
2.6-6

OpenQM

Converting
Applications
to OpenQM

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Converting Applications to OpenQM

© 2007 Ladybridge Systems Ltd

Publisher
Special thanks to:

Users of the OpenQM product who have contributed topics and
suggestions for this manual.

Such information is always very much appreciated so please
continue to send comments to support@openqm.com.

Technical Editor

Cover Graphic

Ladybridge Systems Limited
17b Coldstream Lane
Hardingstone
Northampton
NN4 6DB
England

Martin Phillips

Ishimsi

3Contents

2.6-6

Table of Contents

1 Introduction 5

2 The Command Environment 6

3 The File System 8

4 Dictionaries 9

5 The Query Processor 10

6 Programs 11

7 Printing 15

8 Data Migration 16

9 QM Extensions 22

Introduction 5

2.6-6

1 Introduction

OpenQM, more usually referred to as QM, is not a clone of any other multivalue
database product. Whilst it includes many of the same features as other environments
such as UniVerse, Unidata, D3, etc, there are differences. Users migrating applications
will find that some features of their previous environment may not be present in QM.
There may also be features in QM that provide an alternative, sometimes better, way to
achieve the same thing.

Multivalue database products can be classified broadly into two types; Pick style (D3,
Reality, etc) and Information style (UniVerse, Unidata, etc). As a complication in this
classification, some of these environments provide mode settings to make them appear
more like the other group. For example, UniVerse has six "flavours" that provide close
compatibility with other products. It is classed as an Information style environment
because this is its default mode of operation.

QM can be classified as an Information style product but, like some of the others
mentioned above, it too has mode settings to give closer compatibility with other
environments. By careful selection of modes, it is usually possible to simplify the
migration process, however, migration of a realistic application will never be simply a
case of moving the software and recompiling. There will always be work to do but this
should be minimal unless the application makes extensive use of non-portable aspects
of the previous environment.

This guide brings together hints and tips from users who have performed this migration
task and should serve as a roadmap towards successful implementation. We are keen
to hear from users who find other topics that should be in this guide. Readers should
also refer to the main manual set for more information.

The sections in the guide are:

· The command environment
· The file system
· Dictionaries
· The query processor
· Programs
· Printing
· Data migration

Converting Applications to OpenQM6

2.6-6

2 The Command Environment

The QM command processor interprets commands using the VOC (vocabulary) file. The
role of this file is broadly similar to the MD file of Pick style systems but the records in it
are very different. Users migrating from Information style environments will recognise
the VOC as being very close to that of their previous system. The VOC contains a
Q-pointer to allow use of MD as a synonym.

A command line is considered as being made up of a number of tokens separated by
spaces. Where a token contains spaces, it must be enclosed in quotes. In general,
every token on the command line is looked up in the VOC file to find out what it means.
Query processor commands extend this process by looking the token up in the
dictionary first and only referencing the VOC if the token is not in the dictionary.

Although VOC record ids are case sensitive, the QM command processor gives the
appearance of case insensitivity by using a two stage lookup process in which it first
tries to find an item exactly as it was typed and, if it is not found, tries again in
uppercase. Because the standard VOC items are all stored in uppercase, this
effectively means that an item will be located, whatever case is used on entry. A similar
approach is used by all built-in commands for dictionary lookups. QM also supports files
with case insensitive record ids, however, it is strongly recommended that the VOC is
not converted to use case insensitive ids.

Many Pick style commands include hyphens in their name (e.g. CREATE-FILE). In
general, the equivalent QM command uses a dot in place of the hyphen (e.g.
CREATE.FILE). To simplify migration and to avoid the need for duplicate VOC entries,
the command processor will apply an automatic transformation of the first word on the
command line if it is not found in the VOC as typed so that CREATE-FILE, for example,
will actually map on to the CREATE.FILE VOC entry. This transformation does not apply
to the remaining words of the command but synonyms are provided where appropriate.

As mentioned in the introductory section of this document, the QM command language
is based on the general syntax and semantics of the now retired Prime Information
multivalue database product and as adopted by other products such as IBM's UniVerse
and Unidata. The OPTION command can be used to modify several aspects of
command processing to give closer compatibility with Pick style environments.

