
2.6-6

OpenQM

Tutorial Guide

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Tutorial Guide

© 2007 Ladybridge Systems Ltd

Publisher
Special thanks to:

Users of the OpenQM product who have contributed topics and
suggestions for this manual.

Such information is always very much appreciated so please
continue to send comments to support@openqm.com.

Technical Editor

Cover Graphic

Ladybridge Systems Limited
17b Coldstream Lane
Hardingstone
Northampton
NN4 6DB
England

Martin Phillips

Ishimsi

3Contents

2.6-6

Table of Contents

1 Introduction 5

2 Installing And Running QM 8

3 Setting up the Data Files 10

4 Database Records and Mark Characters 11

5 Dictionaries 13

6 Viewing the Data 18

7 Conversion and Formatting 20

8 Dictionary I-type Records 21

9 Query Processing 27

10 Building a Report Menu 35

11 A Simple Loan Management Application 37

Introduction 5

2.6-6

1 Introduction

Welcome to the QM Tutorial Guide. This document takes you step by step
through construction of a simple application to show many of the features of the
QM Multivalue Database. Clearly, a brief tutorial cannot show everything. There
is much more for you to discover for yourself once you have mastered the basic
principles.

In this tutorial we will create a simple library database, construct reports to view
the content of the files and develop a small application program to handle loans
and returns.

What Is a Multivalue Database?

There are many different databases on the market but they all fall into a small
number of basic types. One of these is the relational database such as Oracle
or Access. A relational database holds data in the form of tables in just the same
way that we could store information as tables written on paper.

The application that we are going to build in this tutorial is a database for a
library. One of the tables required for this application might be a list of the
readers who use the library. We could picture this as below.

Reader id Name Address Loan Date due

1 A Smith 14 High Street 1737 21 Nov 00

2 R Jones 7 Bank Road 4823 27 Nov 00

3 T Harris 4 George Street

4 L Williams 5 Earl Street 2543 1 Dec 00

In this simple table, each row represents a reader and each column some data
associated with that reader. Reader number 3 currently has no book on loan.

Relational databases are built following a set of rules known as the Laws of
Normalisation. One of these, the first law, states that we may not have repeating
data. In practical terms this means that we cannot add extra columns to the right
of the table to allow a reader to borrow more than one book.

Reader id Name Address Loan Date due Loan Date due

1 A Smith 14 High Street 1737 21 Nov 00 7584 21 Nov 00

2 R Jones 7 Bank Road 4823 27 Nov 00

3 T Harris 4 George Street

4 L Williams 5 Earl Street 2543 1 Dec 00 5473 30 Nov 00

Tutorial Guide6

2.6-6

There are many reasons why this is not allowed, mostly based on the way in
which the data will be stored by the computer system. If we are to observe the
First Law of Normalisation, we must reconstruct our data in some way to remove
the additional columns. One way would be to split a reader who has multiple
books on loan across several rows of our table.

Reader id Name Address Loan Date due

1 A Smith 14 High Street 1737 21 Nov 00

1-1 A Smith 14 High Street 7584 21 Nov 00

2 R Jones 7 Bank Road 4823 27 Nov 00

3 T Harris 4 George Street

4 L Williams 5 Earl Street 2543 1 Dec 00

4-1 L Williams 5 Earl Street 5473 30 Nov 00

There are many other ways in which we could redesign our table to comply with
the Laws of Normalisation but all of them carry database performance
implications.

A multivalue database breaks the First Law of Normalisation by allowing multiple
values to be stored in a single cell of the table. Our example table now becomes

Reader id Name Address Loan Date due

1 A Smith 14 High Street 1737
7584

21 Nov 00
21 Nov 00

2 R Jones 7 Bank Road 4823 27 Nov 00

3 T Harris 4 George Street

4 L Williams 5 Earl Street 2543
5473

1 Dec 00
30 Nov 00

Note how the values in the loan and date due columns are related together. For
any particular reader, the first loan number belongs with the first due date, the
second loan number belongs with the second due date and so on.

By adopting this data model instead of using additional columns, the data model
imposes no limit to the number of books that a reader may have out at one time.

This extended form of the relational database model is at the heart of the QM
database.

The time has come to introduce some terminology. A typical application will have
many tables, perhaps hundreds or even thousands (our tutorial database has
three!). Each table is stored as a file. The rows of our table are known as
records and the columns as fields. The data stored in a field may be made up of
multiple values and these can be further divided into subvalues though our

Introduction 7

2.6-6

tutorial database will not use subvalues. The relationship between the values in
different fields (e.g. loan and due date above) is referred to as an association.

Every record stored in a file must have a unique record id by which it can be
identified. In the above example, the reader number would be the record id.
Although these are often numbers, they can be any sequence of up to 63
characters (this limit can be increased by your system administrator). Although
there is a limit to the number of records that a file may hold, it is extremely
unlikely to affect any real application.

Every file normally has two parts. The data part holds the actual data records.
The dictionary part holds records that describe the structure of the records in
the data part and tell the query processor how to display data from the file. We
will discuss dictionaries in more detail later.

Tutorial Guide8

2.6-6

2 Installing And Running QM

If you have not already installed QM on your system, now is the time to do it. The
installation process varies according to the media on which QM was supplied. In
all cases the process starts with execution of the appropriate self-extracting
archive file for your operating system.

Opening a QMConsole Session

The QM database can be accessed in a number of ways. In this tutorial guide we
will use a console session. This is a connection to QM from the system on
which it is installed. Other methods allow connection over a network.

On Windows systems, once QM has been successfully installed, the program
group chosen during the install (usually QM) will contain an item titled "QM
console". Clicking on this item will open a console window. You will see a
copyright line and a site specific licence line.

On other systems, login and then type qm at the command prompt.

QM applications are divided into accounts which can be used to represent
different applications or versions of the same application (e.g. development, test,
production). When you enter QM as described above you will be prompted for a
QM account name. The only account that always exists is the System
Administrator account (QMSYS). Although this tutorial can be completed in this
account, it is best to create a new account specifically for this purpose.

When you have entered the name of an existing account you will see a line
showing a colon which is the QM command prompt. Whenever you see this
prompt, QM is waiting for you to type a command.

To create a test account, type

CREATE.ACCOUNT TEST C:\TEST

where TEST is the name to be given to the account and C:\TEST is a suitable
pathname for your new account. This example shows a Windows style pathname.

Notice how the data that you entered appears in uppercase. For historic reasons
concerning compatibility with other multivalue databases, QM commands are
usually in uppercase. To avoid the need to use the caps lock key as you move
from window to window, keyboard input is normally "case inverted" so that letters
entered in lowercase appear in uppercase and vice versa. This can be switched
off if you prefer (see the PTERM command for details). In most cases, QM will
accept commands in either upper or lower case.

Now that you have created your test account, you can move to it by typing

LOGTO TEST

Installing And Running QM 9

2.6-6

When you want to leave the tutorial session, you can leave QM by typing

QUIT

at the QM command prompt. If you want to return to your test account later, you
can enter the new account name when starting the session.

