO.MEMORY No memory for DH.FILE structure

8101 DHE$FILE.NOT.FOUND Cannot open primary subfile

8102 DHE$OPEN1.ERR Cannot open overflow subfile

8103 DHE$PSFH.FAULT Primary subfile header format error

8104 DHE$OSFH.FAULT Overflow subfile header format error

8105 DHE$NO.BUFFERS Unable to allocate file buffers

8106 DHE$INVA.FILE.NAME Invalid file name

8107 DHE$TOO.MANY.FILES The limit on the number of open files has been
reached. See the NUMFILES configuration
parameter.

8108 DHE$NO.MEM No memory to allocate group buffer

8109 DHE$AK.NOT.FOUND Cannot open AK subfile

8110 DHE$AK.HDR.READ.ERROR Error reading AK header

8111 DHE$AK.HDR.FAULT AK subfile header format error

8112 DHE$AK.ITYPE.ERROR Format error in AK I-type code

8113 DHE$AK.NODE.ERROR Unrecognised node type

8114 DHE$NO.SUCH.AK Reference to non-existent AK

8115 DHE$AK.DELETE.ERROR Error deleting AK subfile

8116 DHE$EXCLUSIVE File is open for exclusive access

8117 DHE$TRUSTED Requires trusted program to open

8118 DHE$VERSION Incompatible file version

8119 DHE$ID.LEN File may contain id longer than MAXIDLEN

8120 DHE$AK.CROSS.CHECK Relocated index pathname cross-check failure

8121 DHE$HASH.TYPE Unsupported hash type

8201 DHE$ILLEGAL.GROUP.SIZE Group size out of range

8202 DHE$ILLEGAL.MIN.MODULUS Minimum modulus < 1

8203 DHE$ILLEGAL.BIG.REC.SIZE Big record size invalid

8204 DHE$ILLEGAL.MERGE.LOAD Merge load invalid

8205 DHE$ILLEGAL.SPLIT.LOAD Split load invalid

8206 DHE$FILE.EXISTS File exists on create

8207 DHE$CREATE.DIR.ERR Cannot create directory

8208 DHE$CREATE0.ERR Cannot create primary subfile

8209 DHE$CREATE1.ERR Cannot create overflow subfile

8210 DHE$PSFH.WRITE.ERROR Failure writing primary subfile header

8211 DHE$INIT.DATA.ERROR Failure initialising data bucket

8212 DHE$ILLEGAL.HASH Invalid hashing algorithm

8213 DHE$OSFH.WRITE.ERROR Failure writing overflow subfile header

OpenQM1042

2.6-6

8301 DHE$RECORD.NOT.FOUND Record not in file

8302 DHE$BIG.CHAIN.END Found end of big record chain early

8303 DHE$NOT.BIG.REC Big record pointer does not point to big record block

8401 DHE$NO.SELECT No select is active

8402 DHE$OPEN2.ERR Cannot open select list

8403 DHE$GSL.WRITE.ERR Error from write()

8404 DHE$GSL.TRUNCATE.ERR Error from chsize()

8501 DHE$AK.NAME.LEN Index name too long

8502 DHE$AK.EXISTS AK already exists

8503 DHE$AK.TOO.MANY Too many AKs to create a new one

8504 DHE$AK.CREATE.ERR Unable to create AK subfile

8505 DHE$AK.HDR.WRITE.ERROR Error writing AK subfile header

8506 DHE$AK.WRITE.ERROR Error writing AK node

8601 DHE$PSF.CHSIZE.ERR Error compacting primary subfile

8701 DHE$ALL.LOCKED All buffers are locked

8702 DHE$SPLIT.HASH.ERROR Record does not hash to either group in split

8703 DHE$WRONG.BIG.REC Big record chain error

8704 DHE$FREE.COUNT.ZERO Overflow free count zero in dh.new.overflow()

8705 DHE$FDS.OPEN.ERR Cannot reopen subfile

8706 DHE$POINTER.ERROR Internal file pointer fault

8707 DHE$NO.INDICES File has no AKs

QMBasic 1043

2.6-6

6.11 Building a Self-Installing Application

If you are developing an application to be provided as a complete user-installable package, you
probably want to automate as much as possible of this. Ideally, you would like the user to need only
to execute a single program to install both QM and the application software. This section describes
one way to do this.

On Windows systems, we recommend use of the Astrum InstallWizard from Thraex Software (as
used by QM itself) but the following process should map onto other self-installer packages.

Whatever installer package you use, it needs to install both QM and the application. The
complication is that this process needs to run QM to create the account that will hold the
application. The steps to achieve this are:

1. Unpack all the application files to wherever they need to go. The directory that will become
the application account can be created during this process but the only QM specific
subdirectory that should be created is the private catalogue (cat). You can place your own
application install program into the cat subdirectory for later use. If you need to pre-load
dictionary items or data file records, these should be unpacked into a temporary location.

2. The self-extracting file must also include the relevant version of QM as its own
self-extracting file. This should be unpacked into a temporary directory.

3. Once everything has been unpacked, the process now needs to install QM by executing the
QM self-extracting program. On Windows systems, use of the /silent command line option
will suppress most user interaction.

4. Now that QM is installed (or upgraded), you need to use it to create the application
account. The process should check whether the account already exists by looking for the
VOC file and, if not, execute QM with a single command line option of

 "CREATE.ACCOUNT account.name account.path NO.QUERY".
The quotes are required in this command and the working directory should be the QMSYS
account. The CREATE.ACCOUNT command will not fail if the cat subdirectory already
exists.

5. Next, you need to execute your own application installer program that should have been
included in the contents of the unpacked private catalogue directory. This is done by
executing QM with a command line option that is the catalogued item name and with a
working directory of the newly created account.

6. Finally, you need to remove any temporary files.

So, what does the catalogued install program need to do?

· We recommend that it should start by executing a COMO command to create a log file of
its progress.

· Create any application files that do not already exist.

· Copy dictionary items from a temporary set of dictionaries unpacked from the install file.
By doing this rather than simply overwriting the dictionaries, anything that had been added
will not be lost when updating an existing installation.

· Build any indices that are required.

OpenQM1044

2.6-6

· Create any application specific VOC entries such as paragraphs and sentences.

QMBasic 1045

2.6-6

6.12 Building a Web Server Application

There are advanced web based packages available for QM but for many applications a simple CGI
program gives an easy way to achieve web connectivity with no additional software.

The program below requires the qmclilib library to be included when it is compiled and linked. The
executable program file should be placed in the cgi-bin subdirectory of the relevant web account.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <\qmsys\syscom\qmclilib.h> [Windows]
#include </usr/qmsys/SYSCOM/qmclilib.h> [Linux / FreeBSD]

// Set the following six lines as appropriate for your system
#define SERVER_ADDRESS "localhost" /* Server network address or
name... */
#define SERVER_PORT 4243 /* ...and port on which to
connect */
#define SERVER_USER "xxx" /* Server user name... */
#define SERVER_PASSWORD "xxxxx" /* ...and password */
#define SERVER_ACCOUNT "xxxxx" /* Web server QM account name
*/
#define SERVER_PROGRAM "xxxxx" /* Catalogued program to run
on server */

char NullString[] = "";

char InputData[32767] = ""; /* Incoming data stream */
char Response[99999] = ""; /* Response to send */
char * ClientIP; /* Client IP address */
char * ClientUser; /* User name if web authentication
used */

/*
==
====== */

int main()
{
 char * RequestMethod;
 char * p;

 RequestMethod = getenv("REQUEST_METHOD");
 if (RequestMethod == NULL)
 {
 printf("Program must be executed by a Web browser\n");
 return 1;
 }

 ClientIP = ((p = getenv("REMOTE_ADDR")) != NULL)?p:NullString;
 ClientUser = ((p = getenv("REMOTE_USER")) !=
NULL)?p:NullString;

 if (!strcmp(RequestMethod,"GET"))
 {

OpenQM1046

2.6-6

 if ((p = getenv("QUERY_STRING")) != NULL) strcpy(InputData,
p);
 }
 else if (!strcmp(RequestMethod,"POST"))
 {
 if ((p = getenv("CONTENT_LENGTH")) != NULL)
 {
 fread(InputData, atoi(p), 1, stdin);
 }
 }

 /* Check for locally processed screens */

 ParseInputData();

if (!QMConnect(SERVER_ADDRESS, SERVER_PORT, SERVER_USER,
SERVER_PASSWORD, SERVER_ACCOUNT))
 {
 strcpy(Response, "Failed to connect. The server may be
offline.");
 }
 else
 {
 QMCall(SERVER_PROGRAM, 4, InputData, ClientIP, ClientUser,
Response);
 QMDisconnect();
 }

 printf("Content-type: text/html\n\n");
 printf("<meta http-equiv=\"Pragma\" content=\"no-cache\">\n");
 printf("%s\n", Response);

 return 0;
}

Web requests received by this program will be passed to the catalogued QMBasic subroutine
identified by SERVER_PROGRAM. The declaration of this is

SUBROUTINE SERVER(INPUT.DATA, CLIENT.IP, CLIENT.USER,
RESPONSE)

When used with HTML forms with the method attribute set to "post" or "get", any data sent with
the form will be passed to the QM server program via the first argument (INPUT.DATA).
Typically, the form would include an item in this data that can be used to determine the screen being
processed.

The CLIENT.IP is the network address of the client user and can be used for simple security
checking.

If the user has been authenticated using the conventional web user authentication process, the user
name appears in CLIENT.USER. If authentication has not been performed, this will be a null
string.

The server subroutine must return valid HTML data to be returned to the web client via the
RESPONSE argument. For applications that return very large HTML strings it may be better for
the QMBasic component to write the data to a temporary file and pass this name back to the C
program. This avoids the need for the Response variable in the above example to be sized to fit the

QMBasic 1047

2.6-6

largest string that could ever be returned.

Part

7
QMClient API

OpenQM1050

2.6-6

7 QMClient API

Historically, multi-value databases have used a character based user interface. QM includes a set of
Windows OLE compatible functions that enable development of applications in, for example,
Visual Basic. This section describes these functions and includes examples of how to use them to
develop a Windows style front end to your application.

The same functions are also available in the qmclilib library for use in C programs and as a
QMBasic class module for use in QMBasic programs. This help section discusses all of these API
sets.

In addition, the QMClient.pb record in the SYSCOM file contains an interface layer for use with
the PureBasic product from Fantaisie Software.

Overview

The API functions enable a Visual Basic or C application to access data stored in a QM database
or allow connection to remote QM systems from within QMBasic application programs. There are
API equivalents to the major file handling statements of QMBasic as well as a range of string
functions for dynamic array data manipulations, functions to execute commands and catalogued
subroutines on the server, etc.

The secret of writing efficient client server applications is to perform the bulk data processing on
the server and only handle user interface issues on the client. This minimises the data transferred
between the systems and hence optimises performance.

QMClient has some security issues that need special consideration.

Using the Visual Basic API

The QMClient Windows API consists of two components; a Visual Basic module (QMClient.bas)
containing the API function definitions, and a dynamic link library (QMClient.dll) containing the
actual interface functions. The C programmers' API is a single library, qmclilib.

To use the API functions in a Visual Basic application, include the QMClient.bas module in your
project. This module is placed in the SYSCOM file of the QMSYS account when QM is installed.
The QMClient.dll library must be installed on the client system. This library is placed in the
Windows directory (not necessarily c:\windows) when QM is installed. These components may be
freely copied and distributed as necessary.

From QM release 2.2-8, QMClient allows up to four connections from a single client process. This
allows development of applications that transfer data between accounts or servers.

Functions that return boolean values, return 0 for False, -1 for True in the Visual Basic API.

Using the C API

Use of the C programmers' API is different depending on the compiler in use. On Linux and

QMClient API 1051

2.6-6

FreeBSD, programs need to include the qmclilib.o object file when linking the application. The
Linux version of QM also includes a shared object version of QMClient API named qmclilib.so. On
Windows, the qmclilib.dll dynamic link library is used and two import libraries are provided to
include when linking the application; qmcllbbl.lib for Borland C users and qmcllbms.lib for
Microsoft C users. All of these components can be found in the bin subdirectory of the QMSYS
account. The function definitions can be found in the qmclilib.h include record in the SYSCOM file.

QMClient allows up to four connections from a single client process. This allows development of
applications that transfer data between accounts or servers.

Functions that return boolean values, return 0 for False, 1 for True in the C API library.

API calls that return strings dynamically allocate memory to hold the returned data. It is the calling
program's responsibility to release this memory using the QMFree() function when it is no longer
required. This function must be used in place of the standard free() C runtime library routine to
ensure compatibility with the memory allocator used by the QMClient library.

Using the QMBasic Class Module API

The QMClient class module is supplied as a globally catalogued item named !QMCLIENT. To
create a QMClient session, the object is instantiated with a statement of the form

session = object("!qmclient")

The session is then connected to a server using the CONNECT method

ok = session->connect(hostname, port, user, password, account)

The four connection limit that applies to other QMClient API styles does not apply to the QMBasic
interface. The limit here is imposed by how many socket connections the underlying system permits.

Functions that return boolean values, return 0 for False, 1 for True in the QMBasic class module
API.

API Function Summary

Session Management

QMConnect() Establishes a QMClient session via a network
QMConnected() Verifies whether a QMClient session is open
QMConnectLocal() Establishes a QMClient session on the local system
QMDisconnect Terminates a QMClient session
QMDisconnectAll Terminates all QMClient sessions from this client
QMGetSession Retrieves currently select session number
QMLogto() Moves to an alternative account
QMSetSession Selects the session to which subsequent function calls relate

File Handling

QMClearSelect Clears a select list

OpenQM1052

2.6-6

QMClose Closes a file
QMDelete Deletes a record
QMDeleteu Deletes a record, retaining the lock
QMMarkMapping() Enables/disables mark mapping for a directory file
QMOpen() Opens a file
QMRead() Reads a record without locking
QMReadl() Reads a record with a shareable read lock
QMReadList() Reads a select list
QMReadNext() Retrieves a record id from a select list
QMReadu() Reads a record with an exclusive update lock
QMRecordlock() Locks a record
QMRelease Releases a record lock
QMSelect() Generates a select list
QMSelectIndex() Generates a select list from an alternate key index
QMSelectLeft() Scan left in an alternate key index
QMSelectRight() Scan right in an alternate key index
QMSetLeft() Position at the left in an alternate key index
QMSetRight() Position at the right in an alternate key index
QMWrite Writes a record
QMWriteu Writes a record, retaining the lock

Dynamic Array Manipulation

QMDel() Deletes a field, value or subvalue
QMExtract() Extracts a field, value or subvalue
QMIns() Inserts a field, value or subvalue
QMLocate() Searches for a field, value or subvalue
QMReplace() Replaces a field, value or subvalue

String Manipulation

QMChange() Change substrings
QMDcount() Count delimited items in a string
QMField() Extract substring from a delimited string
QMFree() Free dynamically allocated memory (C API only)
QMMatch() Test pattern match
QMMatchfield() Extract data based on pattern match

Command Execution

QMEndCommand Abort an executed command
QMExecute() Execute a command on the server
QMRespond() Respond to a request for input from an executed command

Subroutine Execution

QMCall Call a catalogued subroutine on the server

QMClient API 1053

2.6-6

Error Handling

QMError() Returns extended error message text
QMStatus() Returns STATUS() value

Many functions have an Errno argument passed by reference as an Integer variable. This will be set
to one of the following values broadly corresponding to the various clauses applicable to the
equivalent QMBasic statements.

0 SV_OK Action successful

1 SV_ON_ERROR Action took the ON ERROR clause to recover from a situation that
would otherwise cause the server process to abort.

2 SV_ELSE Action took the ELSE clause. In most cases the QMStatus() function
can be used to determine the error number.

3 SV_ERROR An error occurred for which extended error text can be retrieved using
the QMError() function.

4 SV_LOCKED The action was blocked by a lock held by another user. The
QMStatus() function can be used to determine the blocking user.

5 SV_PROMPT A command executed on the server is waiting for input. The only valid
client functions when this status is returned are QMRespond(),
QMEndCommandand QMDisconnect.

The tokens shown above are defined in the QMClient.bas module and the qmclilib.h C include file.

OpenQM1054

2.6-6

7.1 Security Issues of the QMClient API

In most systems, a normal terminal user is taken directly into the application on logging in and the
application itself controls what the user can do. The ON.ABORT paragraph provides a mechanism
to ensure that, even if the application fails, the user cannot fall back to a command prompt.

With QMClient, the client session is effectively at a command prompt from which it can open, read
and write files, execute commands, or call subroutines. It becomes the responsibility of the client
software to control what the user can do. A knowledgeable user with a valid user name and
password could, however, develop a client session that connects in the same way as the application
and then goes on to do almost anything. Setting appropriate access rights on files may help but is
unlikely to be a perfect solution to this potential security threat.

The QMCLIENT configuration parameter can be used to control the level of access that a
QMClient session has. It starts with the value defined in the QM configuration parameters and can
be modified to a higher level using the CONFIG command but cannot be taken to a lower level in
this way. Because QMClient sessions execute the LOGIN paragraph on connection, the CONFIG
command is easily executed from this paragraph.

It may also be useful to validate the client network address (See @IP.ADDR) in the LOGIN
paragraph.

QMClient API 1055

2.6-6

7.2 QMCall

The QMCall function calls a catalogued subroutine on the server.

Format

VB QMCall ByVal SubrName as String, ByVal ArgCount as Integer, Optional ByRef
Arg1 as String, ...

C QMCall(char * SubrName, short int ArgCount, ArgList...)

Obj Session->Call(SubrName, ArgList...)

where

SubrName is the name of the subroutine to be called.

ArgCount is the number of arguments following (not present in the QMBasic class
module API).

ArgList is a list of arguments to be passed to the subroutine.

The QMCall function calls the named catalogued subroutine on the server system. This subroutine
may take up to 20 arguments. QMClient does not provide a method to call subroutines with a
greater number of arguments.

In the Visial Basic as C APIs, there may be at most 20 variables named as arguments and these
must be declared as strings.

In the C API, the size of any argument variable that may be overwritten by the subroutine must be
large enough to receive the updated value. Failure to observe this rule will result in memory
corruption.

If the subroutine modifies the values of any of its arguments, this will be reflected in the variables
specified in ArgList. It is a good idea to ensure that arguments that are only used for values
returned from the subroutine are set to empty strings before the call to minimise data unnecessarily
sent across the network.

The called subroutine may make use of any of the standard QMBasic programming statements and
functions, however, it may not perform terminal input or output as there is no terminal associated
with a server process.

OpenQM1056

2.6-6

7.3 QMChange()

The QMChange() function replaces occurrences of one substring with another in a string.

Format

VB QMChange(ByVal Src as String, ByVal OldStr as String, ByVal NewStr as String,
Optional ByRef Occurrences as Long, Optional ByRef Start as Long) as String

C char * QMChange(char * Src, char * OldStr, char * NewStr, int Occurrences, int
Start)

where

Src is the string to be processed.

OldStr is the substring to be replaced.