One command that frequently causes problems is COPY. The Information and Pick
style syntaxes of this command are very different. The QM COPY command follows the
Information style syntax. There is also a COPYP command for Pick compatibility. The
ALIAS command can be used, typically in the LOGIN script, to map COPY onto COPYP
for Pick style users if required.

QM is much more flexible than Pick style products regarding use of quotes in
commands. A literal value may be enclosed in single quotes, double quotes or
backslashes. There is no distinction between these. The role of the literal is determined
by its context rather than the type of quote used. It is often possible to omit the quotes
completely but beware that the token will be looked up in the VOC (and the dictionary
for query processor commands), possibly with undesirable effects. In particular, the
tendency for Pick programmers to use numeric field names is likely to cause problems
with unquoted numeric values.

The Command Environment 7

2.6-6

Accounts

An account is a place to work, typically corresponding to an application. A QM
environment will often have several accounts, perhaps for different applications,
perhaps for different versions of the same application. Accounts are identified by a case
insensitive name of up to 32 characters. At the operating system level, an account is
simply a directory containing the main files associated with the application. It is possible
for one account to reference files in another account and for files to be positioned in
other directories to aid load balancing across multiple disks.

The QMSYS Account

Every QM installation includes a special account known as the QMSYS account. By
default, this is located in c:\qmsys on Windows or /usr/qmsys on Linux but it can be
moved elsewhere during installation.

The QMSYS account contains all components of QM itself except for the configuration
file. It includes some additional system administration commands that are not available
in other accounts.

The QMSYS account includes a file named ACCOUNTS (visible from all accounts under
the name QM.ACCOUNTS) which acts as a register of account names, providing a
mapping between the name and its corresponding operating system directory path.

Entry to QM

Users may enter QM from the operating system command prompt or directly via a telnet
style connection. For the latter path, QM will prompt for the user name and password for
authentication purposes and then prompt for the name of the account that the user
wishes to enter. Alternatively, this account name prompt can be omitted by setting up a
fixed relationship between user names and account names (see the ADMIN.USER and
CREATE.USER commands for more details of this process).

When a user enters QM, the command processor looks in the VOC file of the QMSYS
account for a paragraph (PA-type item) named MASTER.LOGIN. If this exists, it is
executed and is typically used to perform system wide initialisation tasks. In general,
developers should not perform any application specific tasks in this paragraph.

Having run (or not found) the MASTER.LOGIN paragraph, QM then looks in the VOC
file of the target account for an item named LOGIN which may be of any executable
type (verb, menu, sentence, paragraph, proc, etc) but is usually a paragraph. This
paragraph is typically used to perform application specific initialisation tasks and to take
the user into the application itself without ever seeing a QM command prompt.

During this process, the break key is disabled so that the user cannot quit out of any
security checks performed in these paragraphs. The break key can be enabled if
required using the BREAK command.

The LOGIN paragraph can use conditional processing to perform different actions
dependent on user name, network address, etc.

Converting Applications to OpenQM8

2.6-6

3 The File System

QM uses a maintenance free, self-tuning file system. There are two basic file types;
directory files and dynamic files.

Directory files use an operating system directory to represent the QM file (table) and a
text file in the directory to represent each record in the table. This system does not give
high performance but allows records to be accessed from outside QM as simple text
files. Directory files need special processing modes if binary data that might include the
mark characters is to be stored in them

Dynamic files are represented by an operating system directory that contains two files
named ~0, ~1. The actual database records are stored inside these files in a hashed
format that allows very rapid access. Dynamic files automatically adjust their internal
structure to compensate for changes in the volume of data stored in the file. Although
there are various tuning parameters for dynamic files, the only one that is usually worth
consideration is GROUP.SIZE which depends on the average size of records to be
stored in the file. There is general guidance on dynamic file configuration in the QM
Reference Manual. From release 2.2-0, QM supports dynamic files of up to 16384Gb.

QM supports the concept of multi-files using a further layer of directory structure.

The alternate key index system allows access to data in dynamic files based on the
content of data fields or calculated values (secondary keys). A dynamic file that has
indices has further subfiles named ~2, ~3, etc. There is a limit of 32 indices in any single
file.