So what can we do at the command prompt? QM has over 150 built-in
commands which let us develop and execute applications. This tutorial will
introduce some of the more important commands.

There is an extensive Windows based help system which can be accessed by
selecting the "QM help" item from the QM program group or by typing HELP at
the command prompt.

Tutorial Guide10

2.6-6

3 Setting up the Data Files

Our database will have just three files

TITLES Details of a book by title

BOOKS Details of an individual copy of a book

READERS Details of the readers using the library

We store the TITLES and BOOKS information separately as we may have more
than one copy of a book.

To create these three files, type the commands

CREATE.FILE TITLES
CREATE.FILE BOOKS
CREATE.FILE READERS

Notice how QM creates both a data and dictionary part for the file. It also adds a
record named @ID to the dictionary to give us a default view of the record id.
Although we will set up alternative dictionary items for the record ids, the @ID
item should not be removed as some parts of QM rely on it being there.

File Types

QM has two distinct types of file; directory files and dynamic files. By default,
files are created as dynamic. We will create a directory file later.

A directory file is represented by an operating system directory and the records
within it by operating system files. The record key is the name of the file holding
the data for the record except where this would be an invalid name in which case
QM performs automatic name mapping. Directory files are generally only used for
holding QMBasic programs, COMO (command output) files, and stored select
lists.

A dynamic file is also represented by an operating system directory but the
records within it are stored in a fast access file format in this directory. Users
should not place any other files in the directory or make any modifications to the
files placed there by QM. Dynamic files are so called because of the dynamic
reconfiguration of the file which takes place automatically to compensate for
changes in the file's size and record distribution. Users have some control over
how this reconfiguration takes place by setting a number of configuration
parameters. In most cases, these can be left at their default values.

Database Records and Mark Characters 11

2.6-6

4 Database Records and Mark Characters

A database record may have any number of fields (table columns). The entire
record and the constituent fields are of variable length, there being no restriction
applied by QM. A record may exist in the database with no data.

Consider the READERS table example earlier. Ignoring the date due column,
which we will store elsewhere in our application, the entry for reader 1 was

Reader id Name Address Loan

1 A Smith 14 High Street 1737
7584

Internally, this is stored as a character string where the boundaries between the
individual fields are represented by a special character known as a field mark.
Similarly, within the loan field, the values are separated by value mark
characters.

The actual data stored in the database is thus

A SmithFM14 High StreetFM1737VM7584

The record id is not considered to be part of the data record and is thus not
shown above.

This representation of a database record divided into fields, values and
(possibly) subvalues using mark characters is known as a dynamic array. There
are actually five mark characters defined within QM. You can find out about the
others from the OpenQM Reference manual. By using mark characters in this
way, the fields stored in the file are of unrestricted variable length and a field may
be divided into any number of values.

In directory files, the internal field mark character is replaced by the ASCII
newline character when a record is written to disk so that fields appear as lines
when the record is viewed, edited or printed from outside QM. Conversely, ASCII
newlines are converted to field marks on reading a record.

Fields, values within a field and subvalues within a value are numbered from one
upwards. By convention the record key is sometimes referred to as field zero
though it is not part of the dynamic array and references to field zero are only
recognised by QM in certain contexts.

In our demonstration database, our files will hold the following fields:

Tutorial Guide12

2.6-6

TITLES
TITLE.REF A numeric record id for the title
TITLE The actual title
AUTHOR The author name. There could be more than one author so

this will be multi-valued.
SUBJECT A subject code
COPIES The number of copies of the book

BOOKS
BOOK.REF The record id for the book details
READER The reader who has this book on loan. Blank if not on loan.
DATE.OUT The date the book was borrowed

READERS
READER.REF A numeric record id for the reader
NAME The reader's name
ADDRESS The reader's address. Although a reader only has one

address, address fields are usually stored as multi-valued
where each value represents one line of the address.

LOANS A multi-valued list of books on loan

There are inter-relationships between the files. Any record in the BOOKS file
must be related back to its corresponding TITLES record. One easy way to do
this is to use a composite key where the copies of the book described by
TITLES record 7, for example, would be given BOOKS file ids of 7-1, 7-2, 7-3,
etc. Very often, the component parts of a composite key are padded with leading
zeros to make them of fixed length. We will not do this in our example database.

The READER field of the BOOKS file contains the record id of the READERS file
entry for the reader who has the book out on loan (if any). The LOANS field of
the READERS file provides the reverse link by containing the BOOKS record id
of the books on loan.

Dictionaries 13

2.6-6

5 Dictionaries

Every file normally has an associated dictionary which describes the structure of
the data records stored in the file and the default way in which the query
processor should present the data in a report.

The dictionary contains records of various types, each identified by a code in the
first field of the entry. The main dictionary record types are:

D A D-type entry defines a data field present in the file and specifies its
location and how it is to be displayed in a report.

I An I-type entry defines a value that can be calculated from the data in
the file and specifies how it is to be displayed in a report.

PH A PH-type entry is a phrase which can be substituted into a query
processing sentence. There are some reserved phrases which control
the default actions of the query processor.

X An X-type entry is a miscellaneous storage item and may be used for
any purpose.

A dictionary normally contains a D-type record to describe each field of the
database records. A single field may be described by multiple dictionary records
to provide alternative ways to view the data. Which record is used by the query
processor depends on how the query is phrased.

Consider our TITLES file. Each data record has four fields holding attributes of
the order and each of these fields has a corresponding dictionary record. There
is also a dictionary record to describe the record id. The name of the dictionary
record is the name by which the query processor will refer to the field.

D-type dictionary records normally consist of 7 fields. The purpose and content of
each dictionary field is shown in the example below in which the first column
shows the conventional name of the dictionary field, the second column is the
dictionary field number and the remaining columns show what the dictionary
entry would contain to describe the record id and the four data fields.

The dictionaries for our three files contain the D-type items shown below.

TITLES
TITLE.REF TITLE AUTHOR SUBJECT COPIES

Type 1 D D D D D

Loc 2 0 1 2 3 4

Conv 3

Name 4 Ref Title Author Subject Cpy

Tutorial Guide14

2.6-6

Format 5 5R 25T 15T 15L 2R

SM 6 S S M S S

Assoc 7

BOOKS
BOOK.REF READER DATE.OUT

Type 1 D D D

Loc 2 0 1 2

Conv 3 D2DMY[,A3]

Name 4 Ref Reader Date out

Format 5 8R 5R 9R

SM 6 S S S

Assoc 7

READERS
READER.REF NAME ADDRESS LOANS

Type 1 D D D D

Loc 2 0 1 2 3

Conv 3

Name 4 Ref Name Address Loans

Format 5 5R 20T 20T 8R

SM 6 S S M M

Assoc 7

The role of each dictionary field is described below:

Type The type field contains the dictionary entry type, D for a description
of a field within the database record. The type code may optionally
be followed by descriptive text.

Loc The location field contains the position of the field within the
database record. The record id is shown as field zero in
dictionaries.