NewStr is the replacement substring.

Occurrences is the number of occurrences of OldStr to be replaced. If omitted or specified
as less than one, all occurrences are replaced.

Start is the occurrence number from one of the first occurrence of OldStr to be
replaced. If omitted or less than one, replacement commences at the first
occurrence of OldStr.

The QMChange() function returns a new string with the specified substrings replaced.

One use of QMChange() is to replace mark characters with carriage return / line feed pairs when
transferring data from a dynamic array to a multi-line text box.

Note that in the C API library, a statement of the form

rec = QMChange(rec, old, new, 0, 0)

will return a pointer to a newly allocated memory area, overwriting the rec pointer. The old memory
is not freed by this call and it is therefore necessary to retain a pointer to the original rec string so
that it can be freed later.

QMClient API 1057

2.6-6

7.4 QMClearselect

The QMClearSelect function clears a select list.

Format

VB QMClearSelect ByVal ListNo as Integer

C void QMClearSelect(ByVal ListNo)

Obj Session->ClearSelect(ListNo)

where

ListNo is a valid select list number (0 to 10)

The QMClearSelect function clears the specified select list. No error occurs if the list was not
active.

Applications that use select list 0 (the default select list) and could leave unprocessed items in the
list should always clear it to avoid unwanted effects on later server processing.

OpenQM1058

2.6-6

7.5 QMClose

The QMClose function closes a file.

Format

VB QMClose ByVal FileNo as Integer

C void QMClose(int FileNo)

Obj Session->Close(FileNo)

where

FileNo is the file number returned by a previous QMOpen() call.

The server maintains a list of files open for processing by the client application. The QMClose
function causes the server to close the specified file. It is not normally necessary to close files as
there is no practical limit to the number of files that the server can hold open at once, however, for
best performance applications should close files if they are unlikely to be referenced for a
considerable time.

QMClient API 1059

2.6-6

7.6 QMConnect()

The QMConnect() function establishes a QMClient session.

Format

VB QMConnect(ByVal Host as String, ByVal Port as Integer, ByVal UserName as
String, ByVal Password as String, ByVal Account as String) as Boolean

C int QMConnect(char * Host, int Port, char * UserName, char * Password, char *
Account)

Obj Bool = Session->Connect(Host, Port, UserName, Password, Account)

where

Host is the IP address or name of the server system.

Port is the port number to which connection is to be made. Set this to -1 to use the
QM default port.

UserName is the user name under which the server process is to run.

Password is the password for the given UserName.

Account is the name of the QM account to be accessed.

The QMConnect() function attempts to establish a QMClient process on the system identified by
the Host argument. If successful, the function returns True. If unsuccessful, the function returns
False and the QMError() function can be used to retrieve a text error message identifying the
cause of the failure.

Host can reference the local machine. For an alternative method of starting a local QM session, see
the QMConnectLocal() function.

A single client may open up to four connections simultaneously. The internal session number
associated with the session opened by QMConnect() can be retrieved using QMGetSession(). All
subsequent QMClient function calls relate to the most recently opened session unless
QMSetSession() is used to select an alternative session.

QMClient sessions run the LOGIN paragraph (if present) but not the MASTER.LOGIN paragraph.
A QMClient session can be recognised within this paragraph by testing the value of @TTY which
will be "vbsrvr" for QMClient.

OpenQM1060

2.6-6

7.7 QMConnected()

The QMConnected() function confirms whether a QMClient session is open.

Format

VB QMConnected() as Boolean

C int QMConnected()

Obj Bool = Session->Connected

The QMConnected() function can be used by an application to determine whether a client session
is open.

QMClient API 1061

2.6-6

7.8 QMConnectLocal()

The QMConnectLocal() function establishes a QMClient session on the local system.

Format

VB QMConnectLocal(ByVal Account as String) as Boolean

C int QMConnectLocal(char * Account)

where

Account is the name of the QM account to be accessed.

The QMConnectLocal() function attempts to establish a QMClient process on the local system.
The process runs as the user executing the function. If successful, the function returns True. If
unsuccessful, the function returns False and the QMError() function can be used to retrieve a text
error message identifying the cause of the failure.

A single client may open up to four connections simultaneously. The internal session number
associated with the session opened by QMConnectLocal() can be retrieved using QMGetSession()
. All subsequent QMClient function calls relate to the most recently opened session unless
QMSetSession() is used to select an alternative session.

QMClient sessions run the LOGIN paragraph (if present) but not the MASTER.LOGIN paragraph.
A QMClient session can be recognised within this paragraph by testing the value of @TTY which
will be "vbsrvr" for QMClient.

NOTE: The underlying operating system call needed by QMConnectLocal() is not implemented on
Windows 98/ME. It will be necessary to use QMConnect for these systems.

QMConnectLocal() is not supported by the QMBasic class module API.

OpenQM1062

2.6-6

7.9 QMDcount()

The QMDcount() function counts delimited items in a string.

Format

VB QMDcount(ByVal Src as String, ByVal Delim as String) as Long

C int QMDcount(char * Src, char * Delim)

where

Src is the string to be processed

Delim is the delimiter character. If Delim is more than one character long, only the
first character is used.

The QMDcount() function is usually used to count fields, values or subvalues in a dynamic array
but can be used to count elements in any string that is separated by some single character delimiter.

QMClient API 1063

2.6-6

7.10 QMDel()

The QMDel() function deletes a field, value or subvalue from a dynamic array.

Format

VB QMDel(ByVal Src as String, ByVal Fno as Integer, ByVal Vno as Integer, ByVal
Svno as Integer) as String

C char * QMDel(char * Src, int Fno, int Vno, int Svno)

where

Src is the dynamic array to be processed

Fno is the number of the field to be deleted. If less than 1, 1 is assumed

Vno is the number of the value to be deleted. If less than 1, the entire field is
deleted.

Svno is the number of the subvalue to be deleted. If less than 1, the entire value is
deleted.

The QMDel() function returns a new dynamic array with the given field, value or subvalue deleted.
If the required item is not found, the original string is returned unchanged.

Note that in the C API library, a statement of the form

rec = QMDel(rec, 2, 1, 0)

will return a pointer to a newly allocated memory area, overwriting the rec pointer. The old memory
is not freed by this call and it is therefore necessary to retain a pointer to the original rec string so
that it can be freed later.

OpenQM1064

2.6-6

7.11 QMDelete()

The QMDelete function deletes a record from a file.

Format

VB QMDelete ByVal FileNo as Integer, ByVal Id as String

C void QMDelete(int FileNo, char * Id)

Obj Session->Delete(FileNo, Id)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be deleted.

The QMDelete function deletes the named record from the file open as FileNo. No error occurs if
the record does not exist.

Applications should always obtain an update lock for a record before deleting it. The lock is
released by this function.

QMClient API 1065

2.6-6

7.12 QMDeleteu()

The QMDeleteu function deletes a record from a file, retaining the record lock.

Format

VB QMDeleteu ByVal FileNo as Integer, ByVal Id as String

C void QMDeleteu(int FileNo, char * Id)

Obj Session->Deleteu(FileNo, Id)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be deleted.

The QMDeleteu function deletes the named record from the file open as FileNo. No error occurs if
the record does not exist.

Applications should always obtain an update lock for a record before deleting it. The lock is
retained on return from this function.

OpenQM1066

2.6-6

7.13 QMDisconnect

The QMDisconnect function terminates a QMClient session.

Format

VB QMDisconnect

C void QMDisconnect(void)

Obj Session->Disconnect

The QMDisconnect function terminates a QMClient session previously established using
QMConnect().

QMClient API 1067

2.6-6

7.14 QMDisconnectAll

The QMDisconnectAll function terminates all QMClient sessions from a client process.

Format

VB QMDisconnectAll

C void QMDisconnectAll(void)

A single client may establish multiple QMClient connections. The QMDisconnectAll function
terminates all such connections.

The QMDisconnectAll function has no equivalent in the QMBasic class module API as each
session is a separate instantiation of the object.

OpenQM1068

2.6-6

7.15 QMEndCommand

The QMEndCommand function aborts a command executed on the server that is requesting input.

Format

VB QMEndCommand

C void QMEndCommand(void)

Obj Session->EndCommand

This function may only be used when an immediately preceding QMExecute() or QMRespond()
function has returned a status of SV_PROMPT.

The QMEndCommand function causes the server command to be aborted.

QMClient API 1069

2.6-6

7.16 QMError()

The QMError() function returns extended error message text.

Format

VB QMError() as String

C char * QMError(void)

VB Str = Session->error

Some API functions set extended error text and return an error code of SV_ERROR when an error
condition occurs. The QMError() function can be used to retrieve this text.

Note that in the C API, this function returns a pointer to a statically allocated error message buffer.
The calling program must not attempt to free this memory.

OpenQM1070

2.6-6

7.17 QMExecute()

The QMExecute() function executes a command on the server.

Format

VB QMExecute(ByVal Cmnd as String, ByRef Errno as Integer) as String

C char * QMExecute(char * Cmnd, int * Errno)

Obj Str = Session->Execute(Cmnd, Errno)

where

Cmnd is the command to be executed.

Errno is an integer variable to receive status information.

The QMExecute() function executes the specified command on the server. The output from this
command is returned as a text string.

If the command completes without requesting input, the Errno variable is set to SV_OK.

If the command requests input, any output up to that point is returned and the Errno variable is set
to SV_PROMPT. The client may respond to this using the QMRespond() function or abort the
command using the QMEndCommand() function.

On completion of the command, QMStatus() will return the value of
@SYSTEM.RETURN.CODE.

The executed command may perform most functions of the QM database. Specific restrictions are:

Input may be requested from the client using the QMBasic INPUT and INPUT@ statements.
Use of the KEYIN() function is not allowed.

Testing for input using the QMBasic KEYREADY() function or the INPUT -1 syntax will not
show input waiting.

The length parameter of an INPUT statement will be ignored if present.

Execution of a further command from within the executed command may not behave correctly.

QMClient API 1071

2.6-6

7.18 QMExtract()

The QMExtract() function extracts a field, value or subvalue from a dynamic array.

Format

VB QMExtract(ByVal Src as String, ByVal Fno as Integer, ByVal Vno as Integer,
ByVal Svno as Integer) as String

C char * QMExtract(char * Src, int Fno, int Vno, int Svno)

where

Src is the dynamic array to be processed

Fno is the number of the field to be extracted. If less than 1, 1 is assumed

Vno is the number of the value to be extracted. If less than 1, the entire field is
extracted.

Svno is the number of the subvalue to be extracted. If less than 1, the entire value is
extracted.

The QMExtract() function returns the given field, value or subvalue from the source string. If the
required item is not found, a null string is returned.

OpenQM1072

2.6-6

7.19 QMField()

The QMField() function extracts one or more components of a delimited string.

Format

VB QMField(ByVal Src as String, ByVal Delimiter as String, ByVal Start as Long,
Optional ByRef Occurrences as Long) as String

C char * QMField(char * Src, char * Delimiter, int Start, int Occurrences)

where

Src is the string to be processed.

Delimiter is the single character delimiter separating components of the string.

Start is the number from one of the first component of Src to be returned.

Occurrences is the number of delimited of components of Src to be returned. If omitted (VB
only) or less than one, one component is returned.

The QMField() function returns the specified substring components of Src.

QMClient API 1073

2.6-6

7.20 QMFree()

The QMFree() function releases memory returned by other functions. It is only used with the C
API library.

Format

void QMFree(void * addr)

where

addr is the pointer to a dynamic memory area returned by another API function.

The QMFree() function is needed because the memory allocator used within the API functions may
not be compatible with that of the calling program.

OpenQM1074

2.6-6

7.21 QMGetSession()

The QMGetSession() function returns the internal session number associated with the currently
selected QMClient session.

Format

VB QMGetSession() as Integer

C int QMGetSession(void)

A single client may open multiple QMClient connections, each identified by a session number. The
QMConnect() and QMConnectLocal() functions select an available session number to use for the
newly created session which can be retrieved using QMGetSession(). All subsequent QMClient
function calls relate to this session until an alternative session is selected using QMSetSession().

The QMGetSession() function has no equivalent in the QMBasic class module API as each session
is managed as a separate instantiation of the object.

QMClient API 1075

2.6-6

7.22 QMIns()

The QMIns() function inserts a field, value or subvalue in a dynamic array.

Format

VB QMIns(ByVal Src as String, ByVal Fno as Integer, ByVal Vno as Integer, ByVal
Svno as Integer, ByVal NewData as String) as String

C char * QMIns(char * Src, int Fno, int Vno, int Svno, char * NewData)

where

Src is the dynamic array to be processed

Fno is the number of the field to be inserted. If less than 1, 1 is assumed.

Vno is the number of the value to be inserted. If less than 1, an entire field is
inserted.

Svno is the number of the subvalue to be inserted. If less than 1, an entire value is
inserted.

NewData is the new data to form the new dynamic array element.

The QMIns() function returns a new dynamic array with the specified field, value or subvalue
inserted.

Note that in the C API library, a statement of the form

rec = QMIns(rec, 2, 1, 0, new_data)

will return a pointer to a newly allocated memory area, overwriting the rec pointer. The old memory
is not freed by this call and it is therefore necessary to retain a pointer to the original rec string so
that it can be freed later.

OpenQM1076

2.6-6

7.23 QMLocate()

The QMLocate() function searches a dynamic array for a field, value or subvalue matching a given
string.

Format

VB QMLocate(ByVal Item as String, ByVal DynArray as String, ByVal Fno as
Integer, ByVal Vno as Integer, ByVal Svno as Integer, ByRef Pos as Integer,
ByVal Order as String) as Boolean

C int QMLocate(char * Item, char * DynArray, int Fno, int Vno, int Svno, int * Pos,
char * Order)

where

Item is the item to find.

DynArray is the dynamic array to be processed.

Fno is the number of the field at which the search is to begin. If less than 1, 1 is
assumed.

Vno is the number of the value at which the search is to begin. If less than 1, the
function searches for a field containing Item.

Svno is the number of the subvalue at which the search is to begin. If less than 1, the
function searches for a value containing Item.

Pos is an integer variable to receive the position information.

Order identifies the sort method to the applied. This may be:
AL Ascending, left aligned
AR Ascending, right aligned
DL Descending, left aligned
DR Descending, right aligned
If omitted, no sort order is applied.

The QMLocate() function searches a dynamic array at one of three levels:

If Vno is less than 1, the function searches the dynamic array for a field matching Item, starting at
the field position given by Fno.

If Vno is given but Svno is less than 1, the function searches field Fno of the dynamic array for a
value matching Item, starting at the value position given by Vno.

If Vno and Svno are given, the function searches field Fno, value Vno of the dynamic array for a
subvalue matching Item, starting at the value position given by Svno.

The Order argument determines the sorting system to be applied during the search:

QMClient API 1077

2.6-6

If Order is a null string, no sort rules are applied. The function scans all applicable dynamic array
elements for a match against Item. The Pos variable will be returned as the position at which the
item was found. If the item is not found, Pos will be returned as the position at which a new element
could be appended.

If the first character of Order is A, an ascending sort is applied. If the first character of Order is D,
a descending sort is applied. In either case, the search terminates if an entry is found that would be
beyond the correct position for Item. In this case, if the item is not found, Pos will be returned as
the position at which to insert Item to maintain the correct sort order.

If the second character of Order is L, a left aligned comparison is performed. Each entry of the
dynamic array is compared with Item character by character from the left until a difference is
found.

If the second character of Order is R, a right aligned comparison is performed. If the two items
being compared are of different lengths, spaces are added to the front of the shorter item before
comparison.

The QMLocate() function returns True if the item is found, False if it is not found.

OpenQM1078

2.6-6

7.24 QMLogto()

The QMLogto() function moves to an alternative account.

Format

VB QMLogto(ByVal Account as String) as Boolean

C int QMLogto(char * Account)

Obj Bool = Session->Logto(Account)

where

Account is the name of the QM account to be accessed.

The QMConnectLocal() function attempts to move to the named account. If successful, the
function returns True. If unsuccessful, the function returns False and the QMError() function can
be used to retrieve a text error message identifying the cause of the failure.

If the VOC of the current account contains an executable item named ON.LOGTO, usually a
paragraph, this will be executed before moving to the new account.

If the VOC of the new account contains an executable item named LOGIN, this will be executed on
arrival in the new account.

A QMClient session can be recognised within these paragraphs by testing the value of @TTY
which will be "vbsrvr" for QMClient.

QMClient API 1079

2.6-6

7.25 QMMarkMapping

The QMMarkMapping function enables or disables mark mapping for a directory file.

Format

VB QMMarkMapping ByVal FileNo as Integer, ByVal State as Integer

C void QMMarkMapping(int FileNo, int State)

Obj Session->MarkMapping(FileNo, State)

where

FileNo is the file number returned by a previous QMOpen() call.

State is non-zero to enable mark mapping, zero to disable.

The QMMarkMapping function enables or disables mark character mapping on the file open as
FileNo. See the QMBasic MARK.MAPPINGstatement for more details.

OpenQM1080

2.6-6

7.26 QMMatch()

The QMMatch() function matches a string against a pattern template.

Format

VB QMMatch(ByVal Src as String, ByVal Pattern as String) as Boolean

C int QMMatch(char * Src, char * Pattern)

where

Src is the string to be processed.

Pattern is the pattern template to be used.

The QMMatch() function tests whether Src matches the Pattern template consisting of one or more
concatenated items from the following list.

... Zero or more characters of any type
0X Zero or more characters of any type
nX Exactly n characters of any type
n-mX Between n and m characters of any type
0A Zero or more alphabetic characters
nA Exactly n alphabetic characters
n-mA Between n and m alphabetic characters
0N Zero or more numeric characters
nN Exactly n numeric characters
n-mN Between n and m numeric characters
"string" A literal string which must match exactly. Either single or double quotation

marks may be used.

The values n and m are integers with any number of digits. m must be greater than or equal to n.

The 0A, nA, 0N, nN and "string" patterns may be preceded by a tilde (~) to invert the match
condition. For example, ~4N matches four non-numeric characters such as ABCD (not a string
which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, 0N, their inverses (~0A, etc) and "".

The 0X and n-mX patterns match against as few characters as necessary before control passes to
the next pattern. For example, the string ABC123DEF matched against the pattern 0X2N0X
matches the pattern components as ABC, 12 and 3DEF.

The 0N, n-mN, 0A, and n-mA patterns match against as many characters as possible. For example,
the string ABC123DEF matched against the pattern 0X2-3N0X matches the pattern components as
ABC, 123 and DEF.

The pattern string may contain alternative templates separated by value marks. The QMMatch()
function tries each template in turn until one is a successful match against the string.

QMClient API 1081

2.6-6

7.27 QMMatchfield()

The QMMatchfield() function matches a character string against a pattern template and extracts
the part corresponding to a specified pattern component.

Format

VB QMMatchfield(ByVal Src as String, ByVal Pattern as String, ByVal Component as
Integer) as String

C char * QMMatchfield(char * Src, char * Pattern, int Component)

where

Src is the string to be processed.