QM files do not support use of null record ids or ids that contain the mark characters.
The default limit on the length of a record id is 63 characters but this can be increased
using the MAXIDLEN configuration parameter. There is a corresponding small increase
in the size of the locking tables and files containing records with long ids may not be
readable on systems with a lower value for this parameter.

Files are referenced by an F-type VOC entry which translates the application name of
the file to the operating system pathnames of the data and dictionary portions of the file.
QM also supports Q-pointers for access to files in other accounts. See the QM
Reference Manual for further details. Note that extended Q-pointers that allow access to
data on another machine using QMNet require the server to be defined using
SET.SERVER.

The FILERULE configuration parameter also controls use of extended file name
syntaxes:

account:file Implict Q-pointer
server:account:file Implicit QMNet pointer
PATH:pathname Pathname

Dictionaries 9

2.6-6

4 Dictionaries

The preferred dictionary record types for QM applications are the D and I-type items that
originated in the Prime Information database and have been replicated in a number of
other environments. QM supports the major features of A and S-type items for
compatibility but does not include some of less widely used features of these record
types.

There is a major difference in how QM handles A and S-type items compared to other
environments though this should have little impact on application migration. In QM,
correlative expressions are compiled into the same object code stream as used by
I-type items to give faster execution than the traditional interpretive processing. The
correlative is automatically compiled when it is first used in the query processor and the
object code is stored in the dictionary record in fields 15 onwards though the standard
editing tools suppress its display.

It is important to note that if one correlative uses the result of another and this second
correlative expression is modified, it will be necessary to force the system to recompile
the first one. This is because, although it might look like a run time subroutine call, the
nested expression is actually substituted at compile time for optimal performance. The
COMPILE.DICT command can be used to force compilation of all compiled dictionary
record types and it is recommended that the entire dictionary is recompiled whenever a
change is made that might impact other dictionary items.

Whilst it is recommended that users migrating from a Pick style system to QM might
want to move to the more powerful D and I-type items, it is recognised that this may be
better left as a task for completion after the initial migration is complete.

QM dictionaries include the concept of link records that minimise the need for TRANS()
functions or Tfile conversions. A link (L-type) record defines how the record key of a
dependant file is manufactured from the data in the original file using an expression
similar to that found in I-type records. The query processor then allows the fields of the
dependant file to be referenced in the form link%field.

QM also provides extensions to the capabilities of I-type items compared to most other
multivalue products. In particular, a TRANS() function can return the value of an item
which is itself an I-type and compound I-types can be nested without restriction.

Some conversion code features are inconsistent across different multivalue platforms
and hence may need to be modified. QM includes the capability for users to add their
own conversion codes.

Converting Applications to OpenQM10

2.6-6

5 The Query Processor

As already mentioned for the command processor, the QM query processor makes no
distinction between the three styles of string quote (single quote, double quote and
backslash). Quotes are often not needed at all though their use around literal values is
advised to avoid a dictionary and VOC lookup that could substitute alternative text for
the unquoted literal.

See the OPTION command for various mode settings that make the query processor
behave more like its Pick style counterparts.

Some syntax/semantic differences compared to Pick style systems that are not covered
by option settings:

QM does not insert an implied equals between the field name and a value in a WITH
clause. Thus,

WITH field "value"

must be written as

WITH field = "value"

Without the intervening equals sign, the example above is interpreted as a short form
for

WITH field # "" "value"

where value is taken as the id of a record to be included in the report.

The Pick syntax of

SORT fname BY.EXP dict.name = "var"

to restrict the entries in an exploded sort is not supported by QM and must be rewritten
using WHEN.

Programs 11

2.6-6

6 Programs

QMBasic program source is conventionally stored in directory type files. Although the
compiler will process source from dynamic hashed files, the ability to access the source
text from outside QM, possible only with directory files, is often useful. The compiled
object code must be stored in directory files. The compiler output file is created
automatically when first needed and takes the same name as the source file with a
suffix of .OUT added.

There are two restrictions to bear in mind when choosing source record names. Firstly,
names including spaces, whilst technically acceptable, are likely to cause problems.
Secondly, when using a select list of programs to process, the compiler omits items
ending with a suffix of .H or .SCR (case insensitive). These two suffices are
conventionally reserved to identify include records used for general purposes and as
screen definitions respectively.