Conv Data is sometimes stored in an internal format. The conversion
code describes the conversion to be performed before the data is
displayed in a report. Conversion codes are discussed later. In the
BOOKS file, the DATE.OUT field has a conversion code to specify
how the date is to be displayed.

Name The name field contains the default column heading to be used in
reports.

Dictionaries 15

2.6-6

Format The Format field specifies the number of columns to be used to
show this data and how the data is to be aligned within the given
width. Format codes are discussed later.

SM This flag indicates whether the field is always single valued (S) or
may be multi-valued (M). In our TITLES file, for example, the author
might be multi-valued.

Assoc Used only with multi-valued fields, this field shows the relationship
between associated multi-valued fields. Any fields that have the
same word in this dictionary field are associated together. So far,
our dictionaries no not require any associations. This will change
later.

We can use any convenient editing tool to create the dictionary items. The
MODIFY editor is ideal for this purpose. Work through the following steps to set
up the dictionaries.

Type

MODIFY DICT TITLES

At the "Id:" prompt, enter the name of the dictionary record to be created. The
first one from our tables above is TITLE.REF.

MODIFY displays a list of dictionary fields. The numbers alongside the field
names are for reference only and are not necessarily the actual field positions.

A prompt is displayed at the bottom of the screen for the Type/Desc value. Enter
"D" and press the return key. The entered value is displayed in the top part of the
screen and MODIFY moves on to prompt for the next field. Continue entering
data until seven dictionary fields have been entered. Do not worry if you make a
mistake; you can correct it later.

Once all seven fields have been entered, the action prompt appears. The
response to this may be:

· a number identifying a displayed field to be amended
· FI to file the record
· Q to quit from the record, discarding any entered data
· ? for help

For records with more fields than will fit on a single page, two further responses
are available:

· N for the next page
· P for the previous page

You can move to the action prompt from data entry by entering Ctrl-X (The Ctrl
key is like the Shift key: press and hold the Ctrl key, press X, then release both

Tutorial Guide16

2.6-6

keys).

Correct any mistakes in the displayed data and then file the record by typing FI at
the action prompt. The "Id:" prompt appears again. Enter the next dictionary
record id to be created (TITLE). Continue in this way until all the TITLES file
dictionary items have been created. To leave MODIFY, enter a blank response to
the "Id:" prompt.

Use MODIFY again to enter the dictionary definitions for the BOOKS and
READERS files.

You can view your dictionaries by typing, for example,

LIST DICT TITLES

Now that you have entered the dictionary definitions, you can use MODIFY to
enter some data into the files. Type

MODIFY TITLES

Again, you receive a record id prompt but this time it will use the file name as the
prompt. This default prompt can be changed as described in the MODIFY
description in the QM Reference Manual.

Enter "1" as the id for the first title record. The field list displayed has three items
for the title, subject and copies. The fourth item is shown with a slightly different
number prefix as this leads to a second screen for the multi-valued field. Note
how the text entered as the field display name in the dictionary is used as the
prompt.

Enter a suitable book title and subject and set the copies field to 1. The display
then changes to allow entry of multiple authors. Enter the author(s) for the book,
using the form "lastname, forename" to fit in with the way our queries will work
later.

When all the authors have been entered, the multi-valued field action prompt
appears. This allows entry of:

· an item number corresponding to a line to be changed
· In to insert a line above line n
· Dn to delete line n
· E to extend (add new items at the end)

For a multi-page list, the prompt also allows
· N to move to the next page
· P to move to the previous page

If no changes are required, just press the return key to return to the first screen.

Dictionaries 17

2.6-6

As before, make any corrections and then enter FI to file the record.

Enter two further book titles. Book number 2 should have two copies, book 3
should have one copy.

Now use MODIFY to enter the corresponding BOOKS records. Remember that
these are keyed by the TITLES file key with a suffix of the copy number. Our
records will be 1-1, 2-1, 2-2, 3-1.

Book 1-1 should be on loan to reader 2. Enter a suitable date for the loan.
Book 2-1 should not be on loan (leave the reader and date out both blank).
Book 2-2 should be on loan to reader 3.
Book 3-1 should be on loan to reader 2.

This loan pattern ensures that we have books that are on loan and not on loan
and readers who have no books, one book or two books on loan.

Finally, use MODIFY to enter the READERS file items, ensuring that the loans
are correct.

Reader 1 has no books on loan
Reader 2 has books 1-1 and 3-1 on loan
Reader 3 has book 2-2 on loan

Enter the names in the form "lastname, initials" with no dots after the initials (e.g.
"Smith, A J").

That's it! You now have a data set for experimenting with the QM query
processor and as a start for the simple loans application. Feel free to add more
data but be careful that the inter-relationship between the records in different
files is maintained correctly.

Tutorial Guide18

2.6-6

6 Viewing the Data

Type "LIST TITLES" to view the TITLES file. This query shows us the ids of the
TITLES file records but is not of much use. We could extend the query by adding
the names of fields we would like to see:

LIST TITLES TITLE AUTHOR SUBJECT COPIES

This is better but the query processor is showing us the default view of the record
id as the first column rather than the one we created with a nice column heading.
Try adding our own definition of the record id as the first field in the query:

LIST TITLES TITLE.REF TITLE AUTHOR SUBJECT COPIES

Hint: You can use the cursor up key to walk back to the previous command and
then edit it using the cursor left and right keys, delete, backspace, etc.

We now have the column we would like but we still have the default view of the
record id. Add the ID.SUP keyword to the query to suppress this default item:

LIST TITLES TITLE.REF TITLE AUTHOR SUBJECT COPIES ID.SUP

This looks like a useful report but we don't want to have to type in the list of fields
every time we produce a report. Instead, we can set up a default listing phrase
in the dictionary to tell the query processor what we want to see if we do not list
any display fields in the command.

To do this, use MODIFY on the dictionary of the TITLES file to add an item
named @. The Type/Desc field should be PH to show that this is a phrase entry.
In a phrase, field 2 contains the expansion of the phrase and the remaining fields
are unused. At the F2 prompt, type

TITLE.REF TITLE AUTHOR SUBJECT COPIES ID.SUP

At the F3 prompt type Ctrl-X to skip to the action prompt. File your new phrase.

Now try

LIST TITLES

The query processor uses your phrase to determine the fields to be displayed.
Note that if you include any field names for display in the command, the phrase is
not used:

LIST TITLES AUTHOR

Viewing the Data 19

2.6-6

Set up default listing phrases for the other files:

BOOKS: BOOK.REF READER DATE.OUT ID.SUP

READERS: READER.REF NAME ADDRESS LOANS ID.SUP

Check that the reports are as you would expect.

Tutorial Guide20

2.6-6

7 Conversion and Formatting

Conversion Codes

The date field in our BOOKS file used a conversion code to specify how the data
should be displayed. Dates are usually stored as a number of days from 31
December 1967, that being day zero. All later dates are positive numbers, all
earlier dates are negative numbers. The conversion code in the dictionary tells
MODIFY that the field is a date and, when the date is entered, it is automatically
converted to its internal form. When the date is output by MODIFY or by the
query processor, the reverse conversion is performed to display a meaningful
date. The conversion code specifies the exact form in which the date is to appear
and has many possibilities.