Pattern is the pattern template to be used.

Component is the pattern template component number for which the corresponding part of
Src is to be returned.

The QMMatchfield() function matches Src against the Pattern template as described for the
QMMatch() function. If the string matches, the portion corresponding to the specified Component
is returned. If the string does not match the pattern, a null string is returned.

OpenQM1082

2.6-6

7.28 QMOpen()

The QMOpen() function opens a file.

Format

VB QMOpen(ByVal FileName as String) as Integer

C int QMOpen(char * FileName)

Obj FileNo = Session->Open(FileName)

where

FileName is the name of the file to be opened. This must correspond to an F or Q-type
entry in the VOC of the QM account in which the server is running.

The QMOpen() function opens a QM database file. The returned integer value is the file number
which must be used in all subsequent operations against this file. If the file cannot be opened, the
function returns zero. The QMStatus() function can be used to retrieve the error cause.

To open a dictionary, the FileName argument should commence with "DICT" and a single space
separating this prefix from the file name, for example:

DictNo = QMOpen("DICT READERS")

There is no practical limit to the number of files that can be open at one time.

QMClient API 1083

2.6-6

7.29 QMRead()

The QMRead() function reads a record without locking.

Format

VB QMRead(ByVal FileNo as Integer, ByVal Id as String, ByRef Errno as Integer) as
String

C char * QMRead(int FileNo, char * Id, int * Errno)

Obj Str = Session->Read(FileNo, Id, Errno)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be read.

Errno is an integer variable to receive status information.

The QMRead() function requests the server to return the record with key Id from the file opened
as FileNo.

If successful, the function returns the record as a dynamic array string and the Errno variable is set
to SV_OK.

If the record cannot be found, the function returns a null string and the Errno variable is set to
SV_ELSE. The QMStatus() function can be used to retrieve the error number.

Conditions that would normally cause a QMBasic program to abort or to take the ON ERROR
clause of a READ statement return a null string and the Errno variable is set to SV_ON_ERROR.
The QMStatus() function can be used to retrieve the error number.

In the C API library, the dynamic memory allocated for the returned string must subsequently be
freed by the calling program.

OpenQM1084

2.6-6

7.30 QMReadl()

The QMReadl() function reads a record with a shareable read lock.

Format

VB QMReadl(ByVal FileNo as Integer, ByVal Id as String, ByVal Wait as Boolean,
ByRef Errno as Integer) as String

C char * QMReadl(int FileNo, char * Id, int Wait, int * Errno)

Obj Str = Session->Readl(FileNo, Id, Wait, Errno)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be read.

Wait is a boolean value indicating the action to be taken if the record is currently
locked by another user:

True wait for the record to become available
False return an error code of SV_LOCKED

Errno is an integer variable to receive status information.

The QMReadl() function requests the server to return the record with key Id from the file opened
as FileNo. A shareable read lock is applied to the record. Any number of users may hold a
shareable read lock on the same record at one time but, while any user has a shareable read lock, no
other user can establish an update lock or a file lock.

If the action is blocked by a lock held by another user, the function returns a null string and the
Errno variable is set to SV_LOCKED. The QMStatus() function can be used to retrieve the user
number of the process holding the lock.

If successful, the function returns the record as a dynamic array string and the Errno variable is set
to SV_OK. The record is locked by the server process.

If the record cannot be found, the function returns a null string and the Errno variable is set to
SV_ELSE. The QMStatus() function can be used to retrieve the error number. The record is locked
by the server process. If the lock is not required, it should be released using the QMRelease()
function.

Conditions that would normally cause a QMBasic program to abort or to take the ON ERROR
clause of a READ statement return a null string and the Errno variable is set to SV_ON_ERROR.
The QMStatus() function can be used to retrieve the error number.

In the C API library, the dynamic memory allocated for the returned string must subsequently be
freed by the calling program.

QMClient API 1085

2.6-6

7.31 QMReadList()

The QMReadList() function reads a select list into a dynamic array in the client application

Format

VB QMReadList(ByVal ListNo as Integer, ByRef Errno as Integer) as String

C char * QMReadList(int ListNo)

Obj Str = Session->ReadList(ListNo)

where

ListNo is the number of the select list to be read in the range 0 to 10.

Errno receives an error value indicating the outcome of the request.

If the action is successful, the returned value contains a field mark delimited set of unprocessed
entries from the given list. The original list is destroyed by this action.

The Visual Basic API returns an empty string if there is no data to read. The C API returns NULL
in this situation.

A server application can read entries from a select list one at a time using the QMReadNext()
function. Because the select list is maintained on the server, retrieval of each entry requires passing
of a message pair between the client and the server. For best performance, the QMReadList()
function can be used to transfer the entire select list to the client where entries can then be extracted
using the QMExtract() function.

There are times when use of QMReadNext() may give apparently better performance. When QM
performs a select operation against a dynamic file, the file is actually processed as each entry is
taken from the list. There is, therefore, no lengthy silence while QM constructs the list before entries
can be retrieved. Use of QMReadList() requires the list to be fully constructed before it can be
returned to the client.

There is a further consideration for processes that use QMReadNext() and also update the file by
adding new records. Because QMReadNext() is finding records one by one as processing
progresses, any records written during the processing may subsequently be found by
QMReadNext(). Using QMReadList() to construct and retrieve the entire list before processing
commences ensures that records added during processing will not be included in the list.

OpenQM1086

2.6-6

7.32 QMReadNext()

The QMReadNext() function retrieves the next entry from a select list

Format

VB QMReadNext(ByVal ListNo as Integer, ByRef Errno as Integer) as String

C char * QMReadNext(int ListNo)

Obj Str = Session->ReadNext(ListNo)

where

ListNo is the number of the select list to be processed in the range 0 to 10.

Errno receives an error value indicating the outcome of the request. The C API does
not have this argument and returns NULL if an error occurs.

The QMReadNext() function retrieves the next entry from the select list identified by the ListNo
argument.

If successful, the function returns the list entry and, in the Visual Basic API, Errno is set to
SV_OK.

If the list is empty, the Visual Basic API function returns a null string and Errno is set to
SV_ELSE. In the C API implementation, the function returns NULL.

See also the QMReadList() function for a discussion of the relationship between QMReadNext()
and QMReadList().

Note that in the C API library, the returned string is dynamically allocated. A loop containing a call
to this function must free the memory from each call separately.

QMClient API 1087

2.6-6

7.33 QMReadu()

The QMReadu() function reads a record with an exclusive update lock.

Format

VB QMReadu(ByVal FileNo as Integer, ByVal Id as String, ByVal Wait as Boolean,
ByRef Errno as Integer) as String

C char * QMReadu(int FileNo, char * Id, int Wait, int * Errno)

Obj Str = Session->Readu(FileNo, Id, Wait, Errno)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be read.

Wait is a boolean value indicating the action to be taken if the record is currently
locked by another user:

True wait for the record to become available
False return an error code of SV_LOCKED

Errno is an integer variable to receive status information.

The QMReadu() function requests the server to return the record with key Id from the file opened
as FileNo. An exclusive update lock is applied to the record. Only one user may hold an exclusive
update lock on any one record at one time. An exclusive update lock also cannot be obtained if
another user holds a shareable read lock on the record or a file lock on the entire file.

If the action is blocked by a lock held by another user, the function returns a null string and the
Errno variable is set to SV_LOCKED. The QMStatus() function can be used to retrieve the user
number of the process holding the lock.

If successful, the function returns the record as a dynamic array string and the Errno variable is set
to SV_OK. The record is locked by the server process.

If the record cannot be found, the function returns a null string and the Errno variable is set to
SV_ELSE. The QMStatus() function can be used to retrieve the error number. The record is locked
by the server process to allow creation of the record. If the lock is not required, it should be released
using the QMRelease() function.

Conditions that would normally cause a QMBasic program to abort or to take the ON ERROR
clause of a READ statement return a null string and the Errno variable is set to SV_ON_ERROR.
The QMStatus() function can be used to retrieve the error number.

In the C API library, the dynamic memory allocated for the returned string must subsequently be
freed by the calling program.

OpenQM1088

2.6-6

7.34 QMRecordlock

The QMRecordlock function locks a record.

Format

VB QMRecordlock ByVal FileNo as Integer, ByVal Id as String, ByVal Update as
Integer,
ByVal Wait as Integer

C void QMRecordlock(int FileNo, char * Id, int Update, int Wait)

Obj Session->Recordlock(FileNo, Id, Update, Wait)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be locked.

Update is a boolean value specifying the type of lock to be obtained:
True Update lock
False Shareable read lock

Wait is a boolean value indicating the action to be taken if the record is currently locked
by another user:

True wait for the record to become available
False return an error code of SV_LOCKED

The QMRecordlock function can be used to obtain a lock on a record without reading the record.

QMClient API 1089

2.6-6

7.35 QMRelease

The QMRelease function releases a record lock.

Format

VB QMRelease ByVal FileNo as Integer, ByVal Id as String

C void QMRelease(int FileNo, char * Id)

Obj Session->Release(FileNo, Id)

where

FileNo is the file number returned by a previous QMOpen() call. If zero, all locks are
released.

Id is the id of the record to be unlocked. If given as a null string, all locks in the
file identified by FileNo are released.

The QMRelease function can be used to release a lock without writing or deleting the record. One
common use of this function is to release the lock obtained by a call to QMReadl() or QMReadu()
where the record was not found and the function returned the SV_ELSE status.

OpenQM1090

2.6-6

7.36 QMReplace()

The QMReplace() function replaces the content of a field, value or subvalue in a dynamic array.

Format

VB QMReplace(ByVal Src as String, ByVal Fno as Integer, ByVal Vno as Integer,
ByVal Svno as Integer, ByVal NewData as String) as String

C char * QMReplace(char * Src, int Fno, int Vno, int Svno, char * NewData as
String)

where

Src is the dynamic array to be processed

Fno is the number of the field to be replaced. If zero, 1 is assumed. If negative, a
new field is appended to the dynamic array.

Vno is the number of the value to be replaced. If zero, the entire field is inserted. If
negative, a new value is appended to the specified field.

Svno is the number of the subvalue to be replaced. If zero, the entire value is
inserted. If negative, a new subvalue is appended to the specified value.

NewData is the new data to form the new dynamic array element.

The QMReplace() function returns a new dynamic array with the specified field, value or subvalue
replaced.

Note that in the C API library, a statement of the form

rec = QMReplace(rec, 2, 0, 0, new_data)

will return a pointer to a newly allocated memory area, overwriting the rec pointer. The old memory
is not freed by this call and it is therefore necessary to retain a pointer to the original rec string so
that it can be freed later.

QMClient API 1091

2.6-6

7.37 QMRespond()

The QMRespond() function responds to a request for input from a command executed on the
server.

Format

VB QMRespond(ByVal Response as String, ByRef Errno as Integer) as String

C char * QMRespond(char * Response, int * Errno)

Obj Session->Respond(Response, Errno)

where

Response is the response to be sent.

Errno is an integer variable to receive status information.

This function may only be used when an immediately preceding QMExecute() or QMRespond()
function has returned a status of SV_PROMPT.

The QMRespond() function returns the given Response to the input request from the server
command. Further output from this command is returned as a text string.

If the command completes without requesting input, the Errno variable is set to SV_OK.

If the command requests further input, any output up to that point is returned and the Errno
variable is set to SV_PROMPT. The client may respond to this using the QMRespond() function
or abort the command using the QMEndCommand() function.

OpenQM1092

2.6-6

7.38 QMSelect

The QMSelect function generates a select list containing the ids of all records in a file.

Format

VB QMSelect ByVal FileNo as Integer, ByVal ListNo as Integer

C void QMSelect(int FileNo, int ListNo)

Obj Session->Select(FileNo, ListNo)

where

FileNo is the file number returned by a previous QMOpen() call.

ListNo is the select list number (0 to 10).

The QMSelect function constructs a list of record ids which can subsequently be processed using
the QMReadNext() function. Select list 0, the default select list, is used automatically by many
QM components to control their action and should, therefore, be used with caution. An unwanted or
partially processed select list can be cleared using the QMClearSelect function.

See the QMReadList() function for a discussion on different ways to process the select list.

The QMSelect function does not provide any method to select only those records that meet specific
conditions or to sort the list. These features can be accessed by executing query processor
commands using the QMExecute() function.

QMClient API 1093

2.6-6

7.39 QMSelectIndex

The QMSelectIndex function generates a select list from an alternate key index.

Format

VB QMSelectIndex ByVal FileNo as Integer, ByVal IndexName as String, ByVal
IndexValue as String, ByVal ListNo as Integer

C void QMSelectIndex(int FileNo, char * IndexName, char * IndexValue, int ListNo)

Obj Session->SelectIndex(FileNo, IndexName, IndexValue, ListNo)

where

FileNo is the file number returned by a previous QMOpen() call.

IndexName is the name of the alternate key index to be used.

IndexValue is the value to be located in the alternate key index.

ListNo is the select list number (0 to 10).

The QMSelectIndex function constructs a list of record ids from an entry in an alternate key index.
This list can subsequently be processed using the QMReadNext() function. Select list 0, the default
select list, is used automatically by many QM components to control their action and should,
therefore, be used with caution. An unwanted or partially processed select list can be cleared using
the QMClearSelect function.

See the QMReadList() function for a discussion on different ways to process the select list.

OpenQM1094

2.6-6

7.40 QMSelectLeft and QMSelectRight

The QMSelectLeft() and QMSelectRight() functions traverse an alternate key index, creating a
select list from the entry to the left or right of the last entry processed.

Format

VB QMSelectLeft(ByVal FileNo as Integer, ByVal IndexName as String, ByVal ListNo
as Integer) as String

C char * QMSelectLeft(int FileNo, char * IndexName, int ListNo)

Obj Str = Session->SelectLeft(FileNo, IndexName, ListNo)

where

Var is the variable to receive the index key value associated with the returned list.

FileNo is the file number returned by a previous QMOpen() call.

IndexName is the name of the alternate key index to be used.

ListNo is the select list number (0 to 10).

The QMSelectLeft() and QMSelectRight() functions construct a select list from the alternate key
index entry to the left or right of the one most recently returned by QMSelectIndex(),
QMSelectLeft() or QMSelectRight(). The position of the scan can be set at the extreme left using
QMSetLeft() or at the extreme right using QMSetRight().

These operations allow a program to find a specific value and then walk through successive values
in the sorted data structure that makes up an alternate key index.

If QMSelectIndex() is used to locate a value that does not exist in the index, QMSelectLeft() will
return a list of records for the value immediately before the non-existant one and QMSelectRight()
will return a list of records for the value immediately after the non-existant one.

The QMStatus() function returns zero if the operation is successful, non-zero if it fails because the
index does not exist.

QMClient API 1095

2.6-6

7.41 QMSetLeft and QMSetRight

The QMSetLeft() and QMSetRight() functions set the scanning position of an alternate key index
at the extreme left or right of the data.

Format

VB QMSetLeft ByVal FileNo as Integer, ByVal IndexName as String

C void QMSetLeft(int FileNo, char * IndexName)

Obj Session->SetLeft(FileNo, IndexName)

where

Var is the variable to receive the index key value associated with the returned list.

FileNo is the file number returned by a previous QMOpen() call.

IndexName is the name of the alternate key index to be used.

ListNo is the select list number (0 to 10).

The QMSetLeft and QMSetRight functions are used with QMSelectLeft() and QMSelectRight
to set the scan position to the first or last entry in an alternate key index.

The QMStatus() function returns zero if the operation is successful, non-zero if it fails because the
index does not exist.

OpenQM1096

2.6-6

7.42 QMSetSession()

The QMSetSession() function selects an active QMClient session to be referenced by subsequent
function calls.

Format

VB QMSetSession(Session as Integer) as Boolean

C int QMSetSession(int session)

A single client may open multiple QMClient connections, each identified by a session number. The
QMSetSession() function determines to which session subsequent QMClient function calls relate.

The QMSetSession() function has no equivalent in the QMBasic class module API as each session
is managed by a separate instantiation of the object.

QMClient API 1097

2.6-6

7.43 QMStatus()

The QMStatus() function returns the value of the QMBasic STATUS() function for the last server
function executed.

Format

VB QMStatus() as Long

C int QMStatus(void)

Obj Var = Session->ServerStatus

Many server actions set the QMBasic STATUS() value and return it to the client process. The
QMStatus() function retrieves this value. This function does not require passing of a client server
message pair as the value is held on the client system.

OpenQM1098

2.6-6

7.44 QMWrite

The QMWrite function writes a record.

Format

VB QMWrite ByVal FileNo as Integer, ByVal Id as String, ByVal Rec as String

C void QMWrite(int FileNo, char * Id, char * Rec)

Obj Session->Write(FileNo, Id, Rec)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be written.

Rec is the data to be written to this record.

The QMWrite function writes the given data to the file opened as FileNo. If a record with this Id
already exists, it is replaced. If the record does not already exist, it is added.

An application should always obtain an update lock on the record before writing it. This function
releases the lock.

QMClient API 1099

2.6-6

7.45 QMWriteu

The QMWriteu function writes a record, retaining the lock.

Format

VB QMWriteu ByVal FileNo as Integer, ByVal Id as String, ByVal Rec as String

C void QMWriteu(int FileNo, char * Id, char * Rec)

Obj Session->Writeu(FileNo, Id, Rec)

where

FileNo is the file number returned by a previous QMOpen() call.

Id is the id of the record to be written.

Rec is the data to be written to this record.

The QMWriteu function writes the given data to the file opened as FileNo. If a record with this Id
already exists, it is replaced. If the record does not already exist, it is added.

An application should always obtain an update lock on the record before writing it. The lock is
retained on return from this function.

Part

8
System Administration

OpenQM1102

2.6-6

8 System Administration

System Configuration
Configuration Parameters Parameter descriptions

UPDATE.LICENCE Apply a new licence

The Terminfo Database Terminal configuration

The qmtic Utility Terminfo compiler

Account Management
Accounts What is an account?

CREATE.ACCOUNT Create an account

DELETE.ACCOUNT Delete an account

The Login Process What happens when a user logs in

System Security
ADMIN.USER User administration

CREATE.USER Create a user

DELETE.USER Delete a user

LIST.USERS List user name details

PASSWORD Password management (Windows 98/ME)

SECURITY Enable, disable or report security settings

Process Management
LISTU Who is logged in?

PSTAT Monitoring processes

LOGOUT Killing a process

Monitoring the File System
LIST.FILES Determining the files in use

LIST.LOCKS Monitoring task locks

LIST.READU Monitoring record and file locks

UNLOCK Releasing a lock

FSTAT Monitoring file activity

ANALYSE.FILE File analysis

System Administration 1103

2.6-6

8.1 Configuration parameters

QM has a number of configuration parameters that determine major settings for the system. On
Windows systems, these are stored in a file named QM.INI in the Windows directory.
Modifications should preferably be made using the Configuration Editor from the QM program
menu rather than by editing the file itself because the Configuration Editor includes some validation
of the parameter values. On other platforms, the configuration parameters are stored in
/etc/qmconfig.