QMBasic source programs are compiled using the BASIC command. The general form
of this is

BASIC filename recordname options

where filename is the name of the file holding the source. This defaults to BP if omitted.
Recordname is one or more record ids corresponding to the programs to be compiled.
Use of an asterisk specifies that all records in the source file are to be compiled (except
those with a .H or .SCR suffix as described above). A select list can be used instead of
the recordname option.

The compiler takes several options. The CHANGED option causes the compiler to
process only those records for which there is no up to date object code. Thus a
command

BASIC * CHANGED

would compile all records in the BP file that have not previously been compiled or where
the date/time modified on the source record is later than that of the object record. Note
that because dynamic hashed files do not store a date/time modified, the CHANGED
option cannot be used with source in hashed files. Note also that the CHANGED option
does not detect changes to include records.

A good technique for recompiling affected programs after an include record is changed
is to use the SEARCH command to build a select list of all programs that contain a
reference to the modified record and then to use this list to steer the compiler.

Cataloguing

QM uses a three level cataloguing system to give maximum flexibility. The default mode
(private cataloguing) places the program in a catalogue file that is visible only to
applications running in the same account. There is no corresponding VOC file entry, the
program being located by a search of the cat subdirectory of the account.

Local mode cataloguing, selected by use of the LOCAL keyword in the CATALOGUE
command, does not copy the program but simply sets a V-type (verb) VOC entry to
point to the compiled program. Again, the program is visible only to applications running
in the same account.

Converting Applications to OpenQM12

2.6-6

Global mode cataloguing, selected by use of the GLOBAL keyword in the CATALOGUE
command, copies the program to the gcat subdirectory of the QMSYS account.
Programs in the global catalogue are visible to all accounts.

For compatibility with some other environments, global mode cataloguing can also be
selected using one of four reserved prefix characters (*, !, _ and $) on the program call
name. The $ prefix is reserved for system supplied subroutines and such items cannot
be called from user programs.

If a program catalogued in private or global mode is recompiled, it will be necessary to
recatalogue it to repeat the copy to the cat or gcat directories. If, however, the
recompilation fails, active users will not be affected as they continue to execute the
previously catalogued version of the program.

To simplify the development process, the QMBasic language includes a $CATALOGUE
directive that causes automatic cataloguing after successful compilation.

Language Syntax Variants

The general syntax and semantics of the QMBasic language follows that of the
Information style databases. The $MODE compiler directive can be used to select a
variety of options to modify the language form. This directive can be included in each
program individually as required or, more conveniently, the same effect can be achieved
using the $BASIC.OPTIONS record.

The $BASIC.OPTIONS record is described with the BASIC command in the QM
Reference Manual and in the help text. This record can appear either in the program
source file from where it affects all programs in that file, or in the VOC where it affects
all programs. If both locations contain a $BASIC.OPTIONS record, the one in the
program source file takes precedence.

The QMBasic statement that causes the most confusion during migration is LOCATE.
There are three different forms of this statement in use in the various multivalue
database products, two of which are syntactically similar but semantically different. QM
adopts the Information style syntax by default but also adds a function call variant which
is very useful in dictionary I-type items. For more information, see the QM Reference
Manual.

Other statements affected by use of $MODE are READNEXT, FOR/NEXT, STOP,
ABORT, ON GOSUB, ON GOTO, COMMON, DIMENSION, READ (various forms),
PRINTER and SELECT.

Some syntax/semantic differences compared to other environments and not covered by
$MODE options:

A comment on the same line as a statement must be separated from the statement by a
semicolon. For example

IF STOCK = 0 THEN * Out of stock
 ...
END

is not valid and must be rewritten as

Programs 13

2.6-6

IF STOCK = 0 THEN ;* Out of stock
 ...
END

Use of multiple statements separated by semicolons in a single line format conditioned
statement is supported but not recommended as it is syntactically ambiguous and is
handled differently on the various multivalue database products. A statement such as

IF STOCK.LEVEL = 0 THEN MSG = "Out of stock"; GOSUB EMIT.MSG

should be rewritten as

IF STOCK.LEVEL = 0 THEN
 MSG = "Out of stock"
 GOSUB EMIT.MSG
END

The CONVERT() function is syntactically different compared to D3 such that

CONVERT(str, old, new)

becomes

CONVERT(old, new, str)

The return key results in character 13 (carriage return) by default whereas some other
systems use character 10 (linefeed). The PTERM RETURN LF command can be used
to change this to character 10.