Dates are just one data type that is normally stored in some special internal form.
Other examples are times (stored as seconds since midnight) and weights and
measures (stored scaled to remove the decimal point). There are many other
conversion codes and users can add their own. Conversion codes are discussed
in detail in the QM Reference Manual.

Format Specifications

The format specification in field 5 of the dictionary entry tells the query processor
how many columns to allocate across the report for the data and where in this
field width the data should be displayed. For example, our TITLES file record id
is output using a "5R" format specification which displays the data right justified
in a five character wide field. The SUBJECT field format is "15L", left justifying
the data in a 15 character wide field. The TITLE uses a format specification of
"25T". This is similar to "25L" but will attempt to break between words if the data
must be split over multiple lines.

Format specifications contain several other features as described in the QM
Reference Manual.

Dictionary I-type Records 21

2.6-6

8 Dictionary I-type Records

As our dictionaries stand so far, we can construct simple queries to show the
data from any one of our three files. We might want to list the BOOKS file,
showing the title of each book. This requires access to data from two files.

A query processor command can only directly reference a single file. To bring
together data from other files, or for other calculated values, we use I-type
dictionary items.

An I-type dictionary record defines a calculation based on data on the data file
records. Once an I-type item is defined, it can be referenced in query processor
sentences exactly as though it was a real (D-type) data field. I-type items are
sometimes known as virtual attributes, a term which emphasises the fact that
their values are not physically stored in the database.

An I-type dictionary item differs from a D-type item only in that field 1 contains the
type code I and field 2 contains the actual calculation to be performed. The
remaining fields are as for a D-type entry.

The expression in an I-type dictionary record is actually a little QMBasic program
and can use most of the constructs that can appear on the right side of an
assignment in the full programming language. In this tutorial we will introduce a
few simple I-type expression constructs without going into too much detail of how
they work. You will need to read the opening sections of the QMBasic section of
the QM Reference Manual to gain a better understanding of I-type expressions.

Calculating the Due Date

Our BOOKS file includes a DATE.OUT field holding the date on which a book
was borrowed. We might want to know the date it is due back. Assuming a simple
three week borrowing period, this can be calculated by adding 21 days to the
date out. An I-type expression to do this could be written as

DATE.OUT + 21

This is not perfect. A book that is not on loan has a blank date out field. In an
arithmetic calculation a blank field is treated as zero and hence all books not out
on loan would appear to be due back on day 21 (21 January 1968!).

The expression syntax allows us to handle this by adding a conditional element

IF DATE.OUT THEN DATE.OUT + 21 ELSE ""

Use MODIFY to enter a DATE.DUE item to the BOOKS dictionary. This should
read

Tutorial Guide22

2.6-6

Type/Desc: I
Loc: IF DATE.OUT THEN DATE.OUT + 21 ELSE ""
Conv: D2DMY[,A3]
Name: Date due
Format: 9R
S/M: S
Assoc:

Modify the @ phrase to include this field. When you select item 2 (the LOC field)
of this phrase in MODIFY you can use the cursor left and right keys, etc to move
around in the data. You do not need to retype the entire phrase.

Try LIST BOOKS to see your I-type item in action.

Getting the Book Title for a BOOKS File Report

This one requires access to a second file (the TITLES file). Remember that the
record ids in our BOOKS file are the TITLES file id with a suffix added to identify
the copy.

We will construct two I-type items here. The first (TITLE.REF) will calculate the
TITLES file id by extracting the first part of the composite record id. The second
(TITLE) will fetch the actual book title, using the TITLE.REF item to identify the
record. Note how this implies use of the result of one calculated value in another
calculation.

The TITLE.REF I-type dictionary record should read

Type/Desc: I
Loc: @ID["-", 1, 1]
Conv:
Name: TitleRef
Format: 5R
S/M: S
Assoc:

The expression in the LOC field extracts the first hyphen separated component of
the composite record id. See the description of expression syntax in the QM
Reference Manual for more details.

You can try this out by adding it to your BOOKS file dictionary and typing

LIST BOOKS TITLE.REF

Dictionary I-type Records 23

2.6-6

The TITLE I-type dictionary record should read

Type/Desc: I
Loc: TRANS(TITLES,TITLE.REF,TITLE,"X")
Conv:
Name: Title
Format: 25T
S/M: S
Assoc:

The TRANS() function in the LOC field is used to fetch data from another file.
The four items inside the brackets are:

· The name of the file from which the item is to be obtained.

· The name of an item defined in this dictionary which gives the id of the
record to be read from the target file.

· The name of a D-type item defined in the dictionary of the target file
identifying the data to be returned.

· An error code determining the action if the item cannot be found. In this
case "X" specifies that a blank result should be returned.

See the description of the TRANS() function in the QM Reference Manual for
more details.

Add this new I-type item to the dictionary of your BOOKS file and test it.

It would be useful to be able to get the name of the reader who has a book on
loan. See if you can create an I-type item named NAME in the dictionary of the
BOOKS file to do this. The solution is on the next page.
The NAME I-type dictionary record should read

Type/Desc: I
Loc: TRANS(READERS,READER,NAME,"X")
Conv:
Name: Reader Name
Format: 20T
S/M: S
Assoc:

Add this to your BOOKS dictionary and test it.

We might also find it useful to be able to list the dates on which the books were
loaned to a particular reader. We can do this by adding an I-type item named
DATE.OUT to the READERS file dictionary such as that shown below.

Tutorial Guide24

2.6-6

Type/Desc: I
Loc: TRANS(BOOKS,LOANS,DATE.OUT,"X")
Conv: D2DMY[,A3]
Name: Date out
Format: 9R
S/M: M
Assoc:

This is very similar to the way in which we fetched the reader's name using an
I-type item in the BOOKS dictionary. There is, however, one very important
feature shown by this expression. A reader may have more than one book on
loan. The LOANS field of the READERS file is multi-valued. The TRANS()
function in the above expression, therefore, has a multi-valued list of BOOKS file
ids as its LOANS item and will process the entire list in one operation, returning a
corresponding multi-valued list of dates. Because the LOANS item is
multi-valued, the DATE.OUT I-type item must also be multi-valued.

Add this new I-type to your READERS dictionary and test it.

We now have two multi-valued items in the READERS file dictionary where the
data has a value by value relationship. The first value in the LOANS field is
related to the first value in the DATE.OUT field. The second and subsequent
values have the same relationship. This relationship needs to be defined by
creating an association.

To do this requires two steps. Firstly, we must think up a name for the
association and insert it into the Assoc field (field 7) of the dictionary items for
LOANS and DATE.OUT. Secondly, we must create a PH (phrase) type entry with
the name of the association and with a space separated list of the fields that are
members of the association in field 2 (LOC).

For example, we might choose to call this association BOOKS.OUT. We use
MODIFY to add this name to the Assoc field of the LOANS and DATE.OUT items.
These now become as shown below.