The file is divided into a number of sections, each with a section title enclosed in square brackets.

Configuration parameters may be global or private. Global parameters apply to all users of QM.
Private parameters, although initially set to the state defined in the configuration file, may be
updated for an individual process using the CONFIG command. Private configuration parameters
are marked with an asterisk in the table below.

The QM configuration parameters are:

CMDSTACK Determines the size of the command stack for all users. The value must be
in the range 20 to 999 and defaults to 99 if this parameter is not present.

CODEPAGE * Windows only. Specifies the code page to be used for QMConsole
connections. If omitted, QM uses the default console code page. Note that
a restriction in Windows requires that the console session is set to use
Lucida Console font for this feature to work. This parameter is not
applicable to the PDA version of QM.

DEADLOCK If set to 1, QM aborts any program that attempts to wait for a lock that
would result in a deadlock situation. The default value (0) allows
deadlocks to occur. This parameter is not applicable to the PDA version
of QM.

DUMPDIR * The pathname of the directory to receive process dump files. If this
parameter is null, the QMSYS directory is used. On some systems, users
may not have write access to this directory. DUMPDIR may be specified
as a full pathname or relative to the account directory.

ERRLOG Sets the maximum size in kilobytes of the error log maintained in the
errlog file in the QMSYS account directory. When the file reaches this
size, the first half of the logged data is discarded. If set to zero, error
logging is disabled. The minimum non-zero value is 10. A lower value
will be treated as 10. This parameter is not applicable to the PDA version
of QM.

EXCLREM * If set to 1, remote files are omitted from ACCOUNT.SAVE unless this
exclusion is over-ridden by other mechanisms within the
ACCOUNT.SAVE command processing. This parameter is not
applicable to the PDA version of QM.

FILERULE * Sets rules for special filename syntax usage. This value is formed by
adding together the following options as required:

 1 Allow account:file

OpenQM1104

2.6-6

 2 Allow server:account:file

 4 Allow PATH:pathname

The CONFIG command can be used to modify this value within an
individual process but only to remove options. Thus, the setting of this
parameter in the configuration file represents the most powerful set of
filename option rules that can be used.

FIXUSERS Reserves a range of user numbers for exclusive use of users specifying a
fixed user number when logging in using qm -n where n is the required
user number.

The format of this parameter is

FIXUSERS=u,n

where

u is the lowest user number in the reserved range.

n is the number of user numbers to be reserved.

The highest available QM user number is normally 1023. Therefore, the
value of u + n must not exceed 1024.

This feature is provided for compatibility with other environments in
applications that rely on a fixed user numbers to recognise users. It is
recommended that user login names should be used for this purpose in
new applications as this gives a more secure system. This parameter is not
applicable to the PDA version of QM.

FLTDIFF * The FLTDIFF configuration parameter determines how floating point
values are compared.

Just as some numbers such as one third cannot be represented accurately
in decimal, there are numbers that cannot be represented accurately in the
binary notation used in computer systems. Often, numbers that are
accurate in one number base, are inaccurate in the other. The inaccuracy
is extremely small, typically at about the fourteenth decimal place.

A program that tests a floating point value for equality with some other
value must allow for this inaccuracy rather than enforcing a strict
equality. The FLTDIFF parameter determines how close two values must

be to be considered as equal. The default value, 2.91E-11 (2-35), is an
industry standard but this can be set to any positive value less than one.

The format of the data in the parameter setting may be either a simple
number (0.0000000000291) or a number with an exponent (2.91E-11).

FSYNC * Additive values determining when an fsync operation is performed to flush
all updated data to disk:

1 Every time that a file's header is updated. This corresponds to all
structural changes within the file (overflow, split, merge, etc) and on
closing the file.

2 At transaction commit.

Use of FSYNC can have a severe effect on performance but gives greater
resilience to system failures.

System Administration 1105

2.6-6

File synchronisation always occurs on use of the QMBasic
WRITESEQF or FLUSH statements regardless of the setting of this
parameter. This parameter is not applicable to the PDA version of QM.

GDI * Setting this parameter non-zero on Windows systems causes the
SETPTR command to use GDI mode by default. This parameter is not
applicable to the PDA version of QM.

GRPSIZE * Determines the default group size in units of 1kb used when creating a
dynamic file. This parameter must be in the range 1 - 8 and defaults to 1.
For best performance, it should be a multiple of the operating system disk
block size.

INTPREC * Determines the rounding applied when converting a floating point number
to an integer.

Just as there are numbers that cannot be written accurately in decimal
such as one third, so there are numbers that cannot be stored accurately in
the floating point formats used by computer systems. For example,
entering a value of 17.9 will actually result in a stored value of
approximately 17.8999999999999986.

The language definition for conversion of floating point values to integers
states that the fractional part is discarded. To do so without rounding
would mean that

DISPLAY INT(17.9 * 100)

would display the value 1789 rather than the more intuitively obvious
1790.

To avoid this problem, QM applies rounding to the floating point value
based on the INTPREC setting when converting floating point values to
integers in the INT() function or any implicit conversion such as dynamic
array indices.

The parameter value identifies the decimal place at which rounding is
applied. The default value is 13. Setting a value of 0 causes no rounding
to be applied.

LICENCE Licence parameters. Use the UPDATE.LICENCE command in the
QMSYS account to apply new licence parameters.

LPTRHIGH * Determines the default number of lines per page when a print unit is first
referenced. This must be in the range 1 to 32767 and may be overridden
using the SETPTR command or equivalent QMBasic print unit
modification functions. This parameter is not applicable to the PDA
version of QM.

LPTRWIDE * Determines the default number of characters per line when a print unit is
first referenced. This must be in the range 1 to 1000 and may be
overridden using the SETPTR command or equivalent QMBasic print
unit modification functions. This parameter is not applicable to the PDA
version of QM.

OpenQM1106

2.6-6

MAXCALL * Sets the maximum depth of nested subroutine calls including internal
components of QM such as the command processor. If this limit is
reached due to, for example, a program error resulting in a recursive call
loop, QM will abort the program gracefully rather than failing in
unpredictable ways when it runs out of memory. The value must be in the
range 10 to 1000000 and defaults to 1000. This parameter is not
applicable to the PDA version of QM.

MAXIDLEN Sets the maximum allowed length of a record id. This must be in the range
63 to 255 and defaults to 63. Increasing this value has a significant effect
on the size of the internal lock tables. It is therefore recommended that the
value used should be consistent with the needs of the application.

QM tracks the length of the longest id ever written to a file. Attempting to
access a file where this exceeds the value of the MAXIDLEN parameter
will cause the operation to fail. The qmfix utility will correct the recorded
longest id value if records have been deleted from the file.

MUSTLOCK * Setting this parameter to 1 enforces use of locks when writing or deleting
records. If a program attempts to write or delete a record when it does not
own a record update (READU) lock on the record or a file lock on the file
being updated, the program will abort with error ER$NOLOCK. The ON
ERROR clause can be used to trap this error. Leaving the parameter at
its default value of 0 allows writes or deletes when no lock is in place.
This parameter is not applicable to the PDA version of QM.

NETFILES By default QM does not allow access to files on remote drives. This is
because the locking system cannot detect that two systems are accessing
the file simultaneously. Where it is certain that a file will never be opened
from two systems concurrently, setting this parameter to 1 will enable
access to remote files. Incorrect use of this feature can result in corrupt
data files.

Setting NETFILES to 2 enables incoming connections from other QM
servers accessing files via the QMNet interface.

These two mode settings are additive and can be used together. This
parameter is not applicable to the PDA version of QM.

NUMFILES The maximum number of QM data files that may be opened at one time.
This is a system wide limit. Use of the same file by multiple users counts
as one file. Attempting to open more than this number of files will cause
an application to fail. Setting the parameter significantly too high may
have a small performance impact. The LIST.FILES command can be
used to determine whether the value of this parameter is appropriate.

NUMLOCKS The maximum number of record locks that can be held at one time as a
system wide limit. If the limit is reached, processes attempting to get locks
will wait for space to become available in the lock table. Setting the
parameter significantly too high may have a small performance impact.
The DETAIL option of the LIST.READU command can be used to
determine whether the value of this parameter is appropriate.

OBJECTS * The maximum number of programs which may be loaded into memory
before discard is attempted. A program is a candidate to be discarded

System Administration 1107

2.6-6

when it is not part of the call stack and it is not referenced from any
subroutine variables from indirect calls. Setting this parameter to zero
implies no limit on the number of concurrently loaded programs.

OBJMEM * The maximum size of all loaded programs in Kb before discard is
attempted. Setting this parameter to zero implies no limit on the size of
concurrently loaded programs.

PDUMP Additive flags to configure PDUMP (process dump) features. At this
release the only flag value is

1 Ban use of PDUMP to dump processes running under other user
names except when performed by a user with administrator
rights.

PORTMAP Allows users to create a fixed mapping between tcp/ip port numbers and
QM user numbers. The format of this parameter is

PORTMAP=p,u,n

where

p is the lowest port number to be mapped.

u is the lowest corresponding user number.

n is the number of ports to be mapped.

The highest available QM user number is 1023. Therefore, the value of u
+ n must not exceed 1024.

Use of PORTMAP does not prevent users entering QM via the normal
shared port defined by the QMSRVR PORT configuration parameter.

Note that this parameter appears in the QM section of the configuration
file as it relates to both QM and QMSvc.

This feature is provided for compatibility with other environments in
applications that rely on a fixed port number to user number relationship
to recognise users. It is recommended that user login names should be
used for this purpose in new applications as this gives a more secure
system.

This feature is not supported on Windows 98/ME or on the PDA version
of QM.

On a Linux system, it will be necessary to create corresponding files in
the /etc/xinetd.d directory for each port to be monitored. The format of
these is

service qmsrvr
{
 id = qmsrvr4001
 port = 4001
 bind = 0.0.0.0
 type = UNLISTED
 protocol = tcp
 flags = REUSE
 socket_type = stream
 wait = no
 user = root
 server = /usr/qmsys/bin/qm

OpenQM1108

2.6-6

 server_args = -n
 log_on_failure += USERID
 disable = no
}

where the value 4001 in the above example is replaced by the port
number.

QMCLIENT Provides additional security control for QMClient sessions. This
parameter has one of three values:

0 No restrictions.
1 Bans use of QMOpen() and QMExecute(), limiting clients to

calling subroutines.
2 In addition to the level 1 restrictions, QMCall() can only be used to

call subroutines compiled with the $QMCALL compiler directive.

This parameter can be modified to a higher level in an individual process
using the CONFIG command but cannot be taken to a lower level in this
way. This parameter is not applicable to the PDA version of QM.

QMSYS Identifies the location of the QMSYS account directory. If the QMSYS
directory is moved for any reason, change this parameter to point to the
new location and the system should operate with no other changes. This
parameter is not applicable to the PDA version of QM.

RECCACHE * Sets the size of the record cache (default zero, maximum 32). When a QM
process reads a record, a copy of this record is retained in the cache. A
subsequent read for the same record can find it from the cache rather than
requiring an operating system call. The cache mechanism is most likely to
benefit an application that makes heavy use of the TRANS() function to
read the same record many times during a long query, for example when
looking up a tax rate that is applied to every record processed.

RINGWAIT * QM uses a ring buffer to hold type-ahead characters received from the
keyboard. If this becomes full, incoming data is thrown away and a bell
character is sent back to the terminal. Some applications may need to
send a large burst of data which would fill the ring buffer and hence be
truncated. Setting the RINGWAIT parameter to 1 causes QM to wait for
space to become available in the buffer rather than rejecting input.
Enabling this feature could result in the inability to use the break key if
the ring buffer is full. The AccuTerm terminal emulator requires this
parameter to be set to 1. (This parameter currently only applies to the
Windows version of QM).

SAFEDIR * Setting this parameter to 1 causes QM to adopt a careful update process
when writing records to directory files. The new record is written to a
temporary file, the old record is deleted (if it exists) and the temporary
item is renamed to replace it.

This mechanism results in reduced performance but ensures that the
original data is not lost if the write fails because, for example, there is
insufficient disk space available. This parameter is not applicable to the
PDA version of QM.

SH * (Not Windows) Determines the shell processor and its options to be used
when the SH command is used to start an interactive shell. If not set, this
parameter defaults to "/bin/bash -i" on Linux and "/bin/sh -i" on

System Administration 1109

2.6-6

FreeBSD. This parameter is not applicable to the PDA version of QM.

SH1 * (Not Windows) Determines the shell processor and its options to be used
when the SH command or the QMBasic OS.EXECUTE statement is
used to execute a single command. If not set, this parameter defaults to
"/bin/bash -c" on Linux and "/bin/sh -c" on FreeBSD. This parameter is
not applicable to the PDA version of QM.

SORTMEM * The size in kilobytes at which a sort switches from memory based to disk
based. The default value is 1024 (1Mb). Setting values lower than this
may lead to poorer performance unless you are severely restricted by
memory size. Setting values larger than this will require more memory
for large sorts.

SORTMRG * A disk based sort produces a series of intermediate files that must be
merged to produce the final result. The SORTMRG parameter specifies
the number of files merged in each pass. This must be in the range 2 to 10
and defaults to 4. The effect of changes to this parameter on sort times is
dependant on the relative performance of the disk and processor.

SORTWORK * The pathname of the directory to hold temporary sort workfiles. These are
automatically deleted on normal completion of a sort. If this parameter is
null or the specified directory does not exist, the directory defined by the
TEMPDIR parameter is used. This parameter is not applicable to the
PDA version of QM.

SPOOLER * Sets the name of the default spooler on non-Windows platforms. If this
parameter is not specified or is a null string, the lp spooler is used. The
name specific may be another standard spooler (e.g. lpr) or a user written
program or shell script to perform custom print management.

The qualifying data to this configuration parameter can include other
options to be passed to the selected spooler. This parameter is not
applicable to the PDA version of QM.

STARTUP Sets a command to be executed when QM starts. This may not exceed 80
characters and may not contain double quotes. This parameter is not
applicable to the PDA version of QM.

This process will run the MASTER.LOGIN and LOGIN paragraphs in
the same way as any other QM session.

On Windows. persistent shared memory must be enabled with the
QMSRVR OPTIONS parameter. The command will be executed when
the QMSvc service starts. Note that it will run as the powerful System
user which could represent a security risk.

TEMPDIR * The pathname of the directory to hold temporary files. These are normally
automatically deleted when no longer required but it is recommended that
this parameter points to a directory that is cleared on restart of the system
so that any files left behind at a system failure will be deleted. If this
parameter is null or the specified directory does not exist, QM uses the
TEMP subdirectory of the QMSYS account on Windows or the operating
system temporary directory on other platforms. This parameter is not
applicable to the PDA version of QM.

OpenQM1110

2.6-6

TERMINFO * The pathname of the directory holding the terminfo database. This
defaults to a subdirectory named terminfo under the QMSYS directory.
This parameter is not applicable to the PDA version of QM.

YEARBASE * The earliest year in the 100 year range of dates entered with two digit year
numbers. This parameter is optional and defaults to 1930.

The QMSRVR configuration parameters control the QMSvc service (Windows NT and later) or its
predecessor, QMSrvr (Windows 98/ME and USB installations). They are not used on other
platforms. These parameters are:

MAXLOG Sets the maximum size of the log file (QMSvc only). A value of zero
causes QMSvc to start a new log each time the service is started, saving
the previous log as QMSvcLog.old. A non-zero value sets the maximum
size of the QMSvc.log file in kb. When this size is reached, the first half
of the data in the file is removed.

OPTIONS An additive value formed from QMSvc/QMSrvr option flags:

1 Log client disconnection (QMSvc only). There is a very small
system overhead for this but it should be negligible.

2 Persistent shared memory (QMSvc only). With this mode set, the
shared memory structures used by QM are created by QMSvc
(unless they already exist) and remain present until all user have
logged out of QM and QMSvc is shut down. This mode of
operation gives faster entry to QM and may be of use in web
servers or other applications that use frequent, short life QM
sessions..

PORT The port for incoming client telnet connections. Leave blank to use the
default port (4242). If QM is the only telnet style service used on the host
system, it may be useful to set this to 23, the standard port used by telnet
software.

Setting this port to zero disables incoming telnet client connections. See
also the PORTMAP QM configuration parameter described above.

QMCLIENT The port for incoming QMClient telnet connections. Leave blank to use
the default port (4243).

Setting this port to zero disables incoming QMClient connections.

RETRIES The maximum number of attempts allowed for entry of a valid username
and password on QMSvc connections. This parameter defaults to 3.

SERIAL Defines a serial port to be monitored for incoming QM connections.
Multiple SERIAL parameters may be specified. The format is

SERIAL=port,rate,parity,bits,stop

where

port = the port name (e.g. COM1)

rate = baud rate (e.g. 9600)

System Administration 1111

2.6-6

parity = none(0), odd(1), even(2)

bits = bits per byte (7 or 8)

stop = number of stop bits (1 or 2)

TIMEOUT The maximum wait period in seconds allowed during entry of a valid
username and password on QMSvc connections. This parameter defaults
to 30.

OpenQM1112

2.6-6

8.2 The Terminfo Database

Control sequences and other characteristics of terminal devices are defined in the terminfo database.
This is normally a subdirectory structure under the QMSYS account but can be moved elsewhere if
required by use of the TERMINFO configuration parameter. The structure of the terminfo database
closely mimics that found as a standard component on Linux and other operating systems though
QM has some private extensions to the internal library format.

This feature does not apply to the PDA version of QM.

Location and Structure

The terminfo directory contains a set of subdirectories named using the first character of the
terminal types stored within them. Each of these directories then contains a file for each terminal
type. Thus, for example, the definition for a vt100 terminal on a Windows system with the default
QMSYS location would be found in c:\qmsys\terminfo\v\vt100.

The definition files are stored in an encoded form that closely reflects the way in which QM uses the
data internally. QM provides a utility, qmtic, to compile or decompile terminfo entries.

A master source for a variety of terminals is in the QMSYS account directory as terminfo.src and
the entire set of definitions is compiled when QM is installed. To simplify maintenance of a private
set of new or modified terminal definitions, the QM installation process will look for a file named
terminfo.mods in the QMSYS account directory and, if it exists, will compile it after the standard
source.

Linux users wishing to transfer entries from the standard Linux terminfo database to the QM
terminfo database should use the Linux infocmp tool to decompile the Linux definition and then
recompile it using qmtic, removing any entries that are not supported on QM.

Source Format

Terminfo entries contain three types of item; booleans, numbers and strings.

A boolean item is present in the terminfo entry if the feature or capability that it represents is
supported by the terminal. QM currently does not make use of any of the boolean items.

A number entry holds the value of a numeric parameter. For example, the cols item defines the
normal number of columns per line.

A string item holds a control string. These may be codes to be sent to the terminal to perform a
specific task such as clearing the screen or moving the cursor, or may be a code sent by the terminal
when a specific key is pressed by the user. Strings representing commands sent to the terminal
device often include parameterised information such as screen positions or counts.