Scanning Alternate Key Indices

QMBasic does not support the BSCAN statement or UniVerse or its equivalent in other
multivalue products. Instead, the equivalent functionality is provided by use of SETLEFT
and SELECTRIGHT to position to the leftmost indexed item and walk step by step to the
right (or SETRIGHT and SELECTLEFT to traverse from right to left).

Using UniVerse as an example,

 bscan key, id.list from fvar using 'index.name' reset
 then
 loop
 loop
 id = remove(id.list, more)
 ...process data...
 while more
 repeat
 bscan key, id.list from fvar using 'index.name' else
exit
 repeat
 end

becomes

 setleft 'index.name' from fvar
 loop
 selectright 'index.name' from fvar setting key to 1

Converting Applications to OpenQM14

2.6-6

 until status()
 readnext id from 1 else exit
 ...process data...
 repeat

Other Syntax and Semantic Differences

QM does not support the concept of a default file variable. All OPEN statements must use an
explicit file variable which is then used in all further access to this file.

There must be no space between a matrix name and the left parenthesis preceding its index
expression.

There must be no space between a function or subroutine name and the left parenthesis
preceding the argument list.

Although QMBasic has very few reserved words, some uses that are acceptable in other
implementations may fail on QM.

Printing 15

2.6-6

7 Printing

The QM printing system is modelled on the same general structure as is found in the
Information style database products. Each user process has a set of 256 numbered
print units to which it can send output. The physical destination for this output is
determined using the SETPTR command or other related commands and subroutine
calls.

This system gives flexibility in that an application has no built in knowledge of where the
output will go. A single print unit may be directed to different destinations for different
users. Print unit numbers may be used to select different printers, different paper types
on the same printer, use of portrait or landscape mode, etc.

The SETPTR command defines the shape of the page (width, depth, margins) and the
actual destination. If output is directed to a printer, the command sets the printer name,
number of copies, etc and output is passed to the print management system of the
underlying operating system. Output can also be directed to a file from which it can
subsequently be printed or processed by other software.

Within the command language, many commands have an optional LPTR keyword to
direct the output to the default printer (print unit 0). In some cases, the LPTR keyword
can be followed by a print unit number to specify use of a non-default printer.

Within programs, the PRINT statement ON clause can be used to select a non-default
print unit. This clause also applies to other printing statements such as HEADING,
FOOTING, PAGE, etc. There are also a number of statements, functions and
subroutines that allow control of print unit settings.

On Linux and FreeBSD systems, the default spooler is lp. This can be changed for a
single print unit using the SPOOLER option of the SETPTR command, or for all print
units using the SPOOLER configuration parameter.

QM includes a variant of the Pick style SP.ASSIGN command that should ease
migration. This command uses a database set up using SET.QUEUE to map Pick style
form queues onto the corresponding SETPTR options.

Converting Applications to OpenQM16

2.6-6

8 Data Migration

There are three main paths for migration of data between QM and other systems:

· Flat files
A simple data export program and corresponding data import program can
usually be written in just a few lines of Basic.

· AccuTerm host to host transfer
The bundled AccuTerm terminal emulator includes facilities to transfer data
between two systems.

· ACCOUNT.SAVE / ACCOUNT.RESTORE
QM includes versions of these standard utilities that are closely compatible with
other multivalue products. More information about use of these tools for
migration appears below.

Any migration to QM will require some manual work in constructing VOC file entries.
Dictionary items are broadly compatible but may need inspection and some
modification. There may be other system files that require conversion.

ACCOUNT.RESTORE and associated commands have been tested with images from
several flavors of Pick (from R83 through AP and D3) and mvBASE. ACCOUNT-SAVE
images from these systems should restore with no special attention.

To restore from FILE-SAVE tapes created by the above systems, one must use the
T-RDLBL and T-FWD to read through the FILE-SAVE image and locate the required
account. When the label for the desired account is found, the POSITIONED keyword to
ACCOUNT-RESTORE can be used to restore that account. After the account has been
restored, T-RDLBL can be used to check the identity of the next account on the tape.