LOANS:
Type/Desc: D
Loc: 3
Conv:
Name: Loans
Format: 8R
S/M: M
Assoc: BOOKS.OUT

DATE.OUT:
Type/Desc: I
Loc: TRANS(BOOKS,LOANS,DATE.OUT,"X")

Dictionary I-type Records 25

2.6-6

Conv: D2DMY[,A3]
Name: Date out
Format: 9R
S/M: M
Assoc: BOOKS.OUT

The phrase defining the association is

BOOKS.OUT:
Type/Desc: PH
Loc: LOANS DATE.OUT

Make these changes to the dictionary of your READERS file. When entering the
phrase, remember that typing Ctrl-X at the CONV prompt after the LOC field has
been entered will jump to the action prompt.

Why do we need to define associations in this way?

The query processor and some other components such as MODIFY need to
know about the association so that they can correctly pair up the associated
items. Quite often, forgetting to define the association has no effect on the work
that we do but sometimes we will get the incorrect results from query reports.

By having a phrase that lists the members of the association we can start from
any member, use the Assoc field to find the phrase and hence find all the other
associated items. This removes the need to scan the entire dictionary checking
for associated items. Clearly, we need to ensure that this two way linking of
associated items is correctly maintained if we modify the dictionary.

There is one last I-type expression to add to our dictionaries.

We might also find it useful to be able to list the titles of all books on loan to a
particular reader. We can do this by adding an I-type item named TITLE to the
READERS file dictionary such as that shown below.

Type/Desc: I
Loc: TRANS(TITLES,FIELDS(LOANS,"-",1),TITLE,"X")
Conv:
Name: Titles on loan
Format: 25T
S/M: M
Assoc: BOOKS.OUT

The FIELDS() function in the second argument to the TRANS() function takes a
multi-valued list of LOANS and extracts just the first hyphen separated

Tutorial Guide26

2.6-6

component. Again, you can find out more about this function as well as many
other multi-value manipulation functions from the QM Reference Manual.

Note how this item is also a member of the BOOKS.OUT association. Don't forget
to add it to the list in the BOOKS.OUT phrase.

We now have a sufficiently comprehensive set of dictionary items to handle the
rest of this tutorial. Feel free to add new items if you want to explore further
possibilities.

QM includes a pair of commands to setup and delete the demonstration files.
These will allow you to work with these files again in the future without having to
go through the whole file setup process. The commands are:

SETUP.DEMO Creates or resets the three demonstration files

DELETE.DEMO Deletes the demonstration files

Query Processing 27

2.6-6

9 Query Processing

In this section we will look at some of the basic features of the QM query
processor. There is much more to discover for yourself when you look through
the manuals.

The query processor allows us to extract data from the database files for all
purposes from simple queries to complex reports. It has many features to specify
what data is to be extracted and how that data is to be presented.

There are many query processor commands (verbs). The most important is LIST
which produces reports either on the terminal screen or on a printer.

All query processor verbs share a common general format though not all
elements are applicable to all verbs. This format is

verb filename selection.clause sort.clause display.clause options

where

verb is the query processor verb to be used.

filename specifies the file to be processed. A query processor
sentence may only reference a single file though the
dictionary of that file may include virtual attributes to fetch
data from other files. The filename may be prefixed by
DICT to process the dictionary part of the file.

selection.clause specifies which records are to be included in the report.
QM offers a wide range of methods to select records. If
omitted, all record are reported.

sort.clause specifies the order in which the reported data is to be
output. If omitted, the records are reported in the order in
which they are found on the file.

display.clause specifies the fields to be displayed in the report and,
optionally, overrides the dictionary details of how they are
to be converted, formatted, etc. If omitted, a default set of
fields is reported.

options are various additional options to control the page layout,
output destination, etc.

The clauses that follow the file name are all optional and may appear in any
order. The only order specific features are that fields will be shown left to right
across the report in the order in which they are specified in the query sentence

Tutorial Guide28

2.6-6

and multiple selection or sort clauses will be applied in the order in which they
appear.

All command processing in QM is controlled via the VOC (vocabulary) file. This
defines the names of verbs, keywords that control their actions, files, etc. The
VOC is discussed in detail in the Introduction to QM manual.

During processing of a query sentence, each word and symbol on the command
line is looked up first in the dictionary of the file being processed and then, if not
found there, in the VOC file. Quoted items are always treated as literal values.

The Selection Clause

The simplest selection clause consists of one or more record ids. These should
be quoted if there is any risk that they might also appear as dictionary or VOC
items.

For example

LIST TITLES 1 3

The second method to select the records to be processed is by use of the WITH
clause. This tests each record against some selection criteria to determine if it
should be included in the report.

There are many selection methods available in the WITH clause. The most
frequently used is a test of a field value against either a literal value or another
field. For example,

LIST TITLES WITH COPIES > 1

The fields named in a WITH clause must be defined in the dictionary or the VOC
as D or I-type items.

The relational operators available are

= EQ
NE <> ><
< LT LESS BEFORE
> GT GREATER AFTER
<= LE =<
>= GE =>

Where a relational operator is used to compare a field which has a conversion
code with a literal value, the literal value is converted to the internal form of the
field and subsequent comparison is done using internal values. This means that,
for example, a literal date may be entered in any recognisable format rather than

Query Processing 29

2.6-6

only in the form given by the conversion code.

LIST BOOKS WITH DATE.OUT AFTER '1 JUL 00'

LIST TITLES WITH SUBJECT = 'Art'

If the field named in a WITH clause is multi-valued, at least one of the values
must match the test for the record to be included in the report. For example,

LIST TITLES WITH AUTHOR = 'Smith, Alan'

The above query would show all records in the TITLES file which included the
given author, even if the book had more than one author.

We might want to select records where all of the values in a multi-valued field
satisfy the selection criteria. This can be done using the WITH EVERY construct.
For example,

LIST READERS WITH EVERY DATE.OUT > '1 JUL 00'

This query shows readers where all books on loan were taken out after 1 July
2000.

Multiple conditions can be included by using the keywords AND or OR in the
query sentence. For example,

LIST TITLES WITH SUBJECT = 'Art' AND AUTHOR = 'Smith,
Alan'

LIST TITLES WITH SUBJECT = 'Art' OR SUBJECT = 'History'

Multiple conditions can also be included by using more than one WITH clause.

LIST TITLES WITH SUBJECT = 'Art' WITH AUTHOR = 'Smith,
Alan'

This is equivalent to the first of the examples above.

Pattern Matching

Another commonly used WITH clause component is pattern matching to test the
general structure of a character string rather than its exact content. The general
form of this is

WITH field LIKE template

where

Tutorial Guide30

2.6-6

field is the field to be compared.

template is the pattern against which field is to be compared.

The template consists of one or more concatenated items from the following list.

... Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type

0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters

0N Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly. Either single or double
quotation marks may be used.

The values n and m are integers with any number of digits. m must be greater
than or equal to n.