A terminfo source file consists of one or more terminal definitions separated by at least one blank
line. Lines commencing with a hash character (#) are comments and are totally ignored during
compilation. Each definition consists of a number of comma separated items. A definition can be
split over multiple lines by inserting a newline after a comma.

The first line of each entry contains a list of terminal types defined by that entry and a text

System Administration 1113

2.6-6

description. For example:

vt100|vt100-am|dec vt100 (w/advanced video),

This line is separated into a number of fields using the vertical bar (|) character. The last field is the
text description. All preceding fields are terminal device names. Thus, the entry introduced by the
line shown above defines the vt100 and vt100-am terminal types. There will be separate compiled
files for each of these terminals in the final terminfo database.

The remaining lines of the entry define the characteristics of the device. Although the order is not
fixed, terminfo entries normally have the booleans first, followed by the numbers, followed by the
strings.

A boolean entry consists only of its name. A number consists of the name, a hash character, and the
value of the parameter. A string consists of the name, an equals character (=), and the value of the
parameter. For example, the first few lines of the vt100 definition are:

vt100|vt100-am|dec vt100 (w/advanced video),
 am, xenl, msgr, xon,
 cols#80, it#8, lines#24, vt#3,
 bel=^G, cr=\r, csr=\E[%i%p1%d;%p2%dr, tbc=\E[3g,
 clear=\E[H\E[J$<50>, el=\E[K$<3>, ed=\E[J$<50>,
 cup=\E[%i%p1%d;%p2%dH$<5>, cud1=\n, home=\E[H,

String tokens may contain the following special character sequences:
\b Backspace (char 8)
\e Escape (char 27)
\f Formfeed (char 12)
\l Linefeed (char 10)
\n Linefeed (char 10)
\r Carriage return (char 13)
\s Space (char 32)
\t Tab (char 9)
\^ Caret (^)
\\ Backslash (\)
\x Ctrl-x (chars 0 - 31)
%x Parameter action as described below
%% Percent sign (%)
$<n> Insert an n millisecond delay. This code is ignored by QM, removing it from the final

string.

The %x parameter notation performs run time manipulation of the character string, often inserting
parameter values. These operations use a stack for intermediate results and are described in terms
of their C programming language equivalents:

%c pop top stack item and print it as a character (like %c in printf())
%d pop top stack item and print it as an integer (like %d in printf())
%s pop top stack item and print it as a string (like %s in printf())
%[[:]flags][width[.precision]][doxXs]

as in printf, flags are [-+#] and space. The ':' is used to avoid making %+ or %-
patterns (see below).

%p[1-9] push ith parm
%P[a-z] set dynamic variable [a-z] from top stack item
%g[a-z] get dynamic variable [a-z] and push it onto stack
%P[A-Z] set static variable [A-Z] from top stack item

OpenQM1114

2.6-6

%g[A-Z] get static variable [A-Z] and push it onto stack
%l replace topmost stack item with its string length
%'c' push char constant c
%{nn} push integer constant nn
%+ replace top two stack items with their sum
%- replace top two stack items with their difference
%* replace top two stack items with their product
%/ replace top two stack items with their quotient
%m replace top two stack items with the remainder from division
%& replace top two stack items with their logical AND
%| replace top two stack items with their logical OR
%^ replace top two stack items with their logical exclusive OR
%= replace top two stack items with the result of an equality test
%> replace top two stack items with the result of a greater than test
%< replace top two stack items with the result of a less than test
%A %O logical and & or operations for conditionals
%! replace top stack item with its logical inverse
%~ replace top stack item with its bitwise inverse
%i add 1 to first two parms (for ANSI terminals)
%? expr %t thenpart %e elsepart %;

if-then-else, %e elsepart is optional.

For those of the above operators which are binary and not commutative, the stack works in the
usual way, with

%gx %gy %m
resulting in x mod y, not the reverse.

For example, the QMBasic @(col,row) function translates to the cup (cursor position) terminfo
entry. For the vt100 definition shown above this is

cup=\E[%i%p1%d;%p2%dH$<5>

Taking this apart, element by element for a usage as @(10,5):
\E Escape character
[[character
%i Increment both arguments to allow for positions numbered from 1 rather than 0. The

argument values 10 and 5 thus become 11 and 6.
%p1 Push parameter 1 (11) onto the stack
%d Print top item from stack as an integer
; ; character
%p2 Push parameter 2 (6) onto the stack
%d Print top item from stack as an integer
H H character
$<5> Delay - Ignored by QM.

The end result is thus "Esc[11;6H".

Colour Mapping

Different terminal emulators use variations on the numeric values used to represent colours (see the
QMBasic @(-37) and @(-38) functions). To enable users to employ a consistent set of colour
values in application programs whilst working with different terminal emulators, the terminfo

System Administration 1115

2.6-6

definition may include an optional element named colourmap (British spelling) that provides a
translation between internal colour values and the actual colour number transmitted to the terminal.
The format of this entry is

colourmap=0|1|2|3|7|5|6|4|8|9|10|11|12|13|14|15

where the elements correspond to internal colour values zero upwards and the number in each
element is the colour value to be sent to the terminal. In this example, colours 4 and 7 have been
swapped.

Colours for which the value is not to be changed may be left blank and trailing unchanged values
may be omitted. Thus, the above example could be shortened to

colourmap=||||7|||4

User Definable Entries

The terminfo database includes 10 entries (u0 to u9) for user use. QM pre-defines the function of
two of these, the remaining eight are available for any purpose that the user wishes.

u0 - u7 @(-100) to
@(-107)

Undefined. Users may adopt these for any purpose.

u8 @(-108) IT$ACMD Asynchronous command execution prefix. This code
prefixes a command to be executed on the client
system followed by a newline. The QM session is not
suspended while the command is executed.

u9 @(-109) IT$SCMD Synchronous command execution prefix. This code
prefixes a command to be executed on the client
system followed by a newline. The QM session is
suspended while the command is executed.

The u8 code is used internally by some parts of QM. The remaining codes will only be used as
defined in user written application software.

AccuTerm Extensions

The AccuTerm terminal emulator includes support for additional special functions that are not part
of the standard terminal definitions for industry standard terminal types. These extra functions
include

Client side command execution (synchronous and asynchronous)

Screen region save and restore (used by the QMBasic debugger)

Mouse click detection

QM ships with extended definitions for some devices using terminal type names with a -at suffix
(e.g. vt100-at). Users can easily add similar extensions to other terminal definitions.

OpenQM1116

2.6-6

The qmtic Utility

The qmtic tool can be used to compile new terminal definitions or to decompile existing ones.
Although it is possible to store separate source definitions of each terminal type, QM includes a
single master source file, terminfo.src, in the QMSYS directory. To simplify maintenance of a
private set of new or modified terminal definitions, the QM installation process will look for a file
named terminfo.mods in the QMSYS account directory and, if it exists, will compile it after the
standard source.

The format of the qmtic command to compile terminfo data is:

qmtic {options} src...

where

src... is a list of one or more source files to be processed.

options are any of the following:

-ppath Use the terminfo database at the specified path.

-tname Compile only the specified terminal definition. This option may be
repeated to compile several definitions.

-v Verbose mode. Displays progress information.

-x Do not overwrite existing entries. Only definitions for terminals
not already in the database will be written.

The format of the qmtic command to decompile terminfo data is:

qmtic {options} -d name...

where

name... is a list of one or more terminal names to be processed.

options are any of the following:

-ppath Use the terminfo database at the specified path.

-v Verbose mode. Displays progress information.

Replacing the -d option with -dall will decompile all terminfo entries to produce a new master
source file.

The format of the qmtic command to display an index of terminal types is:

qmtic {options} -i

System Administration 1117

2.6-6

8.3 Application Level Security

A well designed application never allows an end user to reach a command prompt. This leaves
restriction of what a user may do within the control of the application itself. Where it is necessary to
provide differing levels of access to different users, QM provides several ways to identify attributes
of the current user:

@IP.ADDR User's IP address for network connections. This is also available in
QMBasic as SYSTEM(42).

@LOGNAME User's login name.

@TTY Terminal device name.

SYSTEM(1017) Port number for network connection.

A user could potentially escape from the controlled environment provided by the application if the
application were to abort. This can be avoided by a combination of the following techniques:

Disable the break key. The break key is automatically disabled until completion of the LOGIN
paragraph unless it is enabled within that paragraph by use of the BREAK ON command.
There should never be a need for use of the break key in a working application. In the unlikely
event of needing to re-enable it for a specific user as a result of an application fault, the system
administrator can use an extended form of the BREAK command to do this.

Use OPTION NO.USER.ABORTS to suppress all options through which a user can cause an
abort to occur. This removes the A option from the "Press return to continue" prompt, the query
processor pagination prompt and the break key options.

Implement the ON.ABORT paragraph. Despite the above techniques, an application may still
abort as a result of a run time error or use of the ABORT statement within the application
itself. When an abort occurs, QM discards all programs, menus, paragraphs, etc that are
running in the process and returns to the lowest level command processor. Before this displays
the command prompt, it checks in the VOC file for an executable item named ON.ABORT and,
if this is found, executes it. A typical ON.ABORT paragraph terminates the user's session after,
perhaps, logging the incident.

Some users such as application developers may need to be able to reach a command prompt. In this
case, security subroutines can be attached to R or V-type VOC entries to provide control over what
can be done.

OpenQM1118

2.6-6

8.4 Permissions

QM uses the underlying operating system to manage processes, files, devices, etc. Therefore, all
issues of access permissions ultimately lie with the operating system. This section gives some
guidance on setting permissions within a QM system but individual application needs should be
taken into account.

The QMSYS Account

The only users who should be working in the QMSYS account are system administrators. It is
reasonable that these people should have write access to QMSYS. No other user ever needs to
create an item in the QMSYS directory itself. Therefore the directory can be protected so that only
administrators can write to it.

System administrators need write access to all items in the QMSYS account. The following table
sets out the additional access rights needed for other users.

Developers Others

$FORMS Form queue definitions created with
SET.QUEUE for use with
SP.ASSIGN.

Full Full

$HOLD Hold file for QMSYS account None None

$HOLD.DIC Dictionary for $HOLD None None

$IPC Inter-process communication file Full Full

$LOGINS User name database Full Full

$MAP Catalogue map Full (note 1) None

$MAP.DIC Dictionary for $MAP Read Read

$SCREENS Screens database Read Read

$SVLISTS $SAVEDLISTS file None None

$VAULT Encryption key vault Read Read

ACCOUNTS Accounts database Read (note 2) Read (note 2)

ACCOUNTS.DIC Dictionary for ACCOUNTS Read Read

audit.log Encryption audit log None None

bin Executable files Read Read

BP Sample QMBasic items Read Read

cat Private catalogue None None

System Administration 1119

2.6-6

Developers Others

DICT.DIC Dictionary for dictionaries Read Read

DIR_DICT Dictionary for directory files Read Read

DOCS Documentation (Windows only) Read Read

errlog Optional error log file Full (note 3) Full (note 3)

ERRMSG Pick style error message file Read (note 4) Read (note 4)

ERRMSG.DIC Dictionary for ERRMSG Read Read

gcat Global catalogue Full Read (note 5)

MESSAGES Message database Read Read

NEWVOC Template VOC file Read Read

QM.VOCLIB VOC extension Read Read

stacks Command stack repository None None

SYSCOM System include records Read None

temp Temporary directory (Windows
only)

Full Full

terminfo Terminfo database Read Read

terminfo.src Terminfo definitions None None

VOC Vocabulary file Read Read

VOC.DIC Dictionary for VOC None None

errlog Error log Full Full

qm.hlp Help text (Windows only) Read Read

QMSvc.log QMSvc log (Windows only) None None

1. Write access to $MAP is only needed by users who execute the MAP command to create a
catalogue map with the default destination file name.

2. Any user who is to be allowed to create new accounts will need write access to this file.
Restricting write access on this file closes a potential security risk by preventing users
creating synonyms to existing accounts that might subvert application level security
mechanisms.

3. If error logging is enabled (see the ERRLOG configuration parameter), all users need full
access to the optional errlog file. Any user that does not have write access will not log
errors.

4. This file contains standard Pick style messages. Although rare, some applications may

OpenQM1120

2.6-6

write to this file.

5. It is possible to restrict access to individual items in the gcat subdirectory. Users need read
access (not execute access) to run a compiled QMBasic program.

Application Accounts

In general, users should have free access to all files. Taking write access away on the VOC can be
used to prevent users modifying its content but beware that some applications modify the VOC as
part of their normal operation.

Other System Files

The only QM file located outside of account structures is the configuration file (qm.ini in the
Windows directory on Windows, /etc/qmconfig on other platforms). All users need read access to
this file.

The configuration file is updated by the QMTerm terminal emulator and by the QMNet server
related commands. Users of these features therefore need write access.

System Administration 1121

2.6-6

8.5 Backup and Restore

QM does not provide any special backup and restore utilities but relies instead on use of standard
operating system level backup tools. This section sets out some points to consider in planning a
backup strategy. Hopefully, you have already thought of these...

· Determine what to backup. If your backup needs to be as quick as possible, remember that
it is usually unnecessary to back up system files that can easily be recreated.

· Do not forget that distributed applications sometimes have critical data stored on client
PCs. These need to be backed up at the same time as the server to preserve data integrity
across the entire backup.

· How often will you back up? You need to make a sensible trade-off between the time it
takes to backup and the difficulty of bringing the system up to date in the event of a restore.

· Consider when to backup in relation to your business routine. It is unsafe to backup a
database while it is being used except as described below. You will end up with data
integrity problems and, possibly, structural integrity problems in files that were being
modified while the backup progressed. The safest approach is to log all users off while the
backup is performed. It is not necessary to shutdown QM.

· Use a cycle of backup media rather than continuously overwriting the same media so that
you are secure from failures during the backup and also have multiple points in time to
which you can revert.

· Ensure that your backup media is kept away from the system that it represents. A fireproof
safe or an offsite store is best.

· Think carefully about how long you will keep your backups. There are often legal
requirements to be able to restore business data for several years. Remember that
technology moves on at a rapid pace. You need to ensure that you still have the appropriate
drives to read your old backups.

· Test your backups. Check that you really can restore your data if the need arises.

Backup Tools

Although it would be possible to use the ACCOUNT.SAVE command to create a backup of a QM
account, it is recommended that operating system level tools are used for this purpose. The account
transfer tools and T.xxx commands do, however, have the advantage that they can be used to merge
data with existing files.

Because individual records in hashed files cannot be accessed from outside of QM, operating
system level backup tools can only save and restore an entire file. The T.DUMP command can take
a select list specifying the records to be saved.

Live Backup

Sometimes there is no alternative to backing up a system while users are logged in. As mentioned
above, simply copying the database files while they are being updated will almost certainly lead to
inconsistent data, perhaps with structural problems that make restore impossible.

QM provides the ability to suspend database updates by use of qm -suspend from the operating

OpenQM1122

2.6-6

system command prompt. When this mode is in effect, applications will pause at any attempt to
modify a file until updates are enabled using qm -resume.

Rather than pausing the database for the duration of a full backup, various mechanisms are
available to minimise the time for which updates are suspended. If using mirrored disks, it would be
possible to suspend updates, break the mirror, resume updates, backup the offline half of the
mirrored data and then reconnect the mirror to catch up with changes during the backup.

Some environments provide snapshot backup systems where updates can be suspended, the
snapshot initiated and updates resumed. The actual backup process performed by the snapshot will
handle the complexities of database updates that occur during the backup.

Regardless of the technique used, beware that suspending updates will ensure structural integrity of
the saved files but will not ensure business level data integrity as the suspension may occur part
way through a series of related updates. Use of transaction programming techniques will help as the
suspension will occur on committal of the transaction but it is still possible that a business level
transaction is formed from multiple database transactions.

System Administration 1123

2.6-6

8.6 Monitoring the System

QM provides several tools to aid System Administrators in monitoring the system and locating
problems.

LISTU Displays a list of users currently logged in to QM

LIST.FILES Shows the names of all files currently open in the system. This command can
also help in determining the optimum value for the NUMFILES configuration
parameter.

LIST.LOCKS Lists process synchronisation (task) locks.

LIST.READU Lists all active record and file locks. Includes a report of who is waiting for
locks. The DETAIL option to this command can also help in determining the
optimum value for the NUMLOCKS configuration parameter.

FSTAT Shows file system performance related data.

PSTAT Displays process status information including the command or program being
executed.

HSM More useful for programmers than administrators, the HSM (hot spot monitor)
command shows the processing time spent in each module of an application.

Releasing Locks

Sometimes a QM process may fail to release a lock. In most cases, QM will tidy up automatically if
the program or process terminates but there may be times when it is necessary to release a lock
manually.

Be careful to consider the implications before releasing a lock. The lock was taken to protect
something from simultaneous update. Releasing a lock always carries the risk of data integrity
problems.

Record, file locks and process synchronisation (task) locks can be released with the UNLOCK
command. This command can only be executed from the QMSYS account and requires
administrator rights.

Terminating QM Sessions

A System Administrator can terminate a QM session using the LOGOUT command. Also, the qm
command has a three special options that may be of use to System Administrators.

qm -k uid Kill process with QM user id uid.

qm -k all Kill all QM processes.

qm -u List all active QM processes

QM will attempt to tidy up, releasing any resources owned by the terminated process. Note that

OpenQM1124

2.6-6

terminating a process carries the risk of data integrity problems if the termination occurs in the
middle of an update that affects multiple files.

The Windows Task Manager or the kill command on other platforms with signal number 9 (kill -9)
should only be used as a last resort if LOGOUT fails to kill the process. QM cannot catch this
event and hence cannot free resources assigned to the terminated process. If this style of process
termination is used while a QM process is updating a file, loss of data could occur.

The RECOVER.USERS command can be used to perform a limited automated cleanup after
forced termination but there are some resources that it cannot release.

System Administration 1125

2.6-6

8.7 Multi-Language Applications

QM includes support for text message output in multiple languages. The standard message library
installed with QM contains English messages texts. Additional language libraries may be available
from Ladybridge Systems or from QM dealers. Users can also perform their own translations of the
source text downloaded from the product web site.

The message text source file includes comment lines detailing the rules for successful translation. It
is highly recommended that users should use the two letter international country code as the
language identifier in the PREFIX line (e.g. FR for French).

Having obtained a suitable set of message texts by download of a pre-translated file or by
translation of the master source, this is installed by executing

LOAD.LANGUAGE pathname

in the QMSYS account where pathname points to the message text file to be installed. A single
system may have any number of languages installed and the non-English messages will be preserved
at an upgrade.

To select operation in a particular language, a QM process should execute

SET.LANGUAGE language.code

where language.code is the identifier used in the PREFIX line when the language was loaded. This
would typically be included in the LOGIN or MASTER.LOGIN paragraph. If an application
attempts to display a message for which there is no version in the selected language, the English
version will be used.

OpenQM1126

2.6-6

8.8 Error Logging

QM includes an error logging system that records brief details of errors that may require
investigation by system administrators or application developers. These include:

· Run time program errors (e.g. unassigned variables)

· User authentication errors (failed logins)

· Forced logout

· Internal file system errors.