Many multivalue systems are capable of producing a 'compatible' tape image but some
are more compatible than others and will restore into QM with very little difficulty. Others
require more care and there is the possibility that some may not be restorable.

The tape utilities support 'multi-reel' operation in which cascaded files emulate multiple
spools of tape. Two naming conventions are supported:

The D3 style 'dash-number' format:
filename
filename-1
filename-2
... and so on ...

A filenameNN format:
filename00
filename01
filename02
... and so on ...

Data Migration 17

2.6-6

This format allows up to four digits appended to a base filename. The base name may
be as above (filename00; filename0000; etc.) or a 'bare' file name as in the D3 style.
With the numeric suffix, the base name can be suffixed with any number; this number
will be incremented by the tape utilities. If a 'bare' name is used, the next reel is
expected to be '1'; '01'; '001' or '0001' and all of these will be attempted.

If an End Of Tape is sensed (e.g. a read failure before an EOF or EOT mark is read),
the above file names are attempted. If the 'next reel' is found it is silently attached and
the restore continues. If the tape utilities are unable to find a file then the user is
prompted for a file name.

Tips on Creating Tapes for Migration to QM

These notes have been contributed by users who have performed the associated
migration.

Normal AP and D3 tape images created with no special options should restore directly
with no special options used for the SAVE. As with all 'foreign' systems, when restoring
into QM, the 'NO.OBJECT' keyword should be used to prevent Basic object code from
being imported.

D3 Tape Image Creation

SAVEs of data that will exceed 2gb will have to be split into chunks of less than 2gb
because D3 will not write to files larger than 2gb.

Modern versions of D3 support 'cascading' files (filename; filename-1; etc.). While this is
the recommended method, it also introduces a problem in that the cascading filename
scheme only works when compressed files are specified. Since QM does not support
compressed files, the resultant D3 files must be uncompressed before then can be
used.

A simple method of D3 file preparation for Linux is to first rename the files so that they
include a '.gz' suffix, then uncompress them. This can be accomplished as follows
(assuming the files are in the current directory and are named 'filename'; 'filename-1'
and so on):

for file in `ls filename*`
do
 mv ${file} ${file}.gz
done
for file in `ls filename*.gz`
do
 gunzip ${file}
done

After the above process, the files will exist with the original filenames but in
uncompressed form and may be used by attaching the first file (in this case 'filename')
in QM:

SET.DEVICE /path/to/filename

The tape utilities will take care of traversing the set of cascaded files.

Converting Applications to OpenQM18

2.6-6

After the restore process, any alternate key indices that existed in the D3 system will be
created in QM.

The MD of the restored account will exist in the newly created QM account under the
name 'MDRESTORE'. From this file any Q-pointers or custom verbs which will make
sense to QM may be copied into the VOC. Any custom verbs that do not make sense in
QM will be available in MDRESTORE file for examination.

ACCOUNT.RESTORE will create indices with the correct QM name if field 17 of the FDI
on the D3 system contains the desired name prefixed with "QMI". Thus, if field 8 of the
FDI contains

I450533A1(G1*1)V
MI4587439A1(G1*1)(TVENDOR;X;26;26)

and field 17 contains
QMIProdIDV

MQMIVendor
the restore process will create indices named ProdID and Vendor.

Ultimate Tape Image Creation

Use the T-ATT command to attach the tape device:
 T-ATT <drive number>,<block size>
For example,
 T-ATT 1, 512

Alternatively, to save to disk instead of tape, use
 D-ATT <drive number>,<block size> <path to unix directory>
For example,
 D-ATT 3,512 /virtsave/ult

Then use T-DUMP, ACCOUNT-SAVE, etc to create the tape:
1) T-DUMP <filename> or T-DUMP DICT <filename>
2) ACCOUNT-SAVE
3) File Saves are usually run from the SYSPROG account, menu option 1.