The 0A, nA, 0N, nN and "string" patterns may be preceded by a tilde (~) to invert
the match condition. For example, ~4N matches four non-numeric characters
such as ABCD (not a string which is not four numeric characters such as 12C4).

Examples

LIST READERS WITH NAME LIKE Smith...

LIST TITLES WITH TITLE LIKE ...Concise...

The query processor has many short forms. Amongst the more useful, a
relational operator or LIKE keyword not immediately preceded by a field name
uses the same field as the previous test or the record id if this is the first test.

Examples

LIST BOOKS WITH DATE.OUT AFTER '1 APR 00' AND BEFORE '1
MAY 00'

LIST TITLES > 10

Query Processing 31

2.6-6

An operator followed by a list of values tests each in turn in an implied OR
relationship.

Examples

LIST TITLES WITH SUBJECT = Art History

LIST READERS WITH NAME LIKE Smith... Jones...

Note that the first example above reports books with a subject of Art or History. If
we wanted to find books on Art history, the query would be

LIST TITLES WITH SUBJECT = 'Art history'

Note also that the query processor comparison operators are case sensitive. We
can work around this using features not discussed in this tutorial.

The Sort Clause

The sort clause specifies the order in which the reported records will appear. In
its most commonly used form it is introduced by the BY keyword.

Example

LIST BOOKS BY DATE.OUT

The BY.DSND keyword performs a descending sort.

Example

LIST BOOKS BY.DSND DATE.OUT

A single query may contain multiple sort clauses. They are applied left to right,
later sorts being applied where two or more records have the same values in the
fields for earlier sorts.

Example

LIST TITLES BY SUBJECT BY TITLE

The SORT verb is equivalent to LIST with a final BY @ID component. Thus the
following two queries produce identical output

Tutorial Guide32

2.6-6

SORT TITLES BY SUBJECT
LIST TITLES BY SUBJECT BY @ID

Do not use SORT unless you actually want to sort by record id.

The Display Clause

The display clause determines which fields will appear in the report and how they
will be displayed.

In its simplest form, the display clause consists of a list of field names. These will
appear in the report left to right in the order that they occur in the query
sentence. The default view of the record id, defined by the @ID dictionary record,
always appears as the first column of the report unless it is suppressed using the
ID.SUP keyword.

Examples

LIST TITLES TITLE SUBJECT

LIST READERS NAME ADDRESS ID.SUP

There are various keywords not discussed in this tutorial that may follow a field
name to override the dictionary definition for conversion code, format code,
column heading, etc.

If a query sentence contains no field names, the query processor looks in the
dictionary for a PH-type (phrase) entry named @. If this is found, it is attached to
the end of the query sentence. Typically, this phrase contains a default list of
fields to be shown but it may also include other query sentence elements. If there
is no @ phrase, only the record id will be shown.

Reporting Options

There are many options to modify the format of a report. These include setting
page headings and footings, specifying margins and column spacing,
breakpoints, and much more.

The only option discussed in this tutorial is the LPTR keyword.

If the query sentence includes the LPTR keyword, the report is directed to a
printer instead of the terminal. Which printer is used depends on the way in
which your system is set up.

Query Processing 33

2.6-6

QM commands and application software send their output to a numbered print
unit. The actual destination for each print unit is set using the SETPTR
command, often from the LOGIN paragraph or other initialisation script.

Used alone, the LPTR keyword causes the query processor to send its output to
print unit 0, the default print unit. Alternatively, the LPTR keyword may be
followed by a print unit number.

When the LPTR keyword is used and the query sentence contains no field
names, the query processor looks first for a phrase named @LPTR as its default
listing phrase and then, if this is not found, for the @ phrase. This allows a
different set of default fields to be shown in a printed report from one displayed
on the screen.

Select Lists

Every QM session has available to it eleven numbered select lists in which lists
of record ids can be built up for subsequent processing. The lists are numbered
from 0 to 10. List 0 is known as the default select list.

The query processor includes a SELECT verb which performs the selection
phase of a query but saves the generated list of record ids without producing a
report. The SELECT verb takes the same selection and sort clauses as LIST.

Many QM verbs, including all of the query processor verbs, check for an active
default select list and, if found, use this to provide a list of items to be processed.
Because of the dangers of unwanted effects if a list is left active by accident, the
command prompt changes to :: when the default select list is active.

The SELECT verb constructs list 0 by default. An alternative list can be built
using the TO clause to specify the target list number. Similarly, all query
processor verbs have an optional FROM clause to specify the source list.

Examples

SELECT TITLES WITH COPIES > 1

LIST TITLES

This pair of commands is equivalent to

LIST TITLES WITH COPIES > 1

There are times when we might perform a SELECT against one file to generate a
list of record ids to process in some other file.

Tutorial Guide34

2.6-6

SELECT TITLES WITH SUBJECT = Art
DELETE TITLES

This pair of commands deletes all the art books from our TITLES file. Don't do it!

Building a Report Menu 35

2.6-6

10 Building a Report Menu

QM includes an easy to use system for generating menus as part of an
application. We will use this to build a simple front end to our reports.

To enter the menu editor, type

MED

A prompt appears asking for the name of the file to hold the menu. We will store
our menu in the VOC file which can be selected simply by pressing the return key
to enter a blank response.

The next prompt asks for the menu name. Enter "LIB" as this is our library
application. You will be asked to confirm that you want to create a new menu.

The screen now shows five lines on which text can be entered corresponding to
the following aspects of the menu:

Title The title line to appear on the menu

Subr The name of a subroutine to be used to validate a user's access to
each menu option. This is optional and we will leave it blank.

Prompt The option prompt text to appear at the foot of the menu. We will
leave this blank to use the default prompt text.

Exits A comma separated list of codes that can be used to exit from the
menu to whatever started it. We will not use this feature.

Stops A comma separated list of codes that can be used to exit from the
menu to the command prompt. We will not use this feature.

As you work through data entry, a short help message appears at the foot of the
screen.

Enter a suitable menu title such as "Library System Menu" then press the return
key repeatedly until some further lines appear asking for the details of the first
menu item. These details are:

Text The text of the menu item

Action The command to be executed when this action is selected. If the
command is terminated by a semicolon, the menu processor will
issue a "Press return to continue" prompt before returning to the
menu. This will be needed on all of our report generation menu
items.

Help An optional single line help message for this menu item

Access A key passed into the access control subroutine. We are not using
this feature so this field can be left blank.

Hide Determines whether inaccessible options are displayed or hidden.

Tutorial Guide36

2.6-6

Since we are not using access control this can be left blank.

Enter three menu items to list our three database files. One simple solution is
shown below.

Title :Library System Menu
Subr :
Prompt:
Exits :
Stops :

Text :Display title information
Action:LIST TITLES;
Help :Lists the TITLES file
Access:
Hide :

Text :Display book copy information
Action:LIST BOOKS;
Help :Lists the BOOKS file
Access:
Hide :

Text :Display reader information
Action:LIST READERS;
Help :Lists the READERS file
Access:
Hide :

If you make a mistake, you can use the cursor keys to move around in the data
and make corrections.