The error log is maintained in a text file named errlog in the QMSYS directory. Although it can be
written directly by programs using the sequential file processing statements, this should be avoided
as the buffering used by these statements may result in lost messages. Application developers
should use the QMBasic LOGMSG statement or the LOGMSG command if they wish to add their
own messages to the log file.

To avoid faulty programs generating very large log files and to remove the need for file
maintenance, the ERRLOG configuration parameter sets the maximum size in kilobytes to which
the error log file may grow. When this size is reached, the first half of the data in the file is
discarded. The minimum acceptable non-zero value of the ERRLOG configuration parameter is
10. A smaller value will be treated as 10. Setting the ERRLOG parameter to zero disables error
logging.

Each log message consists of two lines of text. The first gives the date, time, QM user number,
process id and login name of the user generating the error. The second line gives the actual message,
indented by three spaces to make the file more readable. This format is easy to process using user
written tools if required.

System Administration 1127

2.6-6

8.9 QM Command Options

The QM executable stored in the bin subdirectory of the QMSYS account has a number of
command line options. The command option letters shown below are all case insensitive. Note that
to comply with Linux conventions, some of the options have a double hyphen prefix.

-n Logs the user in as user n where the value of n must be in the range of user
numbers reserved with the FIXUSERS configuration parameter. If there is
already a user logged in with this user number, the login fails. If the value of n
is not within the reserved range, the parameter is ignored.

-A Causes QM to prompt for the account name on entry.

-Aname Enters account name unless there is a fixed account name defined for the user
name of the user entering QM. Note that there is no space before the account
name.

-K n Kill the QM process for user n.

-K user Kill all QM processes for login id user.

-K all Kill all QM processes.

-L Apply a new licence.

-U List current QM users.

-QUIET Suppresses display of release information, etc on entry to QM. Useful in some
scripted sessions.

-RESTART Restart QM (not Windows).

-RESUME Resume database updates.

-START Start QM (not Windows).

-STDOUT (Windows only) QM normally uses the Windows console APIs to output data
to the screen. This option causes it to use the stdout file handle and is of use
when capturing the output or piping it into other processes. It should not be
used for normal terminal output as some display features may not work with
this option.

-STOP Stop QM (not Windows).

-SUSPEND Suspend database updates.

-TERM xxx Sets the initial terminal type. This may be changed later from within the
application. If this option is not used, QM defaults to the value of the operating
system TERM environment variable or, if this is not defined, vt100.

--HELP Display usage help.

--VERSION Displays version information.

OpenQM1128

2.6-6

It is also possible to execute a QM command directly from the operating system command prompt
by appending it to the start up of the QM session, after any other command options. For example:

qm RUN OVERNIGHT

Note that quotes may be needed if the QM command contains any characters with special meaning
to the operating system.

System Administration 1129

2.6-6

8.10 The qmfix Utility

The QM file system is designed to be robust, however, there are situations when power failures,
hardware failures or abnormal termination of a process might lead to structural integrity problems
within a file.

The qmfix utility can be used to check the structural integrity of a file and, if an error is detected,
then apply an automated correction. Although qmfix should always result in the file being usable,
there are error situations where data will be lost because it simply was not in the file.

To use qmfix, firstly ensure that no users have the file(s) to be processed open. It is safest to run
qmfix when no users are using QM. The qmfix utility is run from the operating system command
prompt, not from within QM. The command line is

qmfix options pathanme

where

options are case insensitive option codes from the following set:

-B Suppresses progress bar display. This can be of use when capturing
the output for later review as repainting of the progress bars may make
the captured data less easy to read.

-C Check file for errors (implied if B, F, Q and R options all absent)

-F Fix errors without querying

-L Log the screen output in qmfix.log

-Lpath Log the screen output in path

-Q Query before fixing errors

-R Recover space from unused primary and overflow blocks. Occasional
use of this function may improve performance of some large files.

pathname is the pathname of the file to be processed. This may be a list of may include
wildcard characters. qmfix will ignore names that do not correspond to QM files.
Thus, to check all files in a directory, simply type

qmfix *

Do not run qmfix with the -F option without running it to check for errors first.

Note that qmfix may report that a dynamic has an incorrect load value or record count if the file
was not closed properly at a system failure. These errors are unlikely to cause any serious problems
and will be corrected by qmfix if the -F option is used and automatically by select operations that
complete without any intervening file updates.

No automated error recovery tool can ever be 100% accurate in its decisions about the nature of
errors so there is a very small risk that qmfix could make the situation worse. Always backup a file
before fixing any errors in it.

Ladybridge Systems aim to provide software of the highest quality. We would be very interested to
receive copies of any files that are reported as faulty by qmfix so that we can investigate the cause
and improve the resilience of the QM product.

OpenQM1130

2.6-6

8.11 The qmidx Utility

The QM file system supports alternate key indices for retrieval of data based on the content of a
non-key field. Normally, these indices reside in the directory that represents the data file. This helps
to ensure that the entire file and its indices are handled as one object when performing backup and
restore operations

Sometimes it may be useful to place the indices elsewhere. This could be to improve load balancing
across multiple disk drives or to simplify exclusion of large indices from backups since they can
always be recreated from the data file. This separation of the indices from the data can be achieved
using the PATHNAME option of the CREATE.INDEX or MAKE.INDEX commands when the
first index is created.

The qmidx program is an operating system level command that allows users to report or modify the
location of the indices. It has four modes of operation:

qmidx -d data.path Deletes all indices for the named file.

qmidx -m data.path index.path Moves the indices for the named file to the new location
specified by index.path. If the index path is omitted, the
indices are returned to their default location in the
directory identified by data.path.

qmidx -p data.path index.path Sets the index path for the given data file. This operation
is required after use of an operating system level tool to
copy or move a data file to a new location. Failure to
perform this step when duplicating a file may result in
any changes to the copied file updating the indices of
the original file.

qmidx -q data.path Queries the location of the indices for the given data file.

This program must only be used when the file is not in use. Failure to adhere to this rule may
lead to data corruption or process failure.

Part

9
System Limits

OpenQM1132

2.6-6

9 System Limits

Maximum number of users Determined by the licence

Maximum number of phantoms Determined by the licence

Maximum hashed file size 16384Gb

Maximum sequential file size Limited only by the operating system

Maximum records in a file Limited only by file size

Maximum record key size 63 bytes, configurable to 255 bytes (MAXIDLEN parameter)

Maximum record size A little under 2Gb or available memory space

Maximum indices per file 32

Maximum AK index key size 255 bytes

Maximum record locks Set system wide by NUMLOCKS parameter. The upper limit is
determined only by available memory.

Maximum number of open files Set system wide by NUMFILES parameter. The upper limit is
determined only by available memory. A single file opened by
multiple users counts as one in this calculation.

Maximum program size 8Mb per program module

Maximum character string size A little under 2Gb or available memory space

Maximum integer value 32 bits (2147483647). The QM run machine will switch to
floating point representation for larger values

Maximum floating point value IEEE 64 bit representation. Upper limit 21024.

Part

10
Glossary of Terms

OpenQM1134

2.6-6

10 Glossary of Terms

Abort An event that occurs at a major application failure. Aborts can be
generated by QM internally if it detects a serious error, by application
software, or by the end user (though this can be disabled). All programs,
menus, paragraphs, etc active in the user's process are discarded and the
user returns to the command prompt. The ON.ABORT VOC item can be
used to capture this event and take special action.

Account A collection of database files, programs, etc that form an application.
Viewed from outside QM, an account is an operating system directory.

AK See Alternate Key Index

Alias A way to assign an alternative name to a command, perhaps only within
specific QM sessions. For example, users migrating from Pick style
environments frequently use ALIAS to make COPY run the COPYP
command.

Alternate Key Index An index structure that allows applications to identify all records that have
a particular value in for a secondary key item. The index contains a list of
primary key values for each secondary key value.

Association The relationship between two or more multivalued data items where the
values belong together. For example, an order processing system might
have two associated fields, one holding a list of product codes, the other a
list of quantities ordered.

Attribute An alternative name for a field.

B-tree files A file structure used to store alternate key indices. B-tree (balanced tree)
files use an internal structure that stores data in sorted order and hence
allow efficient access to ranges of key values.

Catalog(ue) A repository for application programs. QM supports three modes of
cataloguing; local, private and global. Local and private cataloguing
normally restrict access to the program to the one account. Globally
catalogued programs can be accessed from all accounts.

Class module A program source module that acts as a container for persistent data
definitions and public functions/subroutines in object oriented
programming.

Command prompt A prompt (a colon) displayed by the command processor when it is waiting
for a command to be entered. This prompt changes to a double colon if the
default select list is active.

Command stack A list of the most recent commands executed by a user. The command
stack editor allows a user to look back at this historic data, modify
commands and repeat commands. (In strict computing terms, the command
stack isn't a stack at all. It's a queue but the incorrect term is widely used.)

Common block A block of data items used by an application that are to be shared between
programs in the one user process.

COMO File A record in a special file ($COMO) that stores a copy of all output sent to
the user's terminal. COMO (command output) trapping is
enabled/disabled with the COMO command.

Glossary of Terms 1135

2.6-6

Conversion code A code describing how data must be transformed from its internal
representation within the database before displaying it to a user. For
example, dates are usually stored internally as the number of days since 31
December 1967.

Correlative A rather limited equivalent to I-type dictionary items supported by QM in
A and S-type items to simplify migration from other multivalue database
products.

Database A collection of data stored in a form that enables easy access to specific
items.

Debugger A development tool for debugging QMBasic programs.

Dictionary A secondary component attached to most database files that contains a
description of the format of records stored in the file and default settings
controlling how the query processor will display this data.

Directory files A simple file structure that makes use of the underlying operating system's
files to represent database records. Directory files do not offer high
performance but can be accessed from outside QM and are therefore
frequently used to exchange data with other software.

Dynamic array A character string divided into fields, values and subvalues using the mark
characters. A database record is stored in this way but dynamic arrays can
be used by application developers for other lists of items.

Dynamic file A type of hashed file that automatically changes its modulus value to react
to changes in the volume of data stored.

errlog An error log file in the QMSYS account. QM writes entries to this log
whenever an error is detected. Applications can also write to the log using
the QMBasic LOGMSG statement.

Field A column from the tabular representation of a database file.

File A database table. QM supports hashed files for high performance and
directory files for data exchange.

Format code A code describing the way in which a data item is to be displayed or
printed specifying, for example, the number of characters and justification.

Group A portion of a hashed file. The number of groups in a file varies
automatically according to the volume of data stored in it.

Group size The size of a group in multiples of 1024 bytes. QM allows group size
values in the range 1 to 8.

Hashed files High performance files in which the location of a record is calculated by
applying the hashing algorithm.

Hashing algorithm A mathematical calculation applied to the characters of a record key to
deduce the group in which that record will be stored.

Hot Spot Monitor A tool for identifying the number of times each module of an application is
executed and the processing time spent in them.

ID Another name for the primary key of a record.

I-descriptor Another name for an I-type.

Information style A reference to the command and programming language style found in the
Prime Information multivalue database product and others that adopt this

OpenQM1136

2.6-6

style.

Inline prompt A special syntax in a QM command that allows substitution of data into
the command. Although the name implies that the construct will prompt
the user for this data, there are many variants that retrieve data from
elsewhere.

I-type A dictionary item that describes a calculation that yields a result that can
then be used exactly as though the value was stored in the database.

Key A shortened term for the primary key of a record.

Keyword A word or symbol affecting the behaviour of a command. Keywords
correspond to K-type VOC entries.

Laws of Normalisation A set of rules that govern the construction of relational databases.
Multivalue databases discard the first law of normalisation, allowing them
to store multivalued data. This results in a data model that more accurately
reflects the real world than a fully normalised database, usually requires
fewer tables and is quicker to develop.

Locking A mechanism used to ensure that two users cannot update the same data
item simultaneously, a situation that would usually result in errors.

Mark characters Characters used within the QM to separate field, value and subvalues
within a database record or other dynamic array.

Menu A M-type VOC record that describes a numbered list of options to be
displayed to the user. Each option would have an associated sentence to be
executed and, optionally, some help text.

Modulus The number of groups in a hashed file.

Multi-file A file that is made up from multiple subfiles that share a single dictionary.
For example, a sales application might have a multi-file with a subfile for
each business region.

Multivalue Breaking a simple data item (typically a field) into multiple instances of
the same type of data.

Overflow QM uses high performance hashed files in which the location of a record
can be deduced from its primary key. If there is insufficient space to store
the record at its calculated location, the file system extends the group by
adding one or more overflow blocks.

Object A run time instance of a class module.

Paragraph A VOC record containing a script of commands to be executed.
Paragraphs can include special commands to provide conditional
execution, loops, jumps, prompts, etc.

Phantom A QM process that runs in the background without a terminal. Phantom
processes are started with the PHANTOM command and store a copy of
all output that would normally have gone to the terminal in the $COMO
file.

Phrase A part of a sentence, excluding the verb. Phrase entries may appear in the
VOC or in dictionaries. Phrases are used as short forms in commands, to
set defaults for the query processor, and to link fields within an
association.

Pick style A reference to the command and programming language style found in the

Glossary of Terms 1137

2.6-6

Pick multivalue database product and others that adopt this style. (The
first multivalue database environment was created by Dick Pick).

Primary key A character string that uniquely identifies a record in a file. QM supports
keys from 1 to 255 characters in length but lengths over 63 characters
require the MAXIDLEN configuration parameter to be amended.

Proc The predecessor of paragraphs found in other multivalue database
products and supported in QM for ease of migration. Development of new
Procs is discouraged.

Process dump file A text file optionally generated at a run time application error. This file
contains a full report on the state of the application at the time of the error.

QMAdmin A Windows graphical tool for simple monitoring of a QM system.

QMBasic The programming language used to develop QM applications.

QMClient An interface that allows access to QM from other languages such as
Visual Basic or C.

QMFix A tool for checking the internal structure of QM files after a system crash.

QMIdx A tool for updating internal pointers if an alternate key index file is
moved.

qmlnxd A daemon process that runs on non-Windows system to perform
background system monitoring tasks.

QMNet An integrated component of QM that allows access to data stored on
another QM server with full support for locking.

Record An item stored in a database file. The file system accesses data at the
record level. Interpretation and manipulation of the content of the record is
up to the application and related system tools. A record is usually formed
from multiple fields which may in turn be broken down into values and
subvalues.

Relational Database A style of database that represents data in the form of tables (relations).

Secondary key A data item in a record, or a value calculated from data in the record, that
is to be used to construct an alternate key index so that records can be
selected based on this value.

Select list A list of items, usually primary keys, to be processed. QM provides
memory resident numbered select lists that are private to the process using
them and disk based named lists that can be shared or retained for later
use.

Sentence A complete QM command or the start of one. A sentence may be typed at
the command prompt or it may be stored in the VOC for later execution
simply by typing the name of the VOC record.

String A sequence of characters stored as a data item.

Subvalue A subdivision of a value to represent multiple instances of the same type of
data within the value. For example, an order processing system might have
a pair of associated multivalued fields storing the product number and
quantity for each item ordered. If it was necessary to store the serial
number of each item shipped, this would be a subvalued field in the same
association.

Table Another name for a database file.

OpenQM1138

2.6-6

Terminfo An internal database that stores details of the control codes appropriate to
all terminal types supported by QM.

Transaction A related set up updates to a database that must either all happen or none
must happen.

Trigger A user written QMBasic subroutine that is executed whenever selected
operations are performed against a file. Triggers get their name from their
use to trigger other related updates but they can also be used for data
validation.

Value A subdivision of a field to represent multiple instances of the same type of
data. For example, an order processing system might have multiple values
stored in the product number field of an order.

Verb The command word in a sentence. This is always the first word and
corresponds to a V-type VOC entry.

VOC A file found in all accounts that contains a list of all the words and
symbols that can be used in commands and details of how they should be
processed. By changing the VOC, it is possible to extend or modify the
QM command language.

Vocabulary See VOC.