ADDS Mentor Tape Image Creation

On the Mentor system, attach the QIC tape with a block size of 512:
T-SELECT (S
T-ATT 1
T-ONLINE
SAVE SYSTEM SYSTEM (TY

The resulting tape may then be copied into a *nix system for use by QM by creating a
small shell script named, for example, copy.tape:

#!/bin/bash
script copy.tape - copy tape records from an ADDS Mentor
tape
ctr=0
while [$? -eq 0]
do
 ctr=`expr ${ctr} + 1`
 cat < /dev/nst0 > adds`printf "%03d" ${ctr}`
done

(The above example uses a tape device name of /dev/nst0. This may need to be

Data Migration 19

2.6-6

amended to match your system).

Make the script executable:
chmod 755 copy.tape

Create a directory to contain the files then run the script. This will create a file for each
account on the tape such as:
 adds01
 adds02
 adds03
 adds04
and so on.

The first file of the set can then be attached in QM:
SET.DEVICE /path/to/adds01

The accounts must then be restored individually through a series of commands:
ACCOUNT-RESTORE NO.OBJECT POSITIONED
 BOT
 Block size : 512
 Illegal level (0)
T-FWD
T-RDLBL
 L 0200 16:18:41 19 MAY 2006 DATA SYSPROG FULLSAVE
01
ACCOUNT-RESTORE NO.OBJECT POSITIONED
 ...restore messages...
T-RDLBL
 L 0200 16:19:15 19 MAY 2006 DATA ACC FULLSAVE
01
ACCOUNT-RESTORE NO.OBJECT POSITIONED
 ...restore messages...

and so on...

The first ACCOUNT.RESTORE and T.FWD are required to position the tape image
beyond the first header.

Restoring from Untested Systems

The format of ACCOUNT.SAVE tapes varies between multivalue products. A Pick style
"compatible mode" (R83 format) tape commences with

Label
EOF block
Label
Descriptor block
EOF block
Label
Data.....

ACCOUNT.RESTORE therefore normally starts by skipping forwards to the third label
block. On some systems, the tape commences simply with a label block followed
immediately by the data. To allow for the possibility of this and other formats, the
T.RDLBL and T.READ commands can be used to position the tape before the first data

Converting Applications to OpenQM20

2.6-6

block. Use of the POSITIONED option in ACCOUNT.RESTORE will then omit all other
positioning from within ACCOUNT.RESTORE itself.

If an ACCOUNT-RESTORE fails (symptoms include 'Unrecognised block type' errors as
well as 'End of reel reached' errors), one may use the tape utilities to attempt to discover
the best method of properly positioning the tape before using the POSITIONED
keyword.

Using T.READ on a QM (and Pick) style tape that is positioned at BOT (Beginning of
Tape; after a T.REW) will produce something like:

:T.READ
L 01F4 22:14:12 31 Mar 2006 DATA QM.TEST
 01
Block size : 500
End of file.
:T.READ
L 01F4 22:14:12 31 Mar 2006 DATA QM.TEST
 01
Block size : 500
End of file.
:T.READ
Block size : 500
End of file.
:T.READ
L 01F4 22:14:12 31 Mar 2006 DATA QM.TEST QM.TEST
 01

Block: 2
000 :_D^1^AD^0012QM.TEST^D^B9^101^^^^^SYS2^L^12^_D^2^AF:
050 :^0017MD-RESTORE^D^101^11^^^^^^L^10^_D^3^B0^0016MD-:
100 :RESTORE^D^101^ ... and so on ... output
trimmed

Note the three blocks mentioned above (requiring three T.READ commands). Note also
the '_D' beginning Block 2 - this is the D-Pointer or File Description Item for the
'QM.TEST' account and is where the actual ACCOUNT.RESTORE will begin.

Using a tape created by a jBase system using the command:
T-ATT FILE0 DEVICE=C:\BACKUP1.VTF SIZE=512

Then reading from the beginning, the output of T.READ appears:

:T.READ
L 0200 22:05:32 30 MAR 2006 QM.TEST
 01

Block: 2
000 :_D^1^1^0031QM.TEST^D^20480^1^1^^^^SYS2(0)^L^10^^^(:
050 :29,1)^_I1^5000^0009MD^Q^_D^2^2^0024BP^D^20481^1^1^:
100 :^^^^L^10^^^(5,1)^_D^3

... and so on ... output trimmed

Note that a single T.READ command displays both the tape label and the start of
account data (the '_D' bit again).