The MED editor uses a subset of the control keys from the SED full screen text
editor. You can get extended help for the current field when in MED by pressing
the F1 key. Pressing F1 again displays a screen of key bindings.

Once you are happy with your menu, you can save it by typing Ctrl-X followed by
S. To exit from MED, type Ctrl-X followed by C.

To test the menu, type its name (LIB) at the command prompt.

A Simple Loan Management Application 37

2.6-6

11 A Simple Loan Management Application

The final section of this tutorial assembles a very simple QMBasic program to
allow readers to take books out on loan or to return them. There is minimal
screen handling in this program. A more realistic program would probably use the
SCRB screen builder. If you are a programmer you can learn much more about
the QMBasic language from the QM Reference Manual. You may also want to
explore the QMClient API which allows you to write Windows style front ends to
QM applications using Visual Basic.

The readable (source language) form of QMBasic programs must be held in a
directory file. By convention this is often called BP (Basic Programs). Create a
BP file in your test account by typing

CREATE.FILE BP DIRECTORY

QM provides two text editors; ED which is a simple line based editor very similar
to that found on several other multi-value database products and SED which is a
screen based editor originally developed for QM but also available from
Ladybridge Systems for the UniVerse and Unidata databases.

In this tutorial we will use a few of the basic functions of SED. There are many
more for you to discover which make editing much easier.

Our program will be called LIB. To start the editor, type

SED BP LIB

You will be faced with a blank screen into which program statements can be
typed. The cursor keys can be used to move around and the backspace and
delete keys can be used to remove text.

This tutorial does not set out to teach the QMBasic programming language,
rather we are going to guide you through entry of a very simple program to
maintain our demonstration files. Experienced programmers should have no
trouble learning QMBasic from the main manual set. We include a discussion of
the principles of this program later.

The program that we are going to put together has no error handling. It assumes,
for example, that the inter-relationships between the files are correct.

Enter the program text shown over then next two pages. Although we have
shown the program in uppercase to follow the conventional style of multi-value
database programming languages, QM allows programs to be in lowercase. Only
the file names in the OPEN statements must be in uppercase.

Tutorial Guide38

2.6-6

PROGRAM LIB * Open the files

 OPEN 'TITLES' TO TTL.F ELSE ABORT 'Cannot open TITLES'
 OPEN 'BOOKS' TO BKS.F ELSE ABORT 'Cannot open BOOKS'
 OPEN 'READERS' TO RDR.F ELSE ABORT 'Cannot open READERS'

 * The main loop of the program prompts for a book id and processes
 * it. In a real application, this book id might come from a barcode
 * reader.

 LOOP
 DISPLAY 'Book id' :
 INPUT BKS.ID

 UNTIL BKS.ID = ''

 * Fetch the details for this book

 READU BKS.REC FROM BKS.F, BKS.ID THEN

 * Read the corresponding TITLES record and display the title

 READ TTL.REC FROM TTL.F, BKS.ID['-',1,1] THEN
 DISPLAY 'Book title : ' : TTL.REC<1>
 END

 * Extract the reader id from the BOOKS record to decide if the
 * book is out on loan or in stock.

 RDR.ID = BKS.REC<1>
 IF RDR.ID # '' THEN ;* Book is on loan

 * Get the reader's details

 READU RDR.REC FROM RDR.F, RDR.ID THEN
 DISPLAY 'On loan to : ' : RDR.ID : ' (' : RDR.REC<1> : ')'
 DISPLAY 'Date out : ' : OCONV(BKS.REC<2>, 'D2DMY[,A3]')
 DISPLAY 'Return to stock' :
 INPUT YN
 IF UPCASE(YN) = 'Y' THEN

 * Remove this book from the reader's loans

 LOCATE BKS.ID IN RDR.REC<3,1> SETTING POS THEN
 DEL RDR.REC<3,POS>
 END
 WRITE RDR.REC TO RDR.F, RDR.ID

 * Update the BOOKS file record to show the book as in stock

 BKS.REC<1> = '' ;* Clear reader field
 BKS.REC<2> = '' ;* Clear date out field
 END ELSE ;* Not returning, release record lock
 RELEASE RDR.F, RDR.ID
 END
 END
 END ELSE ;* Book is in stock

 * Ask for reader id to generate new loan

 DISPLAY 'In stock'
 DISPLAY 'Enter reader id to loan, blank to ignore'
 INPUT RDR.ID
 IF RDR.ID # '' THEN
 READU RDR.REC FROM RDR.F, RDR.ID THEN

 * Add this book to the reader's list of loans

 RDR.REC<3,-1> = BKS.ID
 WRITE RDR.REC TO RDR.F, RDR.ID

A Simple Loan Management Application 39

2.6-6

 * Update the BOOKS file record to show the book as on loan

 BKS.REC<1> = RDR.ID ;* Set reader number
 BKS.REC<2> = DATE() ;* Set loan date
 END ELSE ;* Don't have this reader number
 RELEASE RDR.F, RDR.ID
 DISPLAY 'Reader not on file'
 END
 END
 END

 WRITE BKS.REC TO BKS.F, BKS.ID
 END ELSE ;* Unknown book number entered - Release the lock
 RELEASE BKS.F, BKS.ID
 DISPLAY 'Book is not on file'
 END
 DISPLAY
 REPEAT
END

Once you have entered this text, save it by typing Ctrl-X followed by S and exit
from SED by typing Ctrl-X followed by C. (The same sequence as for MED).

The program must now be converted to a form that QM can execute. This
process is called compilation and is done using the BASIC command:

BASIC LIB

If you received any error messages, re-enter SED to correct the errors and try
again.

Once your compilation completes without errors, you can execute the program by
typing

RUN LIB

So, what does this program do? Let's take it apart step by step....

PROGRAM LIB

The PROGRAM line is optional and gives a name to the program. The name is
totally ignored and is for documentation purposes only.

 * Open the files

 OPEN 'TITLES' TO TTL.F ELSE ABORT 'Cannot open TITLES'
 OPEN 'BOOKS' TO BKS.F ELSE ABORT 'Cannot open BOOKS'
 OPEN 'READERS' TO RDR.F ELSE ABORT 'Cannot open READERS'

The three OPEN statements open the files. Each includes the name of a file
variable (e.g. TTL.F) which will be used elsewhere in the program to refer to the
file. The ELSE clause of the OPEN is executed if the open fails. In this case an

Tutorial Guide40

2.6-6

ABORT statement is used to terminate the program with an error message.

 * The main loop of the program prompts for a book id and processes
 * it. In a real application, this book id might come from a barcode
 * reader.

 LOOP

The LOOP statement marks the top of a loop terminated by a REPEAT statement
(almost at the bottom of our program). Every time we arrive at the REPEAT, the
program jumps back to the LOOP to start all over again.

 DISPLAY 'Book id' :
 INPUT BKS.ID

The DISPLAY statement displays the given text. The trailing colon is a special
syntax that causes the cursor to remain at the end of the displayed text instead of
moving to the start of the next line.