Index 1139

2.6-6

Index
- ! -
! 404

!ABSPATH() 1010

!ATVAR() 1011

!ERRTEXT() 1012

!GETPU() 1013

!PARSER() 1014

!PCL() 1017

!PICK() 1020

!PICKLIST() 1022

!QMCLIENT 1023

!SCREEN() 1024

!SETPU() 1026

!SETVAR() 1027

!SORT() 1028

!USERNAME() 1029

- # -
527

- $ -
$BASIC.OPTIONS 169

$CATALOG 603

$CATALOGUE 603

$COMMAND.STACK 35

$DEBUG 604

$DEFINE 605

$ECHO 159

$ELSE 607

$ENDIF 607

$EXECUTE 606

$IFDEF 607

$IFNDEF 607

$INCLUDE 608

$INSERT 608

$LIST 609

$MODE 610

$NO.CATALOG 612

$NO.CATALOGUE 612

$NOCASE.STRINGS 613

$PRIVATE.CATALOGUE 176, 219, 298

$QMCALL 614

$QUERY.DEFAULTS 438

- % -
% 541

- & -
& 463

- * -
* 158

- @ -
@(x,y) function 623

@-Variables 1005

- ~ -
~ 545

- < -
< 521

<= 517

<> 527

- = -
= 501

=< 517

=> 508

- > -
> 510

>< 527

>= 508

- A -
ABORT 160, 629

ABORTE 629

ABORTM 629

ABS() 631

ABSENT.NULL 461

ABSS() 631

OpenQM1140

2.6-6

ACCEPT.SOCKET.CONNECTION() 632

ACCOUNT.RESTORE 161

ACCOUNT.SAVE 163

Accounts 22

A-Correlatives 98

ACOS() 633

ADMIN.USER 165

AFTER 510

ALIAS 166

ALL.MATCH 462

ALPHA() 634

Alternate key indices 144

ANALYSE.FILE 167

ANALYZE.FILE 167

AND 463

ANDS() 635

ARG () 636

ARG.COUNT() 637

AS 464

ASCII() 638

ASIN() 639

ASSIGNED() 640

Assignment statements (QMBasic) 581

ASSOC 465

ASSOC.WITH 466

Associations 109

ATAN() 641

AUTOLOGOUT 168

AVERAGE 467

AVG 467

- B -
Backup and restore 1121

BASIC 169

BEFORE 521

BEGIN TRANSACTION 642

BELL 172

BETWEEN 468

BINDKEY() 644

BITAND() 646

BITNOT() 647

BITOR() 648

BITRESET() 649

BITSET() 650

BITTEST() 651

BITXOR() 652

BLOCK.PRINT 173

BLOCK.TERM 173

Boolean conversion (B) 114

BOXED 469

BREAK 174, 653

BREAK.ON 470

BREAK.SUP 473

BUILD.INDEX 175

BY 476

BY.DSND 477

BY.EXP 478

BY.EXP.DSND 480

BY-EXP 478

BY-EXP-DSND 480

- C -
CALC 482

CALCULATE 482

CALL 654

CAPTION 509

CASE 657

CATALOG 176

CATALOGUE 176

CATALOGUED() 658

CATS() 659

CD 191

CHAIN 660

CHANGE() 661

CHAR() 662

Character conversion (MCx) 122

Character values 1003

CLASS 663

CLEAN.ACCOUNT 178

CLEAR 665

CLEAR COMMON 666

CLEAR.ABORT 179

CLEAR.DATA 180

CLEAR.FILE 181

CLEAR.INPUT 182

CLEAR.LOCKS 183

CLEAR.PROMPTS 184

CLEAR.SELECT 185

CLEAR.STACK 186

CLEARCOMMON 666

CLEARDATA 180, 667

CLEARFILE 668

CLEARINPUT 182, 669

CLEARPROMPTS 184

CLEARSELECT 185, 670

CLOSE 671

CLOSE.SOCKET 673

CLOSESEQ 672

Index 1141

2.6-6

CLR 187

CNAME 188

CODEPAGE configuration parameter 1103

COL.HDG 484

COL.HDG.ID 485

COL.HDR.SUPP 486

COL.SPACES 487

COL.SPCS 487

COL.SUP 490

COL1() 674

COL2() 675

COL-HDR-SUPP 486

COL-SUPP 490

Command editor 37

Command line options 1127

Command line parser 1014

Command Parsing 34

Command scripts 30

Command stack 35

Comment 158

COMMIT 642

COMMON 676

Common blocks (QMBasic) 574

COMO 190

COMPARE() 678

COMPILE.DICT 191

Compiler directives (QMBasic) 602

Concatentation conversion (C) 115

CONFIG 192

CONFIG() 680

Configuration parameters 1103

CONFIGURE.FILE 193

Constants (QMBasic) 571

CONTINUE 682

CONV 488

Conversion codes 112

CONVERT 683

CONVERT() 683

COPY 195

COPY.LIST 199

COPYP 197

Correlatives 98

COS() 685

COUNT 453

COUNT() 686

COUNT.SUP 489

COUNTS() 686

CREATE 687

CREATE.ACCOUNT 201

CREATE.FILE 202, 688

CREATE.INDEX 205

CREATE.KEY 207

CREATE.SERVER.SOCKET 689

CREATE.USER 209

Creating and deleting files 83

CROP() 690

CRT 706

CS 187

CSV 491

CSVDQ() 691

CT 210

CUMULATIVE 493

CURRENCY 308

- D -
DATA 212, 692

Data Encryption 148

Data field definitions 43

Data types (QMBasic) 584

DATE 213

Date conversion (D) 116

DATE() 693

DATE.FORMAT 214

DBL.SPC 494

DBL-SPC 494

DCOUNT() 694

DEADLOCK configuration parameter 1103

DEBUG 215, 695

Debugger 1032

DEFFUN 697

Deinstallation 21

DEL 699

DELETE 216, 700

DELETE() 699

DELETE.ACCOUNT 218

DELETE.CATALOG 219

DELETE.CATALOGUE 219

DELETE.COMMON 220

DELETE.FILE 221

DELETE.INDEX 222

DELETE.KEY 223

DELETE.LIST 224

DELETE.SERVER 90

DELETE.USER 225

DELETELIST 701

DELETESEQ 702

DELETEU 700

DELIMITER 495

DET.SUP 497

Dictionaries 95

OpenQM1142

2.6-6

Dictionary A and S-type records 96

Dictionary C-type records 103

Dictionary D-type records 104

Dictionary I-type records 105

Dictionary L-type records 106

Dictionary PH-type records 107

Dictionary X-type records 108

DIM 703

DIMENSION 703

DIR() 708

Directory files 85

DISINHERIT 705

DISPLAY 226, 706

Display clause 443

DISPLAY.LIKE 499

DISPLAY.NAME 484

DIV() 709

DOWNCASE() 710

DPARSE 711

DPARSE.CSV 711

DQUOTE() 876

DTX() 713

DUMP 227

DUMPDIR configuration parameter 1103

Dynamic arrays 94

Dynamic files 87

- E -
EBCDIC() 714

ECHO 229, 715

ED 230

EDIT.LIST 241

ENCRYPT.FILE 242

END 717

ENTER 654

Entering QM 25

ENUM 500

ENUMERATE 500

ENV() 718

EQ 501

EQS() 719

EQU 720

EQUAL 501

EQUATE 720

ERRLOG configuration parameter 1103

ERRMSG 722

Error Logging 1126

Error numbers 1038

EVAL 502

EVALUATE 502

EXCLREM configuration parameter 1103

EXECUTE 723

EXIT 725

EXP() 726

Expressions (QMBasic) 577

EXTRACT() 727

- F -
F-Correlatives 100

Field extraction 130

FIELD() 728

FIELDS() 728

FIELDSTORE() 729

FILE 731

File definitions 44

File translation conversion 134

FILE.SAVE 243

FILEINFO() 733

FILELOCK 735

FILERULE configuration parameter 1103

Files 82

FILEUNLOCK 736

FIND 737

FIND.ACCOUNT 245

FINDSTR 739

FIRST 546

FIXUSERS configuration parameter 1104

FLTDIFF configuration parameter 1104

FLUSH 741

FMT 503

FMT() 742

FMTS() 742

FOLD() 743

FOLDS() 743

FOOTER 504

FOOTING 504, 744

FOR 746

FORCE 506

FORM.LIST 249

FORMAT 246

Format specifications 137

FORMLIST 748

F-pointers 44

FROM 507

FSTAT 250

FSYNC configuration parameter 1104

FUNCTION 749

Index 1143

2.6-6

- G -
GDI configuration parameter 1105

GE 508

GENERATE 252

GES() 751

GET.LIST 254

GET.MESSAGES() 753

GET.PORT.PARAMS() 755

GET.STACK 255

GETLIST 752

GETNLS() 754

GETPU() 756

GETREM() 758

Glossary of terms 1134

GO 256

GO TO 761

GOSUB 759

GOTO 761

GRAND.TOTAL 509

GRANT.KEY 257

GREATER 510

Group conversion (G) 119

GROUP.SIZE 193, 202

GRPSIZE configuration parameter 1105

GT 510

GTS() 762

- H -
HDR.SUP 511

HDR-SUPP 511

HEADER 512

HEADING 512, 763

HELP 258

HSM 259

HUSH 260, 765

- I -
ICONV() 766

ICONVS() 766

ID.ONLY 514

ID.SUP 515

IDIV() 767

ID-SUPP 515

IF 261, 768

IFS() 769

IN 770

INDEX() 771

INDEXS() 771

INDICES() 772

INHERIT 773

Inline prompts 69

INMAT() 774

INPUT 775

INPUT @ 777

INPUTCLEAR 669

INPUTCSV 781

INPUTERR 867

INPUTFIELD 782

INS 785

INSERT() 785

Installation 14

INT() 787

Integer conversion (IS, IL) 120

Interrupting commands 39

INTPREC configuration parameter 1105

Introduction 8

I-type expressions 110

ITYPE() 788

- K -
KEYCODE() 789

KEYEDIT 791

KEYEXIT 792

KEYIN() 793

KEYINC() 793

KEYINR() 793

KEYREADY() 794

KEYTRAP 795

Keywords 45

Keywords (query processor) 458

- L -
LABEL 516

Labels (QMBasic) 576

LARGE.RECORD 193, 202

LE 517

LEN() 796

Length conversion (L) 121

LENS() 796

LES() 797

LESS 521

LICENCE configuration parameter 1105

LIKE 518

Limits 1132

OpenQM1144

2.6-6

Limits (QMBasic) 615

LIST 447

LIST.COMMON 263

LIST.DIFF 264

LIST.FILES 265

LIST.INDEX 266

LIST.INTER 267

LIST.ITEM 449

LIST.KEYS 268

LIST.LABEL 450

LIST.LOCKS 270

LIST.READU 271

LIST.SERVERS 90

LIST.UNION 273

LIST.USERS 274

LIST.VARS 275

LISTF 276

LISTFL 277

LISTFR 278

LISTINDEX() 798

LISTK 279

LISTM 280

LISTPA 281

LISTPH 282

LISTPQ 283

LISTQ 284

LISTR 285

LISTS 286

LISTU 287

LISTV 288

LN() 799

LOAD.LANGUAGE 1125

LOCAL 800

LOCATE 802

LOCATE() 802

LOCK 289, 805

LOCKING 519

Locks 141

LOGIN paragraph 30

Login process 28

LOGIN VOC entry 28

LOGIN.PORT 291

LOGMSG 806

LOGOUT 293

LOGTO 294

LOOP 295, 807

LOOP / REPEAT 295

LOWER() 808

LPTR 520

LPTRHIGH configuration parameter 1105

LPTRWIDE configuration parameter 1105

LT 521

LTS() 809

- M -
MAKE.INDEX 296

MAP 298

MARGIN 522

Mark characters 94

MARK.MAPPING 810

Masked decimal conversion (MD, MR) 123

MASTER.LOGIN 28

MASTER.LOGIN paragraph 30

MAT 811

MATBUILD 813

MATCH (QMBasic) 577

MATCHES (QMBasic) 577

MATCHES (Query processor) 518

MATCHFIELD 814

MATCHING (Query processor) 518

Matching templates 74

MATPARSE 816

MATREAD 818

MATREADCSV 820

MATREADL 818

MATREADU 818

Matrix file i/o 590

MATWRITE 822

MATWRITEU 822

MAX 523

MAX() 824

MAXCALL configuration parameter 1106

MAXIDLEN configuration parameter 1106

MAXIMUM() 825

MAXLOG configuration parameter 1110

MED 299

Menu definitions 46

MERGE.LIST 302

MERGE.LOAD 193, 202

MESSAGE 304

MIN 524

MIN() 826

MINIMUM() 827

MINIMUM.MODULUS 193, 202

MOD() 828

MODIFY 305

MODS() 828

Monitoring the system 1123

MULTI.VALUE 526

Multifiles 202

Index 1145

2.6-6

Multivalue functions 595

MULTIVALUED 526

MUSTLOCK configuration parameter 1106

Mutli-valued database 10

- N -
NAP 830

National language support 308

NE 527

NEG() 831

NES() 832

NETFILES configuration parameter 1106

Network file access 90

NEW.PAGE 528

NEXT 746

NLS 308

NO 529

NO.CASE 530

NO.GRAND.TOTAL 531

NO.INDEX 532

NO.MATCH 533

NO.NULLS 534

NO.PAGE 535

NO.SPLIT 536

NOBUF 833

Non-English messages 1125

NOPAGE 535

NOT 527

NOT() 834

NOT.MATCHING 557

NSELECT 309

NULL 835

NUM() 836

NUMFILES configuration parameter 1106

NUMLOCKS configuration parameter 1106

- O -
Object orientated programming 597

OBJECT() 837

OBJETCS configuration parameter 1106

OBJINFO() 838

OBJMEM configuration parameter 1107

OCONV() 839

OCONVS() 839

OFF 327

ON GOSUB 840

ON GOTO 841

ON.ABORT paragraph 30

ON.EXIT paragraph 30

ON.LOGTO paragraph 30

ONLY 514

OPEN 842

OPEN.SOCKET() 848

OPENPATH 844

OPENSEQ 846

Operators (QMBasic) 577

OPTION 310

OPTIONS configuration parameter 1110

OR 537

ORS() 849

OS.ERROR() 850

OS.EXECUTE 851

OUTERJOIN() 852

OVERLAY 538

- P -
PAGE 853

PAGESEQ 539

Pagination 40

PAN 540

Paragraphs 48

PASSWORD 314

PATHNAME 193, 202

Pattern matching 74

Pattern matching conversion (P) 131

PAUSE 315, 854

PCT 541

PDEBUG 316

PDUMP 317

PERCENT 541

PERCENTAGE 541

PERFORM 723

Permissions 1118

PHANTOM 318

Phrase definitions 49

PORT configuration parameter 1110

PORTMAP configuration parameter 1107

PRECISION 855

PRINT 856

PRINTCSV 857

PRINTER 320

PRINTER CLOSE 858

PRINTER DISPLAY 859

PRINTER FILE 860

PRINTER NAME 861

PRINTER OFF 862

PRINTER ON 862

OpenQM1146

2.6-6

PRINTER RESET 863

PRINTER SETTING 864

PRINTER.SETTING() 865

PRINTERR 867

Printing 76

PRIVATE 868

Process dump files 1037

PROCREAD 869

PROCs 50

PROCWRITE 870

PROGRAM 871

PROMPT 872

PSTAT 322

PTERM 324

PUBLIC 873

PWR() 875

- Q -
QM command options 1127

QMBasic 568

QMBasic debugger 1032

QMBasic functions 616

QMBasic limits 615

QMBasic overview 569

QMBasic statements 616

QMCall 1055

QMChange() 1056

QMClearselect 1057

QMClient 1050

QMCLIENT configuration parameter 1108, 1110

QMClient security 1054

QMClose 1058

QMConnect() 1059

QMConnected() 1060

QMConnectLocal() 1061

QMDcount() 1062

QMDel() 1063

QMDelete() 1064

QMDeleteu() 1065

QMDisconnect 1066

QMDisconnectAll 1067

QMEndCommand 1068

QMError() 1069

QMExecute() 1070

QMExtract() 1071

QMField() 1072

qmfix 1129

QMFree() 1073

QMGetSession() 1074

qmidx 1130

QMIns() 1075

QMLocate() 1076

QMLogto() 1078

QMMarkMapping 1079

QMMatch() 1080

QMMatchfield() 1081

QMNet 90

QMopen() 1082

QMRead() 1083

QMReadl() 1084

QMReadList() 1085

QMReadNext() 1086

QMReadu() 1087

QMRecordlock 1088

QMRelease 1089

QMReplace() 1090

QMRespond() 1091

QMSelect 1092

QMSelectIndex 1093

QMSelectLeft() 1094

QMSelectRight() 1094

QMSetLeft 1095

QMSetRight 1095

QMSetSession() 1096

QMStatus() 1097

QMSYS configuration parameter 1108

qmtic 1116

QMWrite 1098

QMWriteu 1099

Q-pointers 63

QSELECT 326

Query processing 438

QUIT 327

QUOTE() 876

- R -
Radix conversions (MB, MX) 128

Radix conversions (MCDX, MCXD) 129

RAISE() 877

RANDOMIZE 878

RDIV() 879

READ 880

READ.SOCKET() 891

READBLK 881

READCSV 883

READL 885

READLIST 887

READNEXT 888

Index 1147

2.6-6

READSEQ 890

READU 892

READV 894

READVL 896

READVU 896

RECCACHE configuration parameter 1108

RECORDLOCKED() 898

RECORDLOCKL 899

RECORDLOCKU 899

Records 94

REFORMAT 452

RELEASE 328, 900

REM() 901

REMARK 903

Remote file pointers 63

Remote pointers 64

REMOVE 904

REMOVE() 904

RENAME 188

REPEAT 295, 807

REPEATING 544

REPLACE() 907

REPORT.SRC 329

REPORT.STYLE 330

REQUIRE.INDEX 542

REQUIRE.SELECT 543

RESET.MASTER.KEY 331

RESTORE.ACCOUNTS 332

RESTORE.SCREEN 909

RETRIES configuration parameter 1110

RETURN 910

RETURN TO 910

REUSE() 912

REVOKE.KEY 333

RINGWAIT configuration parameter 1108

RND() 914

ROLLBACK 642

RQM 940

RTRANS() 973

RUN 334

- S -
SAFEDIR configuration parameter 1108

SAID 545

SAMPLE 546

SAMPLED 547

SAVE.LIST 335

SAVE.SCREEN() 915

SAVE.STACK 336

SAVELIST 916

SAVING 548

SCRB 337

SCROLL 549

SEARCH 446

SECURITY 346

Security - application level 1117

Security - permissions 1118

Security subroutines 68

SED 347

SEEK 917

SEL.RESTORE 390

SELECT 445, 918

Select lists 151

SELECTE 920

SELECTINDEX 921

SELECTINFO() 923

Selection clause 441

SELECTLEFT 924

SELECTN 918

SELECTRIGHT 924

SELECTV 918

Self-installing applications 1043

SENTENCE() 926

Sentences 65

SEQ() 927

Sequential file i/o 592

SERIAL configuration parameter 1110

SERVER.ADDR() 928

SET 391

SET.ARG 929

SET.DATE 392

SET.DEVICE 393

SET.ENCRYPTION.KEY.NAME 394

SET.EXIT.STATUS 395, 930

SET.FILE 396

SET.LANGUAGE 1125

SET.PORT.PARAMS() 931

SET.QUEUE 397

SET.SERVER 90

SET.SOCKET.MODE() 932

SET.TRIGGER 398

SETLEFT 933

SETNLS 934

SETPORT 399

SETPTR 400

SETPU 935

SETREM 937

SETRIGHT 933

SH 404

SH configuration parameter 1108

OpenQM1148

2.6-6

SH1 configuration parameter 1109

SHIFT() 938

SHOW 455

SIN() 939

SINGLE.VALUE 550

SINGLEVALUED 550

SLEEP 405, 940

SOCKET.INFO() 942

SORT 447

Sort clause 442

SORT.ITEM 449

SORT.LABEL 450

SORTMEM configuration parameter 1109

SORTMRG configuration parameter 1109

SORTWORK configuration parameter 1109

SOUNDEX() 943

SP.ASSIGN 406

SP.CLOSE 408

SP.OPEN 408

SP.VIEW 409

SPACE() 944

SPACES() 944

SPLICE() 945

SPLIT.LOAD 193, 202

SPOKEN 545

SPOOL 411

SPOOLER configuration parameter 1109

SQRT() 946

SQUOTE() 947

SSELECT 445, 948

Standard subroutines 1009

Startup and shutdown 20

STARTUP configuration parameter 1109

STATUS 412, 950

STATUS() 949

STOP 413, 951

STOPE 951

STOPM 951

STR() 953

STRS() 953

STYLE 551

SUBR() 954

SUBROUTINE 956

SUBSTITUTE() 958

Substitution conversion (S) 133

SUBSTRINGS() 959

SUM 454

SUM() 960

SUMMATION() 961

SUPP 511

SWAPCASE() 962

System Administration 1102

System limits 1132

System security 80

SYSTEM() 963

- T -
T.ATT 393

T.DET 416

T.DUMP 414

T.EOD 416

T.FWD 416

T.LOAD 415

T.RDLBL 416

T.READ 416

T.REW 416

T.STAT 416

T.WEOF 416

TAN() 966

TCLREAD 967

TEMPDIR configuration parameter 1109

TERM 417

Terminal configuration 1112

Terminfo compiler 1116

TERMINFO configuration parameter 1110

Terminfo database 1112

TERMINFO() 968

Text substring conversion 135

TIME 419

Time conversion (MT) 127

TIME() 969

TIMEDATE() 970

TIMEOUT 971

TIMEOUT configuration parameter 1111

TO (Delimited reports) 555

TO (REFORMAT) 554

TO (Selection verbs) 553

TOTAL 556

TOTAL() 972

TRANS() 973

TRANSACTION ABORT 975

TRANSACTION COMMIT 975

TRANSACTION START 975

Transactions 150

Translation conversion 134

Triggers 146

TRIM() 977

TRIMB() 979

TRIMBS() 979

TRIMF() 980

Index 1149

2.6-6

TRIMFS() 980

TRIMS() 981

TTYGET() 982

TTYSET 983

Type conversion (QMBasic) 584

- U -
UNASSIGNED() 984

UNIQUE 548

UNLIKE 557

UNLOCK 420, 985

UNTIL 986

UPCASE() 987

UPDATE.ACCOUNT 421

UPDATE.LICENCE 422

UPDATE.RECORD 423

UPDATE.RECORD batch mode 426

UPDATE.RECORD visual mode 429

User defined conversions 136

User management 80

USING 558

- V -
Variable names (QMBasic) 571

Variables (QMBasic) 573

VERSION 193, 202

VERT 559

VERTICALLY 559

VFS 92

Virtual File System 92

VOC D-type records 43

VOC file 34, 41

VOC F-type records 44

VOC K-type records 45

VOC M-type records 46

VOC PA-type records 48

VOC PH type records 49

VOC PQ type records 50

VOC Q-type records 63

VOC R-type records 64

VOC S-type records 65

VOC verb definitions 66

VOC V-type records 66

VOC X-type records 67

VSLICE() 988

- W -
WAKE 990

Web server 1045

WEOFSEQ 991

WHEN 560

WHERE 436

WHILE 992

WHO 435

WITH 562

WITHOUT 565

WRITE 993

WRITE.SOCKET() 999

WRITEBLK 994

WRITECSV 995

WRITESEQ 997

WRITESEQF 997

WRITEU 993

WRITEV 1001

WRITEVU 1001

- X -
XLATE() 973

XTD() 1002

- Y -
YEARBASE configuration parameter 1110

	Introduction to the QM Database
	 What is a Multivalue Database?
	Installation
	Startup and Shutdown of QM
	Deinstallation
	Accounts
	Entering QM
	The Login Process
	Command Scripts