When this tape image is attached and an ACCOUNT.RESTORE command issued, the
initial attempts to skip three blocks result in the program seeking to the end of tape data
and prompting for the next reel.

Data Migration 21

2.6-6

Although this tape may appear to be incompatible with QM, by inspecting the image as
above we can see that by issuing one T.RDLBL command the tape pointer will be
positioned at the beginning of account data. Then by issuing the command:

ACCOUNT.RESTORE POSITIONED NO.OBJECT

this tape will in fact restore without problem.

Using the above as a guide, if difficulty is encountered one can experiment until the
correct positioning is discovered.

Converting Applications to OpenQM22

2.6-6

9 QM Extensions

This section summarises features that are believed to be unique to QM or not found in
most other multivalue database environments.

File System

The QMNet network file system uses an extended form of the VOC Q-pointer to
reference files on remote servers. Full concurrency control is maintained to ensure data
integrity across the entire network.

Extended file name syntax forms, controlled by the FILERULE configuration parameter,
allow access to files without needing a local VOC entry.

account:file Access a file in another account without a Q-pointer

server:account:file Access a file on another server without a Q-pointer

PATH:pathname Access a file by pathname

Dictionary Issues

Other multivalue databases require I-type dictionary items or T conversion codes to link
tables together. Although these are fully supported on QM, dictionaries can contain
L-type (link) records that describe the relationship between files. The query processor
can navigate using these without the need for each field to be defined via a separate
TRANS() or T conversion.

In other multivalue databases, a TRANS() function can only reference a real (D-type)
data item, not a calculated value. With QM, the target of a TRANS() can itself be an
I-type item. This significantly simplifies some dictionary constructs which would
otherwise require duplication of expressions in multiple dictionaries.

QM can nest compound I-types (those with multiple expressions) to almost any depth.

The GENERATE command can be used to generate a QMBasic include record from a
dictionary, guaranteeing consistency and simplifying application development.

Command Language

The command stack can be accessed directly by use of the cursor keys.

It is possible to list and delete named common blocks from the command line - a highly
useful feature in a development environment.

QM can return entries from a select list, item by item, using an inline prompt construct in
a loop.

QM Extensions 23

2.6-6

The value of @-variables can easily be substituted into any command by use of an
extension to the inline prompt mechanism.

Users can define their own @-variables within paragraphs, setting values as constants
or the result of arithmetic expressions.

Users can add their own VOC record types and associated handler subroutines for
special executable type items.

Query Processing

The query processor can produce reports in the form of comma separated files (or any
other delimiter).

Reports that are wider than the terminal can pan across selected columns.

The SCROLL option allows users to scroll back through earlier pages of a report.

Query processor styles can be used to highlight some report elements (e.g. totals) using
colour on displayed reports or font weights on reports sent to PCL printers.

QM extends the syntax of the SAVING keyword to work with multivalued fields.

QMBasic Programming

Programs can include directives to catalogue them automatically after compilation.
Alternatively, this can be set as the default for an individual program file or the entire
account.

Programs that use EXECUTE to launch a QM command can trap aborts occurring in
that command instead of the default action of aborting the entire application.

Low level keyboard input functions are provided that can recognise cursor keys and
other function key sequences, returning a device independent code.

The Hot Spot Monitor allows developers to identify where their programs spend most of
their time. This is very valuable as a performance tuning aid.

The DPARSE statement provides a simple way to parse delimited data (e.g. comma
separated items).

The LOCATE statement has a function variant that is particularly useful in I-type
dictionary items.

The LISTINDEX() function can be used to search a list with an arbitrary delimiter.

The SUBSTITUTE() function replaces text from one list with alternatives in another list,
working through each element of a potentially multivalued source item.

The QM command line parser is available for use in user programs.

Converting Applications to OpenQM24

2.6-6

All QMBasic functions are available in I-types except those that are meaningless in this
context.

QMBasic supports the concept of local variables in internal subroutines. It is also
possible to pass arguments into internal subroutines and to have internal functions. See
the LOCAL statement in the QMBasic Programming Guide for details of these features..

QMBasic has support for object orientated programming.

	Introduction
	The Command Environment
	The File System
	Dictionaries
	The Query Processor
	Programs
	Printing
	Data Migration
	QM Extensions