The INPUT statement prompts the user to enter data by displaying a question
mark (this can be changed or suppressed) and then takes data from the
keyboard, storing it in a variable named BKS.ID until the return key is pressed.
You could use any variable name you liked. We have chosen to adopt a simple
convention where our BOOKS file uses file variable BKS.F and the record id is
stored in BKS.ID.

 UNTIL BKS.ID = ''

The UNTIL statement is part of the LOOP / REPEAT construct. When the
condition is met (a blank book id is entered), the program will jump to the
statement following the REPEAT thus exiting from the loop.

 * Fetch the details for this book

 READU BKS.REC FROM BKS.F, BKS.ID THEN

The READU statement reads the BOOKS file record for the given book id. Our
variable naming convention uses BKS.REC to hold a record from the BOOKS file.
The READU statement takes an update lock on the record. This prevents another
user accessing the same record while we are performing our update. As this
program is written, they would simply wait for us to finish. READU has an option
to allow the programmer to take his own action if a read fails because another
user has the record locked.

If we succeed in reading the record we execute the THEN clause (all the
statement down to the corresponding END. Note how our indentation makes this
pairing easy to see). If the read fails because the record does not exist, we will
execute the ELSE clause (if present). In this case, the ELSE clause is almost at
the end of the program.

 * Read the corresponding TITLES record and display the title

 READ TTL.REC FROM TTL.F, BKS.ID['-',1,1] THEN
 DISPLAY 'Book title : ' : TTL.REC<1>

A Simple Loan Management Application 41

2.6-6

 END

We also need to read the TITLES record for this book. Here we use READ
instead of READU. The READ statement does not use any locks. Another user
might be working with a different copy of the same book where locking the
TITLES record would cause him to wait. In general, we lock records that we
might change; we do not lock records that we are simply looking at.

The BKS.ID['-',1,1] construct should look familiar as we used this in one of our
dictionary Itype records earlier to extract the TITLES file record id from the
BOOKS id.

The DISPLAY statement displays the fixed text (Book title :) followed by the book
title. In our I-types we could refer to fields by name. QMBasic programs do not
have an automatic way to use the dictionary to find fields by name. Instead we
use the field extraction construct (e.g. TTL.REC<1>) to extract field 1. There are
ways in which programmers can give names to fields but we have not done so
here.

 * Extract the reader id from the BOOKS record to decide if the
 * book is out on loan or in stock.

 RDR.ID = BKS.REC<1>
 IF RDR.ID # '' THEN ;* Book is on loan

By examining the READERS field (field 1) of the BOOKS record, we know if the
book is on loan and, if so, to whom.

 * Get the reader's details

 READU RDR.REC FROM RDR.F, RDR.ID THEN
 DISPLAY 'On loan to : ' : RDR.ID : ' (' : RDR.REC<1> : ')'
 DISPLAY 'Date out : ' : OCONV(BKS.REC<2>, 'D2DMY[,A3]')

For a book that is on loan, we read the READERS file details, locking it because
we are probably returning the book to stock. We also display the reader id, his
name and the date on which the book as taken out. The OCONV() function
performs output conversion to display the date in a useful format.

 DISPLAY 'Return to stock' :
 INPUT YN
 IF UPCASE(YN) = 'Y' THEN

We now ask if the book is to be returned to stock. The response should be Y or
N. To allow for entry of either upper or lowercase responses, we use the
UPCASE() function to convert the response to uppercase before testing whether
it was Y. A real program would probably do some better validation of the
response.

 * Remove this book from the reader's loans

 LOCATE BKS.ID IN RDR.REC<3,1> SETTING POS THEN
 DEL RDR.REC<3,POS>
 END

Tutorial Guide42

2.6-6

The reader may have several books on loan. We cannot simply clear out the
LOANS field of the READERS record. Instead we use the very powerful LOCATE
statement to search for the book id in the list and the DEL statement to delete it.

 WRITE RDR.REC TO RDR.F, RDR.ID

The READERS file record can now be written back to the file. This action will
automatically release the record lock, allowing another user access.

 * Update the BOOKS file record to show the book as in stock

 BKS.REC<1> = '' ;* Clear reader field
 BKS.REC<2> = '' ;* Clear date out field

We must also clear the reader id and the date out from the BOOKS record. This
record is written back to the file in a path that is common to both loans and
returns later.

 END ELSE ;* Not returning, release record lock

If the user enters N to the prompt asking if the book is to be returned, we must
release the lock the we hold on the READERS record so that other users can
access it.

 RELEASE RDR.F, RDR.ID
 END
 END
 END ELSE ;* Book is in stock

If the book is in stock, we are processing a new loan.

 * Ask for reader id to generate new loan

 DISPLAY 'In stock'
 DISPLAY 'Enter reader id to loan, blank to ignore'
 INPUT RDR.ID

Prompt for and input the reader id for this loan.

 IF RDR.ID # '' THEN
 READU RDR.REC FROM RDR.F, RDR.ID THEN

If a reader id was entered, read the READERS file record, locking it as we are
going to update it.

 * Add this book to the reader's list of loans

 RDR.REC<3,-1> = BKS.ID

This special syntax appends a new value to a list, in this case the list of loans by
the reader.

 WRITE RDR.REC TO RDR.F, RDR.ID

We can now write the READERS file record to show the book as on loan to the

A Simple Loan Management Application 43

2.6-6

reader.

 * Update the BOOKS file record to show the book as on loan

 BKS.REC<1> = RDR.ID ;* Set reader number
 BKS.REC<2> = DATE() ;* Set loan date

The BOOKS file record must be updated to show the reader id and the loan date.
The DATE() function returns today's date in internal form.

 END ELSE ;* Don't have this reader number
 RELEASE RDR.F, RDR.ID
 DISPLAY 'Reader not on file'

We must cater for the error of entering an invalid reader id. Here we simply
release the lock (even though the record did not exist, we have locked the id) and
display an error message.
 END
 END
 END

 WRITE BKS.REC TO BKS.F, BKS.ID

The common path for all updates writes the (possibly) modified BOOKS record
back to the file. This also releases the lock, letting other users access the book. If
we chose not to return a book that is on loan or entered a blank or invalid reader
number for a new loan, we will still perform this write. Although the data in the
BOOKS record has not changed, this is an easy way of ensuring that we have
also released the lock.

 END ELSE ;* Unknown book number entered - Release the lock
 RELEASE BKS.F, BKS.ID
 DISPLAY 'Book is not on file'

For an invalid book number we must also be sure to release the lock.

 END
 DISPLAY

The processing of each book id ends with output of a blank line to make the
display more readable

 REPEAT
 END

And here, at long last, is the bottom of our processing loop and an END to
terminate the program.

	Introduction
	Installing And Running QM
	Setting up the Data Files
	Database Records and Mark Characters
	Dictionaries
	Viewing the Data
	Conversion and Formatting
	Dictionary I-type Records
	Query Processing
	Building a Report Menu
	A Simple Loan Management Application