	The Command Environment
	The Command Stack
	The Command Editor
	Interrupting Commands
	Output Pagination
	The VOC File
	VOC D-type records - Data items
	VOC F-type records - File definitions
	VOC K-type records - Keywords
	VOC M-type records - Menu definitions
	VOC PA-type records - Paragraphs
	VOC PH-type records - Phrases
	VOC PQ-type records - PROCs
	VOC Q-type records - Remote file pointers
	VOC R-type records - Remote pointers
	VOC S-type records - Sentences
	VOC V-type records - Verbs
	VOC X-type records - Miscellaneous storage
	Security subroutines

	Inline Prompts
	Pattern Matching
	Printing
	User Management and System Security

	The QM File System
	Creating and Deleting Files
	Directory Files
	Dynamic Files
	QMNet Network File Access
	The Virtual File System
	Database Records and Mark Characters
	Dictionaries
	Dictionary A and S-type records
	Correlatives
	A-Correlatives
	F-Correlatives

	Dictionary C-type records
	Dictionary D-type records
	Dictionary I-type records
	Dictionary L-type records
	Dictionary PH-type records
	Dictionary X-type records
	Associations
	I-type expressions

	Conversion Codes
	Base 64 Conversion (B64)
	Boolean conversion (B)
	Concatenation conversion (C)
	Date conversion (D)
	Group conversion (G)
	Integer conversion (IS, IL)
	Length conversion (L)
	Character conversion (MCx)
	Masked decimal conversion (MD, ML, MR)
	Time conversion (MT)
	Radix conversion (MB, MO, MX)
	Radix conversion (MCDX, MCXD)
	Field extraction (<f,v,s>)
	Pattern matching conversion (P)
	Range Check Conversion (R)
	Substitution conversion (S)
	File translation conversion
	Text substring conversion
	User defined conversions

	Format Specifications
	Locks
	Alternate Key Indices
	Triggers
	Data Encryption
	Transactions
	Select Lists

	QM Commands
	* (Comment)
	$ECHO
	ABORT
	ACCOUNT.RESTORE
	ACCOUNT.SAVE
	ADMIN.USER
	ALIAS
	ANALYSE.FILE
	AUTOLOGOUT
	BASIC
	BELL
	BLOCK.PRINT and BLOCK.TERM
	BREAK command
	BUILD.INDEX
	CATALOGUE
	CLEAN.ACCOUNT
	CLEAR.ABORT
	CLEAR.DATA
	CLEAR.FILE
	CLEAR.INPUT
	CLEAR.LOCKS
	CLEAR.PROMPTS
	CLEAR.SELECT
	CLEAR.STACK
	CLR
	CNAME
	COMO
	COMPILE.DICT
	CONFIG
	CONFIGURE.FILE
	COPY
	COPYP
	COPY.LIST
	CREATE.ACCOUNT
	CREATE.FILE
	CREATE.INDEX
	CREATE.KEY
	CREATE.USER
	CT
	DATA
	DATE
	DATE.FORMAT
	DEBUG
	DELETE
	DELETE.ACCOUNT
	DELETE.CATALOGUE
	DELETE.COMMON
	DELETE.FILE
	DELETE.INDEX
	DELETE.KEY
	DELETE.LIST
	DELETE.USER
	DISPLAY
	DUMP
	ECHO
	ED
	EDIT.LIST
	ENCRYPT.FILE
	FILE.SAVE
	FIND.ACCOUNT
	FORMAT
	FORM.LIST
	FSTAT
	GENERATE
	GET.LIST
	GET.STACK
	GO
	GRANT.KEY
	HELP
	HSM
	HUSH
	IF
	LIST.COMMON
	LIST.DIFF
	LIST.FILES
	LIST.INDEX
	LIST.INTER
	LIST.KEYS
	LIST.LOCKS
	LIST.READU
	LIST.UNION
	LIST.USERS
	LIST.VARS
	LISTF
	LISTFL
	LISTFR
	LISTK
	LISTM
	LISTPA
	LISTPH
	LISTPQ
	LISTQ
	LISTR
	LISTS
	LISTU
	LISTV
	LOCK
	LOGIN.PORT
	LOGMSG
	LOGOUT
	LOGTO
	LOOP / REPEAT
	MAKE.INDEX
	MAP
	MED
	MERGE.LIST
	MESSAGE
	MODIFY
	NLS
	NSELECT
	OPTION
	PASSWORD
	PAUSE
	PDEBUG
	PDUMP
	PHANTOM
	PRINTER
	PSTAT
	PTERM
	QSELECT
	QUIT
	RELEASE
	REPORT.SRC
	REPORT.STYLE
	RESET.MASTER.KEY
	RESTORE.ACCOUNTS
	REVOKE.KEY
	RUN
	SAVE.LIST
	SAVE.STACK
	SCRB
	SECURITY
	SED
	SED - Records, buffers and windows
	SED - Standard key bindings
	SED - Standard key bindings quick reference
	SED - Cursor movement functions
	SED - Data insertion
	SED - Copying, deleting and restoring data
	SED - Working with multivalued data
	SED - Functions that operate of a block of data
	SED - Changing text
	SED - Macros
	SED - File handling
	SED - Repeating functions
	SED - Miscellaneous functions
	SED - Commands
	SED - Setting up default modes
	 SED - Source control
	 SED - Dynamic key bindings
	 SED - Extension Programming
	SED Extensions - Variables, constants and functions
	SED Extensions - Standard variables and functions
	SED Extensions - Argument Passing
	SED Extensions - An example of a complex extension
	SED Extensions - Local procedures and functions

	SEL.RESTORE
	SET
	SET.DATE
	SET.DEVICE
	SET.ENCRYPTION.KEY.NAME
	SET.EXIT.STATUS
	SET.FILE
	SET.QUEUE
	SET.TRIGGER
	SETPORT
	SETPTR
	SH
	SLEEP
	SP.ASSIGN
	SP.OPEN, SP.CLOSE
	SP.VIEW
	SPOOL
	STATUS
	STOP
	T.DUMP
	T.LOAD
	T.DET, T.EOD, T.FWD, T.RDLBL, T.READ, T.REW, T.STAT, T.WEOF
	TERM
	TIME
	UNLOCK
	UPDATE.ACCOUNT
	UPDATE.LICENCE
	UPDATE.RECORD
	UPDATE.RECORD batch mode
	UPDATE.RECORD visual mode

	WHO
	WHERE

	Query Processing
	The Selection Clause
	The Sort Clause
	The Display Clause
	SELECT and SSELECT
	SEARCH
	LIST and SORT
	LIST.ITEM and SORT.ITEM
	LIST.LABEL and SORT.LABEL
	REFORMAT
	COUNT
	SUM
	SHOW
	Query processor keywords
	ABSENT.NULL
	ALL.MATCH
	AND
	AS
	ASSOC
	ASSOC.WITH
	AVERAGE
	BETWEEN
	BOXED
	BREAK.ON
	BREAK.SUP
	BY
	BY.DSND
	BY.EXP
	BY.EXP.DSND
	CALC
	COL.HDG
	COL.HDG.ID
	COL.HDR.SUPP
	COL.SPACES
	CONV
	COUNT.SUP
	COL.SUP
	CSV
	CUMULATIVE
	DBL.SPC
	DELIMITER
	DET.SUP
	DISPLAY.LIKE
	ENUMERATE
	EQ
	EVAL
	FMT
	FOOTING
	FORCE
	FROM
	GE
	GRAND.TOTAL
	GT
	HDR.SUP
	HEADING
	ID.ONLY
	ID.SUP
	LABEL
	LE
	LIKE
	LOCKING
	LPTR
	LT
	MARGIN
	MAX
	MIN
	MULTI.VALUE
	NE
	NEW.PAGE
	NO
	NO.CASE
	NO.GRAND.TOTAL
	NO.INDEX
	NO.MATCH
	NO.NULLS
	NO.PAGE
	NO.SPLIT
	OR
	OVERLAY
	PAGESEQ
	PAN
	PERCENTAGE
	REQUIRE.INDEX
	REQUIRE.SELECT
	REPEATING
	SAID
	SAMPLE
	SAMPLED
	SAVING { UNIQUE}
	SCROLL
	SINGLE.VALUE
	STYLE
	TO (Selection verbs)
	TO (REFORMAT)
	TO (Delimited reports)
	TOTAL
	UNLIKE
	USING
	VERTICALLY
	WHEN
	WITH
	WITHOUT

	QMBasic
	QMBasic overview
	QMBasic - Variable names and values
	QMBasic - Scalars, matrices and dynamic arrays
	QMBasic - Common blocks
	QMBasic - Labels
	QMBasic - Expressions and operators
	QMBasic - Assignment statements
	QMBasic - Type conversion
	File Processing
	Matrix File I/O
	Sequential File I/O
	Multivalue Functions
	Object Oriented Programming

	QMBasic - Compiler Directives
	$CATALOGUE compiler directive
	$DEBUG compiler directive
	$DEFINE compiler directive
	$EXECUTE compiler directive
	$IFDEF and $IFNDEF compiler directives
	$INCLUDE compiler directive
	$LIST compiler directive
	$MODE compiler directive
	$NO.CATALOGUE compiler directive
	$NOCASE.STRINGS compiler directive
	$QMCALL compiler directive

	QMBasic Limits
	QMBasic Statements and Functions by Name
	@(x,y) Function
	ABORT
	ABS()
	ACCEPT.SOCKET.CONNECTION()
	ACOS()
	ALPHA()
	ANDS()
	ARG ()
	ARG.COUNT()
	ASCII()
	ASIN()
	ASSIGNED()
	ATAN()
	BEGIN TRANSACTION
	BINDKEY()
	BITAND()
	BITNOT()
	BITOR()
	BITRESET()
	BITSET()
	BITTEST()
	BITXOR()
	BREAK
	CALL, ENTER
	CASE
	CATALOGUED()
	CATS()
	CHAIN
	CHANGE()
	CHAR()
	CLASS
	CLEAR
	CLEARCOMMON
	CLEARDATA
	CLEARFILE
	CLEARINPUT
	CLEARSELECT
	CLOSE
	CLOSESEQ
	CLOSE.SOCKET
	COL1()
	COL2()
	COMMON
	COMPARE()
	CONFIG()
	CONNECT.PORT()
	CONTINUE
	CONVERT
	COS()
	COUNT()
	CREATE
	CREATE.FILE
	CREATE.SERVER.SOCKET
	CROP()
	CSVDQ()
	DATA
	DATE()
	DCOUNT()
	DEBUG
	DECRYPT()
	DEFFUN
	DEL
	DELETE
	DELETELIST
	DELETESEQ
	DIMENSION
	DISINHERIT
	DISPLAY
	DIR()
	DIV()
	DOWNCASE()
	DPARSE and DPARSE.CSV
	DTX()
	EBCDIC()
	ECHO
	ENCRYPT()
	END
	ENV()
	EQS()
	EQUATE
	ERRMSG
	EXECUTE
	EXIT
	EXP()
	EXTRACT()
	FIELD()
	FIELDSTORE()
	FILE
	FILEINFO()
	FILELOCK
	FILEUNLOCK
	FIND
	FINDSTR
	FLUSH
	FMT()
	FOLD() and FOLDS()
	FOOTING
	FOR / NEXT
	FORMLIST
	FUNCTION
	GES()
	GETLIST
	GET.MESSAGES()
	GETNLS()
	GET.PORT.PARAMS()
	GETPU()
	GETREM()
	GOSUB
	GOTO
	GTS()
	HEADING
	HUSH
	ICONV()
	IDIV()
	IF /THEN / ELSE
	IFS()
	IN
	INDEX()
	INDICES()
	INHERIT
	INMAT()
	INPUT
	INPUT @
	INPUTCSV
	INPUTFIELD
	INS
	INT()
	ITYPE()
	KEYCODE()
	KEYEDIT
	KEYEXIT
	KEYIN()
	KEYREADY()
	KEYTRAP
	LEN()
	LES()
	LISTINDEX()
	LN()
	LOCAL
	LOCATE
	LOCK
	LOGMSG
	LOOP / REPEAT
	LOWER()
	LTS()
	MARK.MAPPING
	MAT
	MATBUILD
	MATCHFIELD
	MATPARSE
	MATREAD
	MATREADCSV
	MATWRITE
	MAX()
	MAXIMUM()
	MIN()
	MINIMUM()
	MOD()
	NAP
	NEG()
	NES()
	NOBUF
	NOT()
	NULL
	NUM()
	OBJECT()
	OBJINFO()
	OCONV()
	ON GOSUB
	ON GOTO
	OPEN
	OPENPATH
	OPENSEQ
	OPEN.SOCKET()
	ORS()
	OS.ERROR()
	OS.EXECUTE
	OUTERJOIN()
	PAGE
	PAUSE
	PRECISION
	PRINT
	PRINTCSV
	PRINTER CLOSE
	PRINTER DISPLAY
	PRINTER FILE
	PRINTER NAME
	PRINTER
	PRINTER RESET
	PRINTER SETTING
	PRINTER.SETTING()
	PRINTERR
	PRIVATE
	PROCREAD
	PROCWRITE
	PROGRAM
	PROMPT
	PUBLIC
	PWR()
	QUOTE()
	RAISE()
	RANDOMIZE
	RDIV()
	READ
	READBLK
	READCSV
	READL
	READLIST
	READNEXT
	READSEQ
	READ.SOCKET()
	READU
	READV
	READVL
	RECORDLOCKED()
	RECORDLOCKL
	RELEASE
	REM()
	REMARK
	REMOVE
	REPLACE()
	RESTORE.SCREEN
	RETURN
	REUSE()
	RND()
	SAVE.SCREEN()
	SAVELIST
	SEEK
	SELECT
	SELECTE
	SELECTINDEX
	SELECTINFO()
	SELECTLEFT and SELECTRIGHT
	SENTENCE()
	SEQ()
	SERVER.ADDR()
	SET.ARG
	SET.EXIT.STATUS
	SET.PORT.PARAMS()
	SET.SOCKET.MODE()
	SETLEFT and SETRIGHT
	SETNLS
	SETPU
	SETREM
	SHIFT()
	SIN()
	SLEEP
	SOCKET.INFO()
	SOUNDEX()
	SPACE()
	SPLICE()
	SQRT()
	SQUOTE()
	SSELECT
	STATUS()
	STATUS
	STOP
	STR()
	SUBR()
	SUBROUTINE
	SUBSTITUTE()
	SUBSTRINGS()
	SUM()
	SUMMATION()
	SWAPCASE(0
	SYSTEM()
	TAN()
	TCLREAD
	TERMINFO()
	TIME()
	TIMEDATE()
	TIMEOUT
	TOTAL()
	TRANS(), RTRANS(), XLATE()
	TRANSACTION ABORT, TRANSACTION COMMIT, TRANSACTION START
	TRIM()
	TRIMB()
	TRIMF()
	TRIMS()
	TTYGET()
	TTYSET
	UNASSIGNED()
	UNLOCK
	UNTIL
	UPCASE()
	VSLICE()
	VOID
	WAKE
	WEOFSEQ
	WHILE
	WRITE
	WRITEBLK
	WRITECSV
	WRITESEQ
	WRITE.SOCKET()
	WRITEV
	XTD()

	Character Values for Terminal Input
	@-Variables
	Standard Subroutines
	!ABSPATH()
	!ATVAR()
	!ERRTEXT()
	!GETPU()
	!PARSER()
	!PATHTKN()
	!PCL()
	!PICK()
	!PICKLIST()
	!QMCLIENT
	!SCREEN()
	!SETPU()
	!SETVAR()
	!SORT()
	!USERNAME()
	!USERNO()
	!VOCREC()

	QMBasic Debugger
	Process Dump Files
	Error Numbers
	Building a Self-Installing Application
	Building a Web Server Application

	QMClient API
	Security Issues of the QMClient API
	QMCall
	QMChange()
	QMClearselect
	QMClose
	QMConnect()
	QMConnected()
	QMConnectLocal()
	QMDcount()
	QMDel()
	QMDelete()
	QMDeleteu()
	QMDisconnect
	QMDisconnectAll
	QMEndCommand
	QMError()
	QMExecute()
	QMExtract()
	QMField()
	QMFree()
	QMGetSession()
	QMIns()
	QMLocate()
	QMLogto()
	QMMarkMapping
	QMMatch()
	QMMatchfield()
	QMOpen()
	QMRead()
	QMReadl()
	QMReadList()
	QMReadNext()
	QMReadu()
	QMRecordlock
	QMRelease
	QMReplace()
	QMRespond()
	QMSelect
	QMSelectIndex
	QMSelectLeft and QMSelectRight
	QMSetLeft and QMSetRight
	QMSetSession()
	QMStatus()
	QMWrite
	QMWriteu

	System Administration
	Configuration parameters
	The Terminfo Database
	The qmtic Utility

	Application Level Security
	Permissions
	Backup and Restore
	Monitoring the System
	Multi-Language Applications
	Error Logging
	QM Command Options
	The qmfix Utility
	The qmidx Utility

	System Limits
	Glossary of Terms

